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Abstract— This paper presentsthe PoissonPareto burst pro-
cess(PPBP) as a simple but accurate model for Inter net traffic.
It presents formulae relating the parameters of the PPBP to
measurabletraffic statistics,and describesa technique for fitting
the PPBP to a given traffic stream. The PPBP is shown to
accurately predict the queueingperformanceof a sampletrace of
aggregated Inter net traffic. Using the traffic model, we predict
that in few years, efficient statistical multiplexing will lead to
efficient optical Inter net.

I . INTRODUCTION

For over a quarter of a century researchershave been
looking for a stochasticprocesswhich could be usedas an
1 accurateand simple model for traffic in packet switched
networks. The criteria for sucha stochasticprocessare:

(i) It is definedby a small numberof parameters.
(ii) If theseparametersarefitted usingmeasurablestatisticsof
an actualtraffic streamthe following will be achieved:

1) thefirst andsecondorderstatisticsincludingtheautoco-
variancefunction of the stochasticprocess(the model)
will matchthoseof the actualtraffic stream,and

2) if fed througha singleserver queue(SSQ),performance
resultsfor themodelwill accuratelypredictthoseof the
real traffic streamfed into an identicalSSQ.This must
be true for a wide rangeof buffer sizesaswell as for a
wide rangeof servicerates.

(iii) It is amenableto analysis.
If the processalso parallels the natureof the traffic that

is being modeled,this will give maximum confidencein its
usefulness.

In this paperwe examinethe PoissonParetoburst process
(PPBP)anddemonstratethat this modelmeetsthesechalleng-
ing criteria.To thebestof ourknowledge,thismakesthePPBP
the first model which has beendemonstratedto meet all of
thesecriteria.

ThePPBPis aprocessbasedon multipleoverlappingbursts,
where the burst lengthsfollow a heavy-tailed distribution. It
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hasbeenshown that the burst lengthsof WAN file transfers
are heavy-tailed [9]. Thus, the PPBPappearsto reflect the
basicpropertiesof at leastsomeaggregateddatatraffic. The
PPBPis basedon the modelsdescribedin [15], [26], [27],
[28], and is also closely relatedto the M/G/∞ modelsused
in [22], [25]. The PPBPcan be viewed as a specificcaseof
thegeneralPoissonburstprocessdiscussedin [24] andis also
referredto asan M/Paretoprocessin [2].

Previous work has focussedon the derivation by analytic
meansof boundson the queueingperformanceof SSQsfed
by M/G/∞ processes(see especially[22], [26], [27], [28]).
The evaluation of the PPBP requiresaccurateestimatesof
queueingperformancefor the PPBPSSQ.In this paper, we
use a new analytical approximationgiven in [3] as a part
of the processof fitting the PPBP to a real traffic stream,
but our evaluation of the how well the PPBP predicts the
queueingperformanceof realistictraffic streamsis carriedout
via computersimulation.We show that for short to moderate
buffer sizes,our simulationsprovide moreusefulestimatesof
the queueingperformanceof an SSQfed by a PPBPthanthe
boundsderived in [28].

To develop the PPBPas a traffic model, we identify the
parameterswhich definethe PPBP. Threeof theseparameters
arebasedon measurablestatisticscommonlyusedin teletraffic
modeling: the mean, the varianceand the Hurst parameter.
We show that fitting the model to these three statistics is
not sufficient to producereliable predictionsof the queueing
performanceof an SSQfed by the modeledtraffic, andthat a
fourth parameteris requiredto uniquelydefinethe behaviour
of the PPBPSSQ.We identify this parameteras representing
the “level of aggregation.” We demonstratethat whenall four
parametersarefitted in thePPBP, themodelmeetsthecriteria
describedabove.We show thatfitted PPBPsaccuratelypredict
the queueingperformanceof infinite buffer SSQswith a wide
rangeof serviceratesandbuffer thresholdswhenthosequeues
are fed by an IP byte stream.We provide an approachbased
on analytic estimateswhich can be used to derive the best
value of the level of aggregation parameter, λ, for a given



traffic stream.We also show that if λ is adequatelyset, both
the marginal distribution and the autocovariancefunction of
the real tracearecloselymatchedwith that of the model.

In Section II we define the queueing framework used
throughoutthis paperin evaluatingour models.We describe
thePPBPin SectionIII, andgivesomekey relationshipswhich
we utilize to fit the modelto giventraffic statistics.In Section
IV we explain how we createmultiple PPBPsall having the
samemean,varianceand Hurst parameter. We also describe
the techniquesusedto obtain the simulationresultsgiven in
later sectionsof the paper. In SectionV we considermultiple
PPBPsall of which have the samemean,varianceandHurst
parameter, but which have differing levels of aggregation,
and show that they yield different queueingresults.We also
show that as the level of aggregation increases,the PPBP
exhibits behaviour more and more like that of a long range
dependent(LRD) Gaussianprocess.SectionVI provides an
analyticestimatefor the performanceof the PPBPSSQ.

In SectionVII we describeananalyticalmethodfor match-
ing theaggregationparameterλ. Usingthismethod,wechoose
the PPBPwhich best predicts the queueingperformanceof
a given traffic trace, from a family of processeswith the
samemean,varianceand Hurst parameter, but with different
λ values.SectionVIII presentresultsshowing that the PPBP
can accuratelymodel the queueingperformanceof measured
Internettraffic streams.

The results given in Section VIII show that the model
givesa goodmatchingto the queueingperformanceof SSQs
fed by real traffic, for a fixed service rate and a range of
buffer thresholds.We also demonstratethat the model can
alsobeusedto give goodestimatesof theperformanceresults
obtainedby feedingthe measuredtraffic throughSSQswith
fixed buffer thresholdbut a rangeof servicerates.In Section
IX we examine the correspondencebetweenthe marginal
distribution andautocovariancefunction of an IP byte stream
andthoseof a PPBPfitted to that stream.

