Iterative learning control with initial rectifying action for nonlinear continuous systems

X.-D. Li1 T.W.S. Chow2 J.K.L. Ho3 J. Zhang1

1School of Information Science and Technology, Sun Yat-Sen University, 510275 Guangzhou, People’s Republic of China
2Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
3Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China

E-mail: lixd@mail.sysu.edu.cn

Abstract: A new iterative learning control (ILC) method with initial rectifying action for nonlinear continuous multivariable systems is presented. Unlike general ILC techniques, the proposed ILC approach allows initial outputs of an ILC system at different iterations to fluctuate randomly around the initial value of the desired output. The proposed strategy includes an initial rectifying action of ILC on a very small initial time interval, and pursues the reference trajectory tracking beyond the initial time interval. The output tracking error beyond the initial time interval can be driven to a residual set whose size depends on the estimation error of input matrix. A numerical example is used to illustrate the effectiveness of the proposed ILC approach.

1 Introduction

Iterative learning control (ILC) is a versatile control technique to improve transient response of a system operating repetitively over a fixed time interval. One of the important features of ILC is that it requires less a priori knowledge about the controlled system in the course of design. This makes ILC increasingly important in control applications, such as robot manipulators and disk drive systems that are mostly designed for repetitive tasks. Until now, there have been a lot of ILC algorithms reported. But most of the existing ILC works assume that the initial outputs of an ILC system at different iterations were kept invariant \cite{1,2}, which means that the ILC system must have a fixed initial error at different iterations. In some cases, a more stringent condition of zero initial error is even required \cite{3–6}. All of these hypotheses are difficult to be implemented in practice, as locating operation repetitively in an ILC application can result in irregular drifts of initial outputs at different iterations to the initial value of the desired output. Clearly, the study of ILC problem applied to dynamical systems with non-fixed initial errors is essential.

The difficulty of ILC with non-fixed initial error mainly lies in the dynamical complexity of ILC in which initial iterative error interacts with not only the system dynamics but also the iterative learning process. Lee and Bien \cite{7} reported some novel undesirable phenomenon due to the mismatch in the initial conditions in ILC process. They pointed out that the control system could become unstable when the initial output at each iteration was different from the previous initial output. There are a few research papers \cite{8–10} discussing the robustness of ILC algorithms to non-fixed initial errors, but the bound of robustness is normally too large and cannot be adjusted for practically tracking a reference trajectory. As a result, an initial rectifying action should be considered in ILC design. It is worth noting that there have been works \cite{11,12} incorporating an initial rectifying action into ILC design to achieve complete tracking of a reference trajectory over a specified interval, but they require that the initial error be a fixed value. They will not work when a random or non-fixed initial error is encountered. Hitherto, the research on ILC applied to dynamical systems with non-fixed initial errors still remains an open and important issue. Recently, a few studies \cite{13–17} have been focused on the ILC problem of dynamical systems with non-fixed initial errors. In \cite{13}, a method called ILC with multi-modal input was proposed to tackle the ILC problem for linear
continuous systems with non-fixed initial errors. But it is computationally complex because the determined input is, in fact, the synthesis of the multi-modal ILC input with varying initial condition. In [14], under a specific condition, an average operator-based PD-type ILC controller for linear continuous systems with non-fixed initial errors was investigated using 2-D system theory. Despite its ability to handle variable initial conditions, it is only effective when the tracking time interval is sufficiently large. For ILC on nonlinear systems, Xu and Yan [15] discussed the inherent relationship between different initial conditions and the corresponding learning convergence (or boundedness) property under a Lyapunov-based ILC method. However, the proposed ILC technique [15] is only suitable for a class of simple first-order nonlinear continuous systems with unit input gain. Furthermore, a direct adaptive ILC approach based on a fuzzy neural network was presented in [16] for a class of nonlinear systems with non-fixed initial errors. Using the proposed adaptive ILC approach, the norm of state tracking error will asymptotically converge to a tuable residual set as iteration goes to infinite.

The main objective of this paper is to describe how an initial rectifying action can be combined into the conventional D-type ILC technique for nonlinear continuous multivariable (NCM) systems with non-fixed initial errors. Beyond the designated initial time interval, the established ILC technique is able to drive the output tracking error to a residual set whose size depends on the estimation error of input matrix. It is also important to note that a perfect reference trajectory tracking beyond the initial time interval can be achieved when an accurate knowledge on input matrix at the initial time interval is available.