Having identified the PPBP as an appropriatemodel for
Internet traffic, we use it in Section X as a part of our
evaluationof future Internettrends.

Historically, packet switchingnetworkshave beendesigned
in the 60s, 70s and 80s to cope efficiently with bursty data
traffic. During theseearly years,becauseof the low volume
of bursty data traffic, it was justified to queue and delay
packets.Undersuchtraffic conditions,queueinganddelaying
packetscan significantly improve link utilization. The packet
switching paradigmwas then justified. During the 90s and
the beginning of the third millennium, the numberof hosts
usingtheInternet(aswell asthetraffic volume)hasmorethan
doubledevery year. During thesametime period,transmission
rateandswitchingcapacityhave grown at a similar rate.The
increasein the numberof hosts(from around20 million in
1997to over 100million in 2001)leadsto a situationwhereby
traffic on major links is heavily multiplexed. This by itself
brings about a situation where links can be heavily utilized
without the needfor packet lossanddelay. The multiplexing
level will keep increasingin coming years,and we show in

SectionX that if the current trend continues,it is expected
that towards the end of this decade,it will be possibleto
achieve over 70% link utilization in optical networks andstill
to provide acceptableQuality of Service.Therefore,the fact
that the optical Internetdoesnot supportbuffering is not at
all a predicament.In fact, it will leadto low latency, which is
a desiredfeature.

I I . MODELING A TRAFFIC STREAM

A traffic model is a stochasticprocesswhich can be used
to predict the behaviour of a real traffic stream.Ideally, the
traffic model should accuratelyrepresentall of the relevant
statisticalpropertiesof the original traffic, but sucha model
may becomeoverly complex. A major applicationof traffic
modelsis in predictingthebehaviour of the traffic asit passes
througha network. In this context, the responseof individual
network elementsin the traditional Internet can be modeled
using one or more SSQs.Hencea useful model for network
traffic modelingapplicationsis onewhich accuratelypredicts
queueingperformancein an SSQ. Matching the first and
secondorder statisticsprovides us with confidencethat such
a performancematchingis not just a lucky coincidence.

In orderto keepourmodelingparsimonious,we try to typify
a given traffic streamusing as few parametersas possible.
Our model is not basedon an exact matchingof either the
autocorrelationfunction or the marginal distribution of the
measuredstream.Insteadweusea randomprocess,in ourcase
the PPBP, which is adjustedso as to matchthe key statistics
of the measuredstream.We definethesecharacteristicsto be
the mean,varianceand Hurst parameter;and the model will
be fitted so as to producethe samevaluesof mean,variance
andHurst parameteras the measuredstream.

Having matchedthe key statistics,we then measurethe
accuracy of ourmodelby evaluatingtheability of this matched
processto accuratelypredictthe queueingperformanceof the
original streamfor a wide rangeof buffer sizesand service
rates.In our evaluationswe considera discretetime queueing
model. In particular, we considera FIFO singleserver queue
with an infinite buffer and considertime to be divided into
fixed length sampling intervals. We let An be a continuous
randomvariablerepresentingtheamountof work enteringthe
systemduring the nth samplinginterval. The process

�
An � is

assumedto be stationaryand ergodic. We defineC to be the
constantservicerateof theserver. We assumethat the service
takesplaceat theendof the interval. Themeanof theamount
of work arriving during an interval is denotedµ � E � An � and
the varianceof An is denotedby σ2.

Let Qn be the unfinished work at the beginning of the
nth samplinginterval. Using the above notation, the system
unfinishedwork process,for the caseof an infinite buffer,
satisfiesLindley’s recurrenceequation:

Qn� 1 ��� Qn � An 	 C � ��
 n � 0 

where Q0 � 0 and where X � � max� 0 
 X � . Our measure
of queueingperformanceis the steady state queue length
distribution, Pr� Q  x� � Pr� Q∞  x� . An accuratemodel is



onewhich matchesthe steadystatequeuelength distribution
of the real traffic for a wide rangeof valuesof thequeuesize,
x 
 and for a wide rangeof servicerates,C.

We evaluateourmodelby comparingqueueingperformance
curves. If we consider an infinite buffer SSQ with given
arrival process,then the queueingperformancecurve is a
plot of the complementaryqueuelength distribution, Pr� Q 
x� , against buffer threshold, x. For each buffer threshold,
the correspondingpoint on the complementaryqueuelength
distribution curve givestheproportionof time that theamount
of work in the queueexceedsthe threshold.

I I I . THE POISSON PARETO BURST PROCESS (PPBP)

A numberof studies[6], [14], [23], [30] have shown that
a range of bursty traffic sourcessupply a significant part
of the traffic carried on broadbandnetworks. In [30] it was
shown that one possiblesourceof this burstinesswas in the
aggregation of independenton-off sourceswith heavy tailed
on and/oroff time distributions. In [15] it was shown that a
processsuchasthe PPBPcould be considereda limiting case
for the multiplexing of a large numberof such independent
heavy-tailed on-off sources.Thus the PPBPappearsa natu-
ral candidatefor the modeling of bursty packet data traffic
streams.

Let us denoteby Z � the set of non-negative integers,R
the real numbers,andR � the non-negative real numbers.We
considera continuoustime process

�
Bt : Bt � Z � 
 t � 0 � which

representsthe numberof active bursts contributing work to
the traffic streamat time t. We definea seriesof arrival times�

αi : αi � R 
 i � 0 
 1 
 2 
������ � and a seriesof departuretimes�
ωi : ωi � R 
 i � 0 
 1 
 2 
������ � . The valueof Bt increasesby one

at time t � αi anddecreasesby oneat time t � ωi . We define
ωi � αi � di andlabeldi (di � R � ) thedurationof the ith burst.
We assume

�
αi � is a non-decreasingseries, i.e. αi � αi � 1

for i � 0 
 1 
 2 
������ , but we do not restrict di (apart from the
requirementthat the burst durationis positive) andso

�
ωi � is

not ordered.The valueof Bt is given by

Bt � ∞

∑
i � 0

1t ��� αi �ωi �
where

1X � �
1 
 if X is True,
0 
 otherwise.

The arrival of bursts is a Poissonprocesswith rate λ 
 so
the intervals betweenadjacentburst arrival times,αi 	 α � i � 1� ,
arenegative exponentiallydistributedwith mean1� λ 
 andthe
meannumberof new burstsarriving during a time interval of
lengthT is Poissondistributedwith meanλT. It is well known
that if the burstsarrivals are a Poissonprocess,the value of
Bt is Poisson-distributed,with meanλ times the meanburst
duration(e.g., [8]).

In the PPBP, the burst durations,di

 are independentand

identically distributed Pareto random variables,having the
same distribution as random variable d. Using Pareto dis-
tributed burst durations allows the significant long bursts

that characterizeLRD traffic to occur in the model. The
complementarydistribution function of d is

Pr � d  x� � ���
x
δ  � γ 
 x � δ,

1 
 otherwise,
(1)

δ  0. For 1 ! γ ! 2, we have that E � d � � δγ� γ � 1� and the
varianceof d is infinite.

For the burst processto be stationary, the systemis initial-
ized with b0 initial sessions,where b0 is a Poissonrandom
variable with mean E � Bt � . The durations of these bursts
are independentand identically distributed randomvariables.
Their commondistribution is thesameasa randomvariableω
which is theforwardrecurrencetimeof theParetodistribution.
Thusαi � 0 for i � � 1 
�������
 b0 � andωi valuesfor i � � 1 
�������
 b0 �
aredrawn from

Pr � ω  x� �#" 1
γ

�
x
δ  1 � γ 
 x � δ,

γ � 1
γ

�
1 	 x

δ  � 1
γ

 otherwise.

(2)

We thenconsidera relatedprocess,Ât

 the continuoustime

processrepresentingthe total amountof work contributedby
all sessionsin the period � 0 
 t $ . We considerthe casewhere
all sessionscontribute work at a constantrate r. Thus

Ât � r % t

0
Btdt �

This givesa meanof

E � Ât � � λtrδγ� γ 	 1� �
Casesin which the sessionsdo not all contribute equal rate,
or in which the work ratefrom a given sessionmay vary asa
functionof time,arenot consideredhere.Resultsregardingthe
propertiesof processesin which r is not necessarilyconstant
or the samefor all sessionsarepresentedin [27].

In [24] the term “Poissonburst process”wasusedto refer
to processessuchas Ât , wherei.i.d. burstsof fixed rate start
accordingto a Poissonprocess.For a Poissonburst process
the variancefunction is given by repeatedlyintegrating the
complementarydistribution function of the burst distribution:

Var& Ât $'� 2λr2 % t

0
dt % u

0
du % ∞

v
dxPr � d  x� �

Calculatingfor Paretodistributedburst durationsgives

Var& Ât $'�)(***+ ***,
2r2λt2 - δγ

2 � γ � 1� 	 t
6 . 
 0 � t � δ

2r2λ / δ3γ
6 � 3 � γ � 	 δ2tγ

2 � 2 � γ �	 t3 0 γδγ� 1 � γ � � 2 � γ � � 3 � γ �21 
 t  δ � (3)

A full derivation of the variancefunction for a PPBPis given
in [19].

Examining the expressionfor the variancegiven in Equa-
tion (3), we see that for large t, the dominant term is
2r2λ δγt3 0 γ� 1 � γ � � 2 � γ � � 3 � γ � . If we defineH �3� 3 	 γ � � 2, then we can
observe that for increasingt the growth of this function is



proportionalto t2H . This implies that this processis asymp-
totically4 self similar with Hurst parameter

H � 3 	 γ
2

� (4)

The conditionsunderwhich M/G/∞ processesareself-similar
areexaminedin moredepthin [29].

Note that in simulationswe will considera discretetime
versionof Ât , wheretime is divided into fixed lengthintervals
called time-slots.We choosean arbitrary value, τ 
 to be our
time-slotsizeanddefineour discretetime processto be

An � Â � n� 1� τ 	 Ânτ � r % � n� 1� τ
nτ

Bsds� (5)

The time-slot size,τ may take on any positive value,but our
usualchoiceis τ � 1 � We will useµ � E � An � andσ2 � Var&An $
to denote the statistics of this discrete time process.The
processAn hasmean

µ � E � An � � λrδγ� γ 	 1� 
 (6)

andvariance

σ2 �)(***+ ***,
2r2λ - δγ

2 � γ � 1� 	 1
6 . 
 δ � 1

2r2λ / δ3γ
6 � 3 � γ � 	 δ2γ

2 � 2 � γ �	 δγ� 1 � γ � � 2 � γ � � 3 � γ � 1 
 δ ! 1 � (7)

Thisdiscretetimeprocessdiffersslightly from theprocesses
consideredin [13], [22], andalsofrom theprocessesanalyzed
in [26], [27], [28], in that the processesconsideredin those
works samplethe value of Bt


 not the value of Ât as we do.
Samplesdrawn from Bt cantakeon only discretevalues,while
our processis a continuous-valued, discrete-timeprocess.
Notice that if a burst startsin the middle of a time-slot and
continuesbeyond the end of that time-slot, its contribution
to the work arriving in that time-slot is τr � 2 
 which is not
necessarilyinteger. In limiting casesfor low λ and/or high
E � d � our processwill behave in a very similar fashionto these
discrete-valuedprocesses.