The organisation of this paper is as follows. Section 2 presents the ILC problem formulation and the ILC rule with initial rectifying action. Section 3 investigates the learning convergence of the proposed ILC rule under non-fixed initial errors. And the simulation results are illustrated in Section 4. Finally, Section 5 concludes this paper.

2 Problem formulation and ILC rule with initial rectifying action

Consider the following class of NCM systems performing repetitive tasks over a fixed time interval $t \in [0, T]$

$$\dot{x}_k(t) = f(x_k(t), t) + B(t) \cdot u_k(t)$$ \hspace{1cm} (1a)

$$y_k(t) = C(t) \cdot x_k(t)$$ \hspace{1cm} (1b)

where k denotes the kth repetitive operation of the system; $x_k(t) \in \mathbb{R}^n$, $u_k(t) \in \mathbb{R}^m$ ($m \geq n$), and $y_k(t) \in \mathbb{R}^p$ are the state, control input and output of the system, respectively; $B(t) \in \mathbb{R}^{p \times m}$ and $C(t) \in \mathbb{R}^{p \times n}$ are time-variant matrices; the nonlinear function $f(\cdot, \cdot) : \mathbb{R}^n \times [0, T] \rightarrow \mathbb{R}^p$ is locally Lipschitz in x_k, that is, for all $t \in [0, T]$ and k, there exists a constant L_f such that

$$\|f(x_{k+1}(t), t) - f(x_k(t), t)\| \leq L_f \cdot \|x_{k+1}(t) - x_k(t)\|$$ \hspace{1cm} (2)

where the norm $\|\|$ will be defined later. An example of system (1) can be referred to the PM synchronous motor studied in [18].

Given a reference output trajectory $y_r(t)$ and an initial control input $u_0(t)$ at $t \in [0, T]$, an ILC design for system (1) is closely related to its boundary conditions $x_k(0)$ for $k = 0, 1, 2, \ldots$. Unlike general ILC literatures, we assume that $x_k(0)$ is bounded and different for $k = 0, 1, 2, \ldots$, and $y_k(0)$ fluctuates randomly around $y_r(0)$ within a bound in this study. Based on the given boundary conditions, our ILC objective is to iteratively determine a control input sequence $u_k(t)$, $t \in [0, T]$, such that as k goes to infinite, the output tracking error $y_k(t) - y_r(t)$ over a specified time interval $t \in [b, T]$ can be driven to a residual set whose size depends on the estimation error of input matrix $B(t)$, where b is a specified small real number between 0 and T. In many ILC applications, the model information on the controlled system, especially the input matrix $B(t)$, can be well known. In this case, our ILC design with the control objective can achieve an effective reference trajectory tracking.

The output tracking error in ILC process is denoted as

$$e_k(t) = y_r(t) - y_k(t)$$ \hspace{1cm} (3)

When the initial ILC errors $e_k(0)$ for $k = 0, 1, 2, \ldots$ are non-fixed, but bounded, it has been shown in [9] that a well-known D-type ILC rule

$$u_{k+1}(t) = u_k(t) + K(t) e_k(t)$$ \hspace{1cm} (4)

can ensure the boundedness of the output tracking error $e_k(t)$, $t \in [0, T]$ as k goes to infinite. In practice, this bound is usually too large to be applicable to track a reference trajectory. In this paper, a rectifying action is then combined into a D-type ILC rule (4), and the following ILC rule for control calculation is applied

$$u_{k+1}(t) = u_k(t) + K(t) e_k(t) + \theta_{b}(t) \hat{B}(t)^{-1} X_{k}(0)$$ \hspace{1cm} (5)

where $\hat{B}(t)$ denotes the estimation of $B(t)$; $\hat{B}(t)^{-1}$ is the right inverse of $\hat{B}(t)$; and

$$\theta_{b}(t) = \begin{cases} \frac{2}{b} (1 - \frac{t}{b}), & t \in [0, b) \\ 0, & t \in [b, T] \end{cases}$$ \hspace{1cm} (6)

$$X_{k}(0) = \hat{B}(t) K(0) e_{k}(0) + x_{k}(0) - x_{k+1}(0)$$ \hspace{1cm} (7)

For the convenience of convergence analysis of the proposed ILC approach, the following definitions and lemma on
where $s = [s^{(1)} \ldots s^{(n)}]^{T}$ is a vector, $G = [g_{ij}]\in R_{m\times n}^{n}$ is a matrix and $q(t)$, $t \in [0, T]$ is a real function/variable. Specially, in this paper, we use

$$\|q(t)\|_{\lambda} = \sup_{t \in [0, T]} e^{-\lambda \tau} \|q(t)\|, \lambda > 0$$

(8)

to define λ-norm of $q(t)$ on the time interval $t \in [b, T]$.