In our modelingwe chooseto extendthis PPBPby addinga
CBR component,κ, representinga constantadditionalamount
of work which arrives every interval. The caseof κ ! 0 is
also permitted.This gives us increasedflexibility in fitting
real traffic streams.This CBR componenthasno impact on
the varianceor the Hurst parameterof the total traffic stream.
The overall meanof the PPBPwith a CBR componentis

µ � λrδγ� γ 	 1� � κ � (8)

Finally, a commenton the meaningof the burst arrival rate
λ. Thesuperpositionof two independentPPBPswith identical
burst length distributions will itself be a PPBPwith Poisson
arrival rate equal to the sum of the arrival ratesof the two
constituentprocesses.Thus, increasingλ can representan
increasein thenumberof sourcescontributingto anaggregated
streammodeledby a PPBP. We label theparameterλ the level
of aggregation in the stream.A streamwith λ � 100 can be

consideredto be generatedby multiplexing 100 independent
streamseachwith λ � 1. In [15] it was shown that a model
of this type could be considereda limiting case for the
multiplexing of a large numberof independenton-off sources
with heavy tailed on and/or off time distributions. However
no direct mappingbetweenthe numberof individual on-off
sourcescontributing to the streamand the value of λ in the
multiplexed streamhasbeenfound.

IV. USING THE PPBP

Using the relationshipsdevelopedin the previous section,
(Equations(4), (7) and(8)) we cancreatea PPBPwhich will
producea givensetof valuesfor themean,varianceandHurst
parameter. In fact, we can createnot just one, but a whole
family of PPBPswhich will have mean,varianceand Hurst
parametervaluesidentical to thoseof the measuredstream.
ThePPBPwe usehasfive parameters:thePoissonarrival rate,
λ; thearrival rateof work within a session,r; thestartingpoint
of theParetotail, δ; the rateof decayof theParetotail, γ; and
therateof theCBR component,κ. Theparameterδ definesthe
minimum allowable burst length,and we set δ � 1 to ensure
that all burstslast for at leastone full time-slot.

In fitting a giventraffic stream,we assigntheremainingfour
parameterssoasto yield givenvaluesof themeanarrival rate,
µ � E � An � ; the varianceσ2; andthe Hurst parameter, H. This
meansthat one of the parametersof the PPBP will be set
arbitrarily. This freedomof choice is important as it allows
us to createa whole family of PPBPswith identical values
of µ, σ2 and H but which differ in other ways.We shall see
that themembersof sucha family of PPBPsproducediffering
queueingperformanceresultswhenfed into identicalSSQs.

We considera family of PPBPswhich yield identicalvalues
of µ, σ2 andH but which havediffering levelsof multiplexing.
We do this by increasingthe value of λ. We have seenin
SectionIII that λ may be consideredto representthe level of
multiplexing in thePPBP. To increasethelevel of multiplexing
we increasethevalueof λ andthenscaletheotherparameters
in the processso that the valuesof µ, σ2 andH areunaltered
by the transformation.

In order to maintaina constantvalue for the variance,we
utilize the relationshipgiven in Equation(7), and so if λ is
multiplied by a factor n, then the transmissionrate for each
sessionis reducedby dividing r by 5 n. Making thesechanges
to λ andr givesa processin which not only the variance,but
theentireACF is unchangedfrom thatof theoriginal process.
Note that we do not fit the entireACF of the PPBPto that of
the given traffic stream,exceptvia the fitting of σ2 andH.

Multiplying λ by a factor of n and dividing r by only 5 n
will increasethe meanarrival rate of the PPBP. In order to
focusour attentionon the effectsof changingvaluesof λ we
do not compensatefor this changeby altering the parameters
of the Pareto distribution (δ and γ). Instead,we modify the
CBR component,κ, soasto maintaina matchingbetweenthe
meanarrival rateof the PPBPandthe meanarrival rateof the
modeledstream.The additionof κ cells per interval to every
arrival interval will not affect the valuesof σ2 or H. Since



the Paretoholding time distribution is not altered,the Hurst
parameterof the PPBPis unaffectedby altering λ. Thus we
can producea PPBPwith an arbitraryvalue of λ which also
matchesa given setof valuesfor µ, σ2 andH �

In SectionV we will show that the different membersof
this family of PPBPscan producevery different queueing
performanceresults.Evidently if we are to achieve our goal
of accuratelymodelinga real traffic stream,we will needto
chooseλ correctly. In SectionVII we presenta techniqueby
which we can choosethe value of λ which gives the PPBP
which bestfits a given traffic trace.

It may be argued that the PPBP is nothing special,and
that many modelscould be fitted in this way and still yield
accurateperformanceresults. Even in an M/M/1 queueing
systemwecansetthemeanto fit any lossprobability. However
if the service rate changes,or the buffer size changes,this
fitted meanwill not predictperformanceaccurately. What we
achieve whenthe PPBPis correctlyfitted is that the first and
secondorderstatisticsof thegivenstreamwill bematchedand
accurateresultswill be obtainedfor a wide rangeof different
serviceratesandbuffer sizes.

Unlessotherwiselabeled,all PPBPresultsshown in figures
in the following sectionsare obtainedthroughrepeatedsim-
ulation. The improved simulationtechniquesdiscussedin [3]
are usedto improve the reliability of the simulation results.
Performanceresultsfor eachvalueof λ aregeneratedfrom a
set of 60 independentsimulations,eachcontainingthe same
numberof of samples.The numberof samplesper simulation
is chosenaccordingto Equation(12) of [3] soasto ensurethat
theprobabilityof a largenumberof initial long burstscreating
a simulationwhich is permanentlyin an unstablestateis less
than10� 7.

Confidenceintervals are calculatedfor eachpoint and the
valuesshown in figuresare 95% confidenceintervals, based
on the assumptionthat the valuesare taken from a Normal
distribution. Analysis of the simulation results, using the
Lilliefors test for normality [16] has shown that the values
of Pr� Q  x� for PPBPinput aremostlikely not drawn from a
Normal distribution, so the confidenceintervalsshown should
be usedonly as a guide to the amountof variability in the
resultsobtained.Confidenceintervals are omitted from some
simulationvaluesin order to avoid obscuringthe information
beingpresented.

V. CONVERGENCE TO GAUSSIAN

In recentyearsa numberof researchershave investigated
the usefulnessof Gaussianprocessesin representinga variety
of traffic types[5], [7], [12], [17], [18], [20]. Analytic expres-
sions have beendevelopedfor the queueingperformanceof
both LRD and non-LRD Gaussianprocesses[5], [20]. The
existenceof such expressionsmakes the Gaussianprocess
an attractive model, where it is applicable.In this section
we will show one reason why the Gaussianmodel may
not be universally applicable,and suggestthat as the level
of multiplexing increaseson larger networks, the Gaussian
processmay find moreapplicationsin the future.

In Section III we saw that the arrival rate of bursts in
the PPBP, λ, can be relatedto the numberof traffic sources
contributing to an aggregated traffic flow. In [4] it was
suggestedthat, by the central limit theorem,as the number
of independentsourcescontributing to an aggregate flow
increases,the traffic tends,in the senseof weakconvergence,
towardsa Gaussianstochasticprocess,and by the continuity
of the queueingprocess,the queueingbehaviour will tend to
that of the correspondingGaussianprocessalso. We would
thereforeexpectthatasλ increases,thebehaviour of thePPBP
shouldapproachthat of a Gaussianprocess.

Note that the Gaussianprocessto which a family of PPBPs
convergeswill have thesamecorrelationstructureasthePPBP
family. Thismeansthatit will beanasymptoticallyself-similar
process,and not the purely self-similar FractionalBrownian
Motion for which authorssuch as Narayan[18] and Norros
[20] have derived theoreticalresults.

Fortunately, analytic resultsfor the queueingperformance
of a Gaussianprocesswith anarbitraryvariancefunctionhave
beengiven in [5]. For a Gaussianprocesswith meanµ and
variancefunction σ2 � t � fed into an infinite buffer queuewith
servicerateC the buffer overflow probability is

Pr� Q  x�76 exp 8 	 2 � C 	 µ� 2σ2 � t 9x: � C � µ� �� σ2 �<; � t 9x: � C � µ� � 2 = 
 (9)

where � σ2 � ; � t � is usedto denotethe derivative of the variance
function σ2 � t � evaluatedat t, under the assumptionthat the
derivative exists at that point. The relevant point at which the
functionmustbe evaluatedis givenby t 9x: � C � µ� wheret 9y is the
solution to

2σ2 � t �� σ2 �>; � t � 	 t � y
 (10)

for a given normalizedbuffer sizey
Figure 1 shows an example in which this Gaussiancon-

vergenceoccurs. In the figure we see a family of PPBPs,
all with µ � E � An � � 100, σ2 � 14400and H � 0 � 8 but with
differing levels of aggregation,which are fed into SSQswith
servicerateC � 350� The infinite buffer overflow probabilities
for eachprocessareevaluatedby simulation.As the valueof
λ increasesthe queueingperformanceimproves,until a rea-
sonableapproximationof Gaussianperformanceis achieved.
Along the way, however, lower valuesof λ producedifferent
queueingperformanceresultsfor PPBPswith thesamevalues
of E � An � , σ2 and H. In this figure, the Gaussianresultsare
generatedby applyingEquation(9) to calculatethe queueing
performanceof a Gaussianprocesshaving the samevariance
function as the family of PPBPsconsidered.We note that in
[5] this expressionwasfound to over-estimatethe probability
of overflow for smallerqueuelengths,but the tail behaviour
for larger queuelengthscorrespondswell with that observed
in a simulatedGaussianprocess.

VI . THE QUASI-STATIONARY APPROXIMATION

In the previous section,we have seenthat the queueing
performanceof the PPBPcannotbe estimatedusingstraight-
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Fig. 1. Convergenceof PPBPto Gaussian.

forward Gaussiananalytic techniques.In this section we
examinemoreaccurateanalytic techniques.

An approximationfor the queueingperformanceof the
PPBP which is labelled the quasi-stationaryapproximation
was introducedin [3]. Whereasthe boundsgiven above are
valid asx ? ∞, thequasi-stationaryestimategivesanestimate
which is valid for λ ? ∞. This estimateis more useful for
lower valuesof the buffer thresholdx, and has beenshown
in [3] to give accurateestimatesof the infinite buffer queue
lengthdistribution for the PPBPSSQ.

The quasi-stationaryapproximationis basedon dividing
the PPBPinto slowly moving andquickly moving parts.The
combinedeffect of thesetwo componentswill give theoverall
queueingperformance.

If we considerthe PPBPover any such interval of length
W, i.e., the period & t 
 t � W $ , for arbitrary t, then any of the
initial burstswhich last for the entire time periodwe label as
long bursts. All otherburstsarecalledshort bursts. The short
burstsinclude:(1) thoseburststhatstartat or beforet andend
beforet � W, (2) thoseburststhat startafter t andfinish at or
aftert � W and(3) thoseburststhatstartaftert andfinish at or
beforet � W. Consideringtheselong andshortbursts,we will
divide the PPBPinto two independentprocesses:(1) the long
burstsprocessand(2) theshortburstsprocess. Thelongbursts
processis a stationary but non-ergodic processcontaining
only the long bursts.The shortburstsprocesscontainsall the
remainingbursts,and is stationaryon the interval & 0 
 W $ (see
[3]).