On the relationship between the norm $\|\cdot\|$ and the λ-norm $\|\cdot\|_{\lambda}$ of a vector $x(t)$, $t \in [0, T]$, we have the following lemma 1.

Lemma 1:

$$\sup_{t \in [0, T]} \left(e^{-\lambda \tau} \int_{0}^{t} \|x(\tau)\| d\tau \right) \leq \frac{1}{\lambda} \|x(t)\|_{\lambda}$$

(9)

The proof of Lemma 1 is an immediate consequence of the norm $\|\cdot\|_{\lambda}$, and therefore is omitted.

3 Learning convergence under non-fixed initial errors

In this section, the convergence results of the ILC rule (5) are provided in Theorem 1.

Theorem 1: For an NCM system (1), suppose that the reference output $y_{r}(t)$ is differentiable, and the initial ILC error $e_{0}(t)$ varies randomly within a bound. If there exists a matrix $K(t)$ to make

$$\sup_{t \in [0, T]} \|I - C(t)B(t)K(t)\| \leq \rho_{0} < 1$$

(10)

and the matrix $B(t)$ at $t \in [0, b]$ is right invertible; then, the ILC rule (5) can ensure

$$\lim_{k \to \infty} \|e_{k}(t)\|_{\lambda} \leq \frac{\lambda M_{c}(M_{E} \cdot M_{k} + M_{0} \cdot M_{k})}{(1 - \rho)(\lambda - L_{\gamma})}$$

(11)

where $B(t)\hat{B}(t)^{-1}_{R} = I + E(t)$, $\sup_{t \in [0, T]} \|E(t)\| \leq M_{E}$, $\sup_{t \in [0, T]} \|C(t)\| \leq M_{C}$, $\|\hat{B}(t)(t)\hat{B}(t)^{-1}_{R} \| \leq M_{\hat{B}}$, $\sup_{t \in [0, T]} \|K(t)\| \leq M_{K}$, $0 < \rho < 1$, and λ is a bounded value. Especially, when the input matrix $B(t)$ at $t \in [0, b]$ is accurately known, we have $\lim_{k \to \infty} \|e_{k}(t)\|_{\lambda} \| e_{0}(t) \|_{\lambda} = 0$.

Proof: From (1) and (5), we have

$$x_{k+1}(t) - x_{k}(t)$$

$$= \int_{0}^{t} \dot{x}_{k+1}(\tau) d\tau - \int_{0}^{t} \dot{x}_{k}(\tau) d\tau + [x_{k+1}(0) - x_{k}(0)]$$

$$= \int_{0}^{t} \left(f(x_{k+1}(\tau), \tau) - f(x_{k}(\tau), \tau) \right) d\tau$$

$$+ \int_{0}^{t} B(\tau)[u_{k+1}(\tau) - u_{k}(\tau)] d\tau + [x_{k+1}(0) - x_{k}(0)]$$

$$= \int_{0}^{t} \left(f(x_{k+1}(\tau), \tau) - f(x_{k}(\tau), \tau) \right) d\tau$$

$$+ \int_{0}^{t} B(\tau)K(\tau)\dot{x}_{k}(\tau) d\tau + \int_{0}^{t} \theta_{j}(\tau)B(\tau)\hat{B}(\tau)^{-1}_{R} d\tau$$

$$\cdot X_{0}(0) + [x_{k+1}(0) - x_{k}(0)] = \int_{0}^{t} \left(f(x_{k+1}(\tau), \tau) - f(x_{k}(\tau), \tau) \right) d\tau$$

$$- [x_{k+1}(0) - x_{k}(0)] + \int_{0}^{t} B(\tau)K(\tau)\dot{x}_{k}(\tau) d\tau + \int_{0}^{t} \theta_{j}(\tau)[I + E(\tau)] d\tau$$

$$\cdot X_{0}(0) + [x_{k+1}(0) - x_{k}(0)]$$

(12)

On the other hand, from (1) and (3)

$$e_{k+1}(t) = y_{r}(t) - y_{k+1}(t)$$

$$= e_{k}(t) - [y_{k+1}(t) - y_{r}(t)]$$

$$= e_{k}(t) - C(t)[x_{k+1}(t) - x_{k}(t)]$$

(13)

Substituting (12) into (13), we have

$$e_{k+1}(t) = [I - C(t)B(t)K(t)]e_{k}(t)$$

$$- C(t)\int_{0}^{t} \left(f(x_{k+1}(\tau), \tau) - f(x_{k}(\tau), \tau) \right) d\tau$$

$$+ C(t)\int_{0}^{t} \frac{d(B(\tau)K(\tau))}{d\tau} d\tau$$

$$\cdot e_{k}(\tau) d\tau - C(t)\int_{0}^{t} \theta_{j}(\tau)[I + E(\tau)] d\tau \cdot X_{0}(0)$$

$$+ C(t)B(0)K(0)e_{0}(0) - C(t)[x_{k+1}(0) - x_{k}(0)]$$

(14)

As $t \in [b, T]$, considering that $\int_{0}^{b} \theta_{j}(\tau) d\tau = \int_{0}^{b} \theta_{j}(\tau) d\tau = 1$
from (6), (12) and (14) can be, respectively, written as

\[
x_{k+1}(t) - x_k(t) = \int_0^t [f(x_{k+1}(\tau), \tau) - f(x_k(\tau), \tau)] d\tau + B(\tau)K(\tau)\varepsilon_k(\tau) - \int_0^t \frac{d(B(\tau)K(\tau))}{d\tau} \varepsilon_k(\tau) d\tau + \int_0^t \theta_k(\tau) E(\tau) d\tau \cdot X_k(0) + [\bar{B}(0) - B(0)]K(0)\varepsilon_k(0)
\]

(15)

\[
e_{k+1}(t) = [I - C(t)B(t)K(t)]\varepsilon_k(t) - C(t)\int_0^t [f(x_{k+1}(\tau), \tau) - f(x_k(\tau), \tau)] d\tau + C(t)\int_0^t \frac{d(B(t)K(t))}{d\tau} \varepsilon_k(\tau) d\tau - C(t)\int_0^t \theta_k(\tau) E(\tau) d\tau \cdot X_k(0) - C(t)[\bar{B}(0) - B(0)]K(0)\varepsilon_k(0)
\]

(16)

Now, let us independently investigate the properties of (15) and (16) on the whole time interval \(t \in [0, T] \). Taking the norms on two sides of (15) and (16), respectively, we have

\[
\|x_{k+1}(t) - x_k(t)\| \leq L_f \int_0^t \|x_{k+1}(\tau) - x_k(\tau)\| d\tau + M_1 \|\varepsilon_k(t)\| + M_2 \int_0^t \|\varepsilon_k(\tau)\| d\tau + M_0M_MK
\]

(17)

\[
\|e_{k+1}(t)\| \leq \rho_0 \|\varepsilon_k(t)\| + M哥伦布\|B(t)K(\tau)\| + M_0L_f \int_0^t \|x_{k+1}(\tau) - x_k(\tau)\| d\tau + M_0MK + M_0MK
\]

(18)

where \(\sup_{\tau \in [0,T]} \|B(\tau)K(\tau)\| \leq M_1, \sup_{\tau \in [0,T]} \|dB(\tau)K(\tau)/dt\| \leq M_2, \) and \(M_0, M_1, M_2, M_M, M_K, \rho_0 \) are defined as in Theorem 1.