By definition, the long bursts processwill have constant
rate over the interval of lengthW. This constantrate will be
given by nr, wheren is the numberof long bursts,and r is
the rate per burst. The numberof long bursts,n, is Poisson
distributedwith meanλE � d � Pr� ω  W � wherePr� ω  x� is the
complementarydistribution functionof theforwardrecurrence
time of the Paretoburst distribution, andis givenby Equation
(2).

For a given W, we can use known techniquesfor SRD
processes(e.g.thetechniquesgivenin [5] or [11]) to calculate
the performanceof the short burstsprocessin a queuewith

service rate C 	 nr. We then calculate an estimateof the
performanceof the PPBPin a queuewith servicerateC by
summingtheseestimates,weightedby the probability that the
long burstsprocesswill containn bursts.

Therearevariouswaysof modelingthequeueingbehaviour
of the short burstsprocess.One way which is convenient is
to model this processas Gaussian.This modelingallows us
to apply the formula of [5] to the short burstsprocess.This
formula is summarisedin SectionV. This approximationis
asymptoticallyaccurateas λ ? ∞, becausefor larger λ the
short-rangedependentprocessbecomesmoreandmoresimilar
to Gaussian.

In orderto calculatethe queueingperformanceof the short
burstsprocess,using the Gaussianformula given in Equation
(9) we must calculatethe value t 9x . t 9x will dependupon the
meanandthe variance-timecurve of the shortburstsprocess.
Thesevalueswill differ from the equivalent expressionsfor
the overall PPBP. The mean of the short bursts processis
mW � rλδγ

γ � 1

�
γδ1 � γ 	 W1 � γ  and its variance-timecurve is

vs � t � � Var& Ât $ 	 t2 r2λW
� 1 � γ �

γ 	 1

 0 � t � W � (11)

Thevaluesof t 9x usedin theGaussianformulaarerestrictedto
belessthanW, sowe do not definethevariance-timecurve of
the shortburstsprocessfor t  W. If no solution to Equation
(10) canbe found in the range0 � t � W then t 9x � W.

The final estimateof Pr� Q  x� for the PPBPwill depend
upon the choiceof W. Whatever the value of W, the quasi-
stationaryestimateis a lower boundon theperformanceof the
PPBP. Therefore,the bestestimateof the PPBPperformance
is producedby choosingW to be the valuewhich maximizes
the quasi-stationaryestimateof Pr� Q  x� .

VI I . FITTING THE PARAMETER λ
For any given traffic trace,we wish to automaticallycal-

culate the parametersof the PPBPsuch that: (1) the mean
and autocorrelationfunction of the PPBP will be close to
those of the real trace and (2) if both are fed into infinite
buffer single server queueswith the sameservicerate, they
will give almost the sameoverflow probability curves. This
matching of the overflow probability should occur for any
buffer thresholdand for any servicerate.Henceforthwe will
call such a PPBPa PPBPwhich fits the real data.Our real
trace is a sequenceof N consecutive measurementsof the
amountof traffic originating from the sourcein consecutive
fixed size time intervals, which form a sequenceof values�
Sn : 1 � n � N � . From the sequence

�
Sn � we can estimate

valuesfor the mean,varianceand Hurst parameter. Standard
estimatorsare used to evaluate the mean and variance of
the measuredstreams,and we have usedthe Matlab imple-
mentationof the Abry-Veitch wavelet estimator[1] available
from the websitehttp://www.emulab.ee.mu.oz.au/d̃arryl/ sec-
ondordercode.html to estimatethe Hurst parameterof the
streams.

Using the scaling rules describedin Section IV, we can
create a whole family of PPBPs which will have mean,



varianceandHurst parametervaluesidentical to thoseof the
measuredstream.We have seenin SectionV that different
membersof this family of PPBPswill behave very differently
in identicalqueueingscenarios.The differentmembersof the
family are differentiatedby their different values of λ, so
choosingthe correctvalue for λ would appearto be vital to
producinga modelwhich accuratelyreflectsreality.

We define λ 9 to be the value of the Poissonparameter
which producesa PPBPwhich fits the real data.This fitting
is determinedthougha matchingof thecomplementaryqueue
length distributions within infinite buffer SSQsfor a single
fixed servicerateC anda rangeof buffer thresholds.

By feedingthesamplevalues
�
Sn � throughaninfinite buffer

SSQ with service rate C we calculate the complementary
queuelengthdistribution for the samplevalues.We calculate
the proportion of time when the amountof work stored in
the infinite buffer exceedsa given threshold for a set of
buffer thresholds,

�
xi : 0 � i � M 	 1 � . Typically we consider

evenlyspacedbuffer thresholds,xi � i∆x where∆x is a positive
constant,but thexi valuesmaybeany setof non-negativereals.
The overflow probabilitiescalculatedin this way form the set�

pi � Pr� Q  xi � � .
We searchfor the value of λ 9 which, togetherwith the

other threefitted parameters,namely, the mean,the variance
and the Hurst parameter, defines a PPBP which fits the
real trace. In the following sectionswe examine the fitted
PPBPby generatingqueuelengthdistributionsfor SSQswith
servicerates that are different from the value of C used in
calculating λ 9 � We also comparethe marginal distribution
and autocorrelationfunction of the PPBPwith thoseof the
measuredtraffic trace.

To find λ 9 we mustconsidera family of PPBPs.All PPBPs
in this family will be fitted to the valuesof mean,variance
and Hurst parametermeasuredin the set of values

�
Sn � and

all will have the samevaluesfor δ and γ. For eachvalue of
λ considered,we usethe quasi-stationaryestimatedeveloped
in [3] andsummarisedabove in SubsectionVI to estimatethe
queueingperformanceof this PPBPin an infinite buffer SSQ
with the sameservicerate,C 
 as the SSQusedin calculating
the pi values.Overflow probabilitiesareestimatedfor thesame
valuesof xi to give a setof values

�
ei � λ � � Pr� Q  xi � � .

For eachvalueof λ we calculatea measureof thedifference
betweenthe estimatedvalues,

�
ei � λ � � 
 and the valuesgiven

by the data,
�
pi � . To do this, we divide the resultsinto two

groups,dependingupontherelativesizeof ei andpi . If ei ! pi

thenwe assignxi to the setX. Otherwise,we assignxi to the
set X̄.

We thencalculatetwo sums:

G1 � λ � � ∑
xi � X

� logpi 	 logei � λ ��� 2 (12)

and

G2 � λ � � ∑
xi � X̄

� logpi 	 logei � λ ��� 2 � (13)

We definethe overall accuracy of the model in predicting

the behaviour to be

G � λ � � G1 � λ �@	 G2 � λ � � (14)

We assumethat the optimal valuefor λ 9 occurswhenG � λ � �
0. It is possiblethat there will be more than one value of
λ for which G � λ � � 0. We know that the quasi-stationary
approximationis valid for λ ? ∞, so in this casewe take
the largest λ for which G � λ � � 0 to be λ 9 , on the grounds
that this will be the most reliable of the possiblesolutions.
Alternatively, if there is no value of λ for which G � λ � � 0
thenλ 9 is the valueof λ which minimizes AG � λ � A .

An alternatemeasurefor the accuracy of the model could
be given by GS � λ � � G1 � λ �B� G2 � λ � . GS � λ � is the sum of
the squaresof the distances(on a logarithmicscale)between
the two set of values

�
ei � λ � � and

�
pi � , and so λ 9 could

be found by minimizing GS � λ � , i.e. using a minimum mean
squareerror techniqueto find λ 9 . We have chosennot to use
this technique,as the differential measureG � λ � variesmore
quickly in the region of interest, and thereforeprovides a
more preciseestimatefor λ 9 . We expect that the valuesof
λ 9 given by solving G � λ � � 0 will be similar to thoseyielded
by minimizing GS � λ � in mostcases.

VI I I . PREDICTING THE QUEUEING PERFORMANCE

In Figure 2 we show that the PPBP also successfully
predicts the queueingperformanceof an IP traffic stream.
This IP traffic streamis derived from link traffic recorded
as a sequenceof IP packet headersummaries.This packet
headerdatawasreducedto a sequenceof integers,whereeach
value representsthe numberof bytes transmittedon the link
in a 0.1 secondinterval. For this sequence,we measureda
mean arrival rate of 5225 bytes per interval, a varianceof
21� 223 C 106 andH 6 0 � 91. The fitting of the parameterλ is
carriedout using the methoddescribedin SectionVII for a
servicerate of C � 21000(bytesper 0.1 s) with a family of
PPBPswith γ � 1 � 18 and δ � 1. The fitting processgives a
level of aggregationof λ � 0 � 267�

Thefigureshowsqueueingperformancefor a servicerateof
C � 21000bytesper 0.1 second.The confidenceintervals for
the λ � 0 � 267 simulationresultsare approximatelythe same
sizeasthemarksusedto indicatethepoints,andsoareomitted
from this figure.

We observe that the Gaussianprocesswith the samecor-
relation function as the PPBPsshown considerablyunder-
estimatesthe loss levels experiencedby the real traffic. This
suggeststhat,even thoughthis IP link is likely to be carrying
traffic from a relatively large numberof independentsources,
the link traffic is still far from being sufficiently aggregated
for a Gaussianmodel to be applicable.

We have shown that the PPBPcan be usedto accurately
predict the queueingperformanceof measuredInternettraffic
streamsin infinite buffer SSQsfor a rangeof buffer sizes.In
this sectionwe show that the PPBPalsosuccessfullypredicts
thequeueingperformanceof therealtraffic for a wide rangeof
servicerates.To illustratethis, we considerthe sameIP trace,
and the samefamily of PPBPs.Combining the resultswith
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Fig. 2. Matching the PPBPto an IP trace
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Fig. 3. Comparisonof queueingperformancefor a rangeof utilizations.

thoseshown in Figure2, we canseethat the PPBPaccurately
predictsthe performanceof the IP datastreamin SSQs,for a
wide rangeof buffer sizesandservicerates.

Figure3 presentsanexaminationof the impactof changing
servicerates.Herewe have chosena singlevalueof thebuffer
threshold,x � 5000bytes,andexaminedthevaluesof Pr� Q 
x� for a rangeof servicerates.Qualitatively similar resultsare
obtainedfor otherfixed buffer sizevalues.

For low servicerates,i.e.highutilizations,theprobabilityof
lossis quitehigh,andall valuesof λ give acceptableestimates
of the loss.In facteventheGaussianprocessgivesreasonable
estimatesof queueingperformancefor utilizationsabove 0 � 6.
As the servicerateis increased(andthe utilization decreases)
thechoiceof λ becomesmoresignificant.Figure3 shows that
a singlevalueof λ givesa goodfitting for a rangeof service
rates.For example,λ � 0 � 267producesa PPBPwhich predicts
the queueingbehaviour of the IP streamwell for levels of
utilization greaterthan20%,correspondingto serviceratesof
C � 25000bytesper 0.1 secondinterval, or lower. The results
shown in Figure2 fall within this regionwhereλ � 0 � 267gives
a goodapproximationof the performanceof the IP trace.