Multiplying (17) and (18) by \(e^{-\lambda t} \), respectively, where \(\lambda > L_f \), we have

\[
\|x_{k+1}(t) - x_k(t)\|_\lambda \leq L_f \sup_{\tau \in [0,T]} (e^{-\lambda t} \int_0^t \|x_{k+1}(\tau) - x_k(\tau)\| d\tau) + M_1 \|\varepsilon_k(t)\|_\lambda + M_2 \sup_{\tau \in [0,T]} (e^{-\lambda t} \int_0^t \|\varepsilon_k(\tau)\| d\tau) + M_0MK + M_0MK
\]

(19)

\[
\|e_{k+1}(t)\|_\lambda \leq \rho_0 \|\varepsilon_k(t)\|_\lambda + M哥伦布\|B(t)K(\tau)\| + M_0L_f \int_0^t \|x_{k+1}(\tau) - x_k(\tau)\| d\tau + M哥伦布M哥伦布 + M哥伦布MK + M哥伦布MK
\]

(20)

Applying (9) of Lemma 1 to (19) and (20), we can obtain the following inequality

\[
\|x_{k+1}(t) - x_k(t)\|_\lambda \leq \frac{\lambda M哥伦布 + M哥伦布}{\lambda - L_f} \|\varepsilon_k(t)\|_\lambda + \lambda M哥伦布M哥伦布 + \lambda M哥伦布MK
\]

(21)

\[
\|e_{k+1}(t)\|_\lambda \leq \left(\rho_0 + \frac{M哥伦布M哥伦布}{\lambda} \right) \|\varepsilon_k(t)\|_\lambda + \frac{M哥伦布L哥伦布}{\lambda} \|x_{k+1}(t) - x_k(t)\|_\lambda + M哥伦布M哥伦布M哥伦布 + M哥伦布MK
\]

(22)

Substituting (21) into (22), we obtain

\[
\|e_{k+1}(t)\|_\lambda \leq \rho \|\varepsilon_k(t)\|_\lambda + \frac{\lambda M哥伦布M哥伦布 + \lambda M哥伦布MK}{\lambda - L_f} + \frac{\lambda M哥伦布M哥伦布 + \lambda M哥伦布MK}{\lambda - L_f}
\]

(23)

where \(\rho = \rho_0 + (M哥伦布M哥伦布/\lambda) + (M哥伦布L哥伦布(M哥伦布/\lambda))/(\lambda - L_f) \). When \(\rho_0 < 1 \), we can select \(\lambda \) to be sufficiently large such that \(\rho < 1 \). Equation (23) is a contraction, therefore

\[
\lim_{k \to \infty} \|\varepsilon_k(t)\|_\lambda \leq \left(\frac{\lambda M哥伦布M哥伦布 + \lambda M哥伦布MK}{\lambda - L_f} \right)
\]

(24)

On the other hand, from the definition of the \(\lambda \)-norm, \(\lim_{k \to \infty} \|\varepsilon_k(t)\|_\lambda \leq \lim_{k \to \infty} \|\varepsilon_k(t)\|_\lambda \). Considering (24), we have

\[
\lim_{k \to \infty} \|\varepsilon_k(t)\|_\lambda \leq \left(\frac{\lambda M哥伦布M哥伦布 + \lambda M哥伦布MK}{\lambda - L_f} \right)
\]

(25)

Furthermore, if the input matrix \(B(t) \) at \(t \in [0, b] \) is accurately known, we have \(M哥伦布 = M哥伦布 = 0 \). It can be directly derived from (25) that \(\lim_{k \to \infty} \|\varepsilon_k(t)\|_\lambda \mid_{t \in [b,T]} = 0 \).

From the above deduction, it is important to note that (25) is obtained from the investigation of system (15) and (16) on the time interval \(t \in [0, T] \). System (15) and (16) is not equivalent to the original system (12) and (14) at \(t \in [0, T] \), but they are equivalent on the time interval \(t \in [b, T] \). They should exhibit the same properties at \(t \in [b, T] \). Therefore (25) is also suitable to system (12) and (14) at \(t \in [b, T] \). Theorem 1 is proved. □
Remark 1: Equation (25) shows that the ILC rule (5) is able to drive the ILC error at \(t \in [b, T] \) into a bound. But, it is worth noting that after the parameter \(\lambda \) is selected, the bound is mainly decided by parameters \(M_2 \) and \(M_0 \), which are related to the estimation error with respect to the input matrix \(B(t) \). Therefore compared with the robust effect of the D-type ILC rule (4), the bound can be controlled to a much smaller level when \(B(t) \) is well estimated. This point will be better illustrated by the example presented in the next section.