Lookingat Figure3 in conjunctionwith Figure2 we cansee
that the PPBPcorrectlypredictsthe queueingperformanceof

the real traffic acrossa wide rangeof serviceratesandbuffer
sizes.

We have achieved this by matchingjust three measurable
propertiesof the original stream,and then setting a fourth
parameter. The setting of the fourth parameter, λ 9 , is made
with respectto results for a given servicerate, but we see
herethat this fitting is goodfor a rangeof servicerates.Thus
the PPBPmeetsour main criteria as a simple and accurate
model for IP traffic.

IX. MATCHING THE STATISTICS

We recall that along with a matching of the queueing
performanceof the real traffic, it is also desirablethat the
model match the first and second order statistics of the
modeledtraffic. In this section,we evaluatethe ability of the
PPBPto achieve this. We usethe samePPBPfitted to the IP
traceas in SectionVIII.

Figure 4 shows a Q-Q plot which gives a comparison
betweenthe marginal distribution of the original IP traceand
that of a PPBPwhich is correctlyfitted to the trace.The Q-Q
plot is formed by placing a point � x 
 y� where Pr� X  x� �
Pr� Y  y� , in which X has the distribution of the IP trace
andY hasthe distribution of the model.As shown in Section
VIII, the PPBPfitted to the tracehasλ � 0 � 267.Themarginal
distribution of the PPBPwas measuredfrom 60 simulations
of one million sampleseach.We seethat the PPBPmatches
marginal distribution of the IP tracereasonablywell, although
not perfectly.

Figure 5 shows a comparisonbetweenthe autocovariance
of the original traceandthat of a PPBPfitted to the trace.In
this case,60 setsof one million sampleseachare averaged
to generatethe simulation results.For comparison,the ACF
calculatedanalytically basedon Equation(3) is also shown.
The finite durationof the simulations(makingextremelyrare
eventsunlikely to occur)is themostlikely explanationfor the
fact that the simulation resultsshow covarianceslower than
thosepredictedby the theory. Sincethe IP traceis alsofinite,
the good match betweenthe IP trace and the simulationsis
theappropriateindicatorof a successfulmodelandtheresults
depictedin Figure5 arequite pleasing.

We note that our methodof fitting a family of PPBPsto
a given traffic streammeansthat the autocovariancefunction
will not bealteredby changesin thevalueof λ. Thuswe may
concludethat the changesin queueingperformancecausedby
changesin the valueof λ occurprimarily becauseof changes
in the marginal distribution. This leadsus to interpretλ as a
measureof the distancebetweenthe marginal distribution of
the traffic streamanda Gaussiandistribution.

In summary, we have shown that the PPBPgives a good
match with the ACF of the real stream, but matchesthe
marginal distribution only approximately. ThePPBPperforms
reasonablywell in matchingthefirst andsecondorderstatistics
of the modeledtraffic. We have alreadyshown in Figures2
and3 that thePPBPmatchesthequeueingperformanceof the
IP trace.Thusthe PPBPmeetsall of our criteria for a simple
andaccuratemodel.
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Fig. 4. Q-Q plot comparingthe IP tracewith the fitted PPBP.
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Fig. 5. Autocovarianceof the traceand the fitted PPBP.

X. OPTICAL INTERNET IMPLICATIONS

We have shown that the PPBP has all the attributes of
an accurateInternet traffic model. Using this model, we are
now able to confirm the view of [2] and [21] that the long-
range dependent(LRD) phenomenonobserved in Internet
traffic [10], [14] doesnot necessarilylead to low utilization.
Although the traffic doesnot smoothout as voice traffic did,
it will smoothout eventuallydue to heavy multiplexing.

In particular, we usedthe IP traffic trace of SectionVIII
that was taken in 1998 on a certain US link (this tracewas
also used in [3] and [19]). We first use the PPBP model
of this traffic trace as obtained above, and then consider
several different PPBPprocesseseachof which is a process
resulting from multiplexing togethera numberof statistical
copiesof the original PPBPmodel of the trace.Recall that
multiplexing of a numberof PPBPsgivesanotherPPBP. For
eachof thesePPBPprocesses,we usedthe quasi-stationary
approximationto estimatepacket loss in a zero buffer SSQ,
and determinedthe capacity required to guaranteea given
low packet loss. We show the results in Figure 6. For the
original traffic stream,we neededto run the systemat 15%
utilization to obtain1/1,000,000lossprobability, however, if it
is multiplexed 500 times, we obtain 80% utilization. (Notice
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Fig. 6. Improving utilization asmultplexing levels increase.

that future Internet traffic may have different characteristics
than current traffic, however, it is expectedthat future traffic
will include large componentsof real-time services,which
in fact generatesmootherstreams.)Given the growth of the
Internet,we estimatethat it would take nine yearsto achieve
this level of multiplexing for this particular link. However,
we do not have to wait anotherfive yearsto observe it. The
smoothingout of Internettraffic hasalreadybeenconfirmedby
measurementsin [21] andreferencestherein.This smoothing
out of Internettraffic phenomenonmakesthebufferlessoptical
Internetvery appealing.

XI . CONCLUSIONS

In this paperwe have examinedthe PPBPas a model for
Internet traffic, and we have found it to be very promising
in this role. We have shown that the PPBPmeetsour criteria
for a simple and accuratetraffic model. We have used the
PPBPto predictfuturemultiplexing andlink efficiency levels.
We have demonstratedthat there is evidencethat the future
optical Internetwill be efficient despitethe facts that it will
be bufferless.
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