Remark 2: From the ILC rule (5) and the definition (6) of \(\theta_b(t) \), it is shown that the ILC rule (5) puts an initial rectifying action on a small initial time interval \([0, b]\) and pursues the reference trajectory tracking at \(t \in [b, T] \). The function \(\theta_b(t) \) specifies the initial rectifying action on \([0, b]\). A less value \(b \) in \(\theta_b(t) \) may result in a larger control input. Thus, the selection of \(b \) should be done based on the trade-off between the resulting control input and the tracking error.

In addition, Theorem 1 requires that the input matrix \(B(t) \) is right invertible and estimable. But the corresponding time interval is only a small initial time interval \([0, b]\), not the entire time interval \([0, T]\). Also, in order to achieve perfect tracking at \(t \in [b, T] \) namely \(\lim_{k \to \infty} \| e_k(t) \|_{\|A\|_{[h,T]}} = 0 \), we need the input matrix, \(B(t) \), to be accurately known on the initial time interval \([0, b]\) only.

Remark 3: Regarding the selection of the learning gain matrix \(K(t) \) in the ILC rule (5), Theorem 1 gives us a theoretical guideline that \(K(t) \) should satisfy (10). In particular, let \(K(t) = \alpha \hat{C}(t) B(t) \) if \(\hat{C}(t) B(t) \) is of full-row rank, where \(\hat{C}(t) \) and \(\hat{B}(t) \) are estimations to \(C(t) \) and \(B(t) \), respectively. We can find \(\alpha \in (\varepsilon, 2 - \varepsilon) \) and \(\varepsilon \in (0, 1) \) so that \(\sup_{t \in [0, T]} \| I - \hat{C}(t) \hat{B}(t) K(t) \| = \rho_0 < 1 \).

4 Illustrative example

Consider an ILC problem of the following NCM system

\[
\begin{align*}
\frac{d}{dt} \begin{bmatrix} x^{(1)}(t) \\ x^{(2)}(t) \end{bmatrix} &= \begin{bmatrix} -0.5 \sin(x^{(1)}) + 0.8 \cos(x^{(2)}) \\ \sin(x^{(1)}x^{(2)}) \end{bmatrix} + B(t)u \\
y &= C(t)\begin{bmatrix} x^{(1)}(t) \\ x^{(2)}(t) \end{bmatrix}
\end{align*}
\]

(26)

where \(B(t) = \begin{bmatrix} 2.5 \sin(10t) \\ 0 \end{bmatrix} \), \(C(t) = \begin{bmatrix} 0.5t + 0.1 & 1 \end{bmatrix} \). The desired output \(y_r(t) \) is described by the equation

\[
y_r(t) = 15(t - t^2), \quad t \in [0, 1]
\]

(27)

In order to verify our ILC approach for NCM systems with non-fixed initial errors, we randomise the initial states of system (26) \(x^{(1)}(0) \) and \(x^{(2)}(0) \), which vary between \(-1 \) and \(1 \) at different iterations of ILC process randomly, as shown in Table 1. The induced non-fixed initial ILC errors, \(e_0(t) \), are also listed in Table 1.

Suppose that the accurate information on parameters \(B(t) \) and \(C(t) \) in system (26) is unavailable, and only their time estimations \(\hat{B}(t) \) and \(\hat{C}(t) \) are given as \(\begin{bmatrix} 2.3 & 0.7 \sin(10t) \\ 1.2 & -0.6t + 0.15 \end{bmatrix} \) and \(\begin{bmatrix} 0.6t + 0.15 & 1.2 \end{bmatrix} \), respectively. In the ILC process of system (26), we set the initial input of ILC as \(u_0(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), \(t \in [0, 1] \), and \(h = 0.05 \). We pursue the tracking of the desired output \(y_r(t) \) on the interval \(t \in [0.05, 1] \). The accuracy of tracking is evaluated by the following maximum absolute error of tracking

\[
EE = \sup_{t \in [0, 1]} | y_r(t) - y(t) |
\]

To better illustrate the initial rectifying action of our

<table>
<thead>
<tr>
<th>Table 1 Non-fixed initial states and initial errors of ILC tracking performance at different iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>(x^{(0)}(0))</td>
</tr>
<tr>
<td>(e^{(0)}(0))</td>
</tr>
<tr>
<td>(y^{(0)}(0))</td>
</tr>
<tr>
<td>(e^{(0)}(0))</td>
</tr>
</tbody>
</table>
proposed ILC rule (5) by comparison, first, a D-type ILC rule (4) without a rectifying action is used. We set $K(t) = 0.6(\hat{C}(t)\hat{B}(t))^{T}[\hat{C}(t)\hat{B}(t)(\hat{C}(t)\hat{B}(t))^{T}]^{-1}$, which makes $\max_{t\in[0,1]}\|I - C(t)B(t)K(t)\| < 1$. Fig. 1 presents the situation of the tracking error index EE on the interval $t \in [0.05, 1]$ when the D-type ILC rule (4) is executed at different iteration numbers. In Fig. 1, it is shown that the ILC rule (4) is able to drive the ILC error into a bound. The robustness of the ILC rule (4) to non-fixed initial ILC errors is thus illustrated. But it is also noticed that the bound is surely too large for practical application.

Next, the above ILC rule (5), which includes an initial rectifying action, is applied. Fig. 2 shows how the tracking error index EE on the interval $t \in [0.05, 1]$ varies at different numbers of iteration. Compared with the results shown in Fig. 1, the ILC tracking error is bounded to a much lower level.

Finally, given that the input matrix $B(t)$ is accurately known on the initial time interval $[0,0.05]$, and the ILC rule (5) is used, Fig. 3 shows the tracking performance of the ILC system output on the interval $t \in [0, 1]$ when the ILC rule (5) is iteratively executed from the second to the forth time. Also, Fig. 4 presents the situation of the tracking error index EE on the interval $t \in [0.05, 1]$ when the ILC rule (5) is executed at different iteration numbers. In Fig. 4, it is noticed that the ILC tracking error on the interval $t \in [0.05, 1]$ can be surely driven to zero by the ILC rule (5) with the known $B(t)$. A perfect tracking of the desired output $y_d(t)$ on the interval $t \in [0.05, 1]$ is achieved.

The example used in this paper illustrates that the proposed ILC approach for NCM systems with non-fixed...
initial errors is very effective. It can overcome random initial
errors of ILC systems and can successfully track the desired
output trajectory beyond a small initial time interval after a
small number of iterations.

5 Conclusion
This paper introduces an initial rectifying action into the
conventional D-type ILC method for NCM systems. The
established ILC technique allows the initial output of the
ILC system at different iterations fluctuating randomly
around the initial value of the desired output. The used ILC
strategy is to set a very small initial time interval and to
pursue the reference trajectory tracking beyond the initial time
interval. The output tracking error beyond the initial time
interval can be driven to a residual set whose size depends on
the estimation error of input matrix. It is worth noting that
when an accurate knowledge on the input matrix on the
initial time interval is available, a perfect reference trajectory
tracking beyond the initial time interval can even be achieved.
Compared with the conventional ILC methods, the robustness of the proposed ILC system is greatly improved.

6 Acknowledgment
This work is supported in part by the National Natural
Science Foundation of China under Grant 60874115, and
in part by the Research Grants Council of the Hong Kong
Special Administrative Region, China under Project
No. 8730004/CityU.

7 References
synthesis based on 2-D system theory’, IEEE Trans.
linear time-varying discrete systems based on 2-D system
pp. 13–18
class of nonlinear time-varying systems’, IEEE Trans.
condition for convergence of iterative learning algorithm’,
Automatica, 2002, 38, pp. 1257–1260
iterative learning control for linear continuous systems
pp. 1421–1430
learning stabilizer for a class of MIMO systems’,
Automatica, 2006, 42, pp. 973–981
[8] ARIMOTO S.: ‘Robustness of learning control for
1990, 3, pp. 1528–1533
learning control with disturbances and uncertain initial
conditions’, IEEE Trans. Autom. Control, 1992, 37,
pp. 110–114
nonlinear systems with iterative learning control’,
Automatica, 1998, 34, (11), pp. 1445–1448
learning control for non-linear systems with time delay’,
learning control with non-zero initial error’, Int. J. Control,
1996, 64, (3), pp. 345–359
learning control for variable initial state error’, IEEE Trans.
pp. 1349–1354
iterative learning control of nonlinear systems using
pp. 1348–1359
controller for discrete-time systems with variable initial
[18] QIAN W., PANDA S.K., XU J.-X.: ‘Speed ripple
minimization in PM synchronous motor using iterative
(1), pp. 53–61