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ABSTRACT 
Resource disaggregation significantly improves resource flexibility, efficiency, and availability in Data Centers 
(DCs) by decoupling different resource modules in servers and interconnecting them with high-speed networking 
technologies, e.g., optical networking, leading to Composable/Disaggregated DCs (CDCs or DDCs). CDC also 
brings benefits to workload migration, a technique widely used to consolidate workloads to fewer nodes to save 
energy. CDC may reduce migration costs as a workload can be partly migrated instead of entirely as in a server-
based DC (SDC). We consider the problem of workload consolidation in a CDC with objectives to minimize both 
the number of active nodes and the number of migrated elements. An integer linear programming formulation that 
uses a weighted sum approach is provided to address this two-objective problem. Results show that higher resource 
utilization and lower migration costs can simultaneously be achieved in a CDC as compared to an SDC.  
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1. INTRODUCTION 
Composable/Disaggregated Infrastructure (CDI) is emerging as a new hardware architecture for Data Centers 

(DCs) which utilizes high-speed interconnection technologies, e.g., optical networking [1][2], to aggregate 
different types of resources into shared resource pools [3]. A DC employing CDIs is often referred to as a 
Composable DC (CDC) [4] or Disaggregated DC (DDC) [1]. CDCs can achieve high flexibility, efficiency, and 
availability in resource allocation thanks to the decoupling of different resources and resource pooling [1]. It may 
also reduce the high cost of workload migration, which is a technique widely used in different scenarios, e.g., 
“server consolidation, zero-downtime hardware maintenance, energy management, and traffic management” [5]. 
In a server-based DC, migrating a workload requires moving the entire workload from its original host to another 
server. This process involves significant data movement, leading to network overheads and service interruption 
[5]. On the contrary, CDCs enable partial migration, which will help reduce the overheads.   

We consider the problem of workload consolidation in CDCs, which involves a large number of workload 
migrations. Workload consolidation is effective for DCs to solve the resource fragmentation problem caused by 
the unexpected arrival and departure of services. It re-arranges workloads that spread over many hardware nodes 
to the fewest ones to save energy. There are many publications in the literature focusing on resource allocation for 
CDCs considering different criteria, such as resource utilization and energy efficiency [4], [6]-[8], networking 
performance [9]-[12], and service reliability [13]-[14]. However, they never considered the challenges in workload 
consolidation, i.e., the significant migration cost incurred in moving workloads from their original hosts to other 
hosts. In this paper, we aim to minimize both the number of active nodes and the number of migrated elements in 
the workload consolidation problem. We provide an integer linear programming (ILP) formulation for this 
problem. We also provide approximate Pareto fronts by varying the weight when solving the ILP problem. Our 
results show that higher resource utilization and lower migration costs can simultaneously be achieved in a CDC 
than in an SDC. Moreover, it shows that a larger disaggregation scale can further improve the optimal solution.   

2. WORKLOAD CONSOLIDATION FOR A CDC  

2.1 CDC Architecture  
Fig. 1 illustrates a CDC architecture as compared with an SDC architecture. Fig. 1(a) shows the SDC architecture, 
where each node is a server integrating different types of resource modules. Under this architecture, when a new 
type of resource needs to be introduced, e.g., a new GPU type, a new type of server is needed to equip this resource. 
Fig. 1(b) shows the CDC architecture, where each node contains one primary and secondary resource, e.g., each 
node needs additional processing and memory resources reserved for the controller or monitor. Besides, each 
computing node shown in the figure also contains several DRAMs playing the role of local memory. As widely 
discussed, completely disaggregating memory from processors is too difficult and even infeasible due to the 
stringent requirements of processor-memory communications. Thus, it is necessary to reserve memory in each 
computing node. Different from some publications which regard the local memory as a local cache [3] that is not 
involved in resource allocation, we follow the industry [15], taking local memory as an allocable resource while 
regarding the memory in memory nodes as a memory extension.  

Due to the high bandwidth and low latency communication requirements between different resource modules, it 
is not practical to aggregate resources in a large-scale DC into a single resource pool [1]. A practical approach is 



to divide the modules into multiple pools. A request can flexibly select modules from one pool to compose a 
system but cannot select modules from different pools. The size of each pool, or disaggregation scale, is a 
parameter related to the number of nodes contained in each pool. For example, a typical disaggregation scale is 
the rack scale, where resource modules in one or several racks form a pool [1]. Recent studies on Microsoft Azure 
DC applications have suggested a disaggregation scale of 8 to 32 CPU sockets (equivalent to 8 to 32 blade servers) 
to ensure acceptable performance levels [15]. In this study, we will also consider the impact of the disaggregation 
scale on the performance of workload consolidation in CDCs. 

 
Fig. 1 Illustration of server-based vs. CDI-based DCs. 

2.2 Problem Description 
Consider a CDC consisting of different types of nodes arranged in multiple resource pools. Each node contains 
one or multiple types of resources with certain capacities. We are also given a set of workloads and the current 
placement of each workload. Each workload uses multiple nodes, and we refer to the resources provisioned by one 
node as an element. An element is conceptually similar to a VM, as a VM is an abstraction of the resources assigned 
to it. We also assume that each workload can use at most one node for each node type. We aim to consolidate all 
the workloads spreading over the CDC to the fewest nodes, with two objectives: 1) Minimize the number of active 
nodes; 2) Minimize the number of migrated elements. Additionally, we require that the amount of resources 
provisioned by a node should be equal to the amount obtained from the same type of node before the consolidation. 

2.3 ILP Formulation 
The sets, parameters, and decision variables used in the formulation are as follows. 

Sets: 
𝑻𝑻 Set of node types. 𝑵𝑵𝒕𝒕 Set of nodes of node type 𝑡𝑡. 
𝑹𝑹𝒕𝒕 Set of resource types provided by each node 

of node type 𝑡𝑡, e.g., a compute node provides 
(CPU) cores and local memory. 

𝑽𝑽 Set of workloads.  
𝑷𝑷 Set of resource pools. 

Parameters: 
𝐶𝐶𝑛𝑛𝑛𝑛𝑟𝑟  The capacity of resource 𝑟𝑟 (𝑟𝑟 ∈ 𝑹𝑹𝒕𝒕) in node 𝑛𝑛 (𝑛𝑛 ∈ 𝑵𝑵𝒕𝒕) of node type 𝑡𝑡 (𝑡𝑡 ∈ 𝑻𝑻). 
𝜋𝜋𝑛𝑛𝑛𝑛
𝑝𝑝  Binary parameter indicating whether node 𝑛𝑛 of node type 𝑡𝑡 is in pool 𝑝𝑝 (𝑝𝑝 ∈ 𝑷𝑷). 
𝜂𝜂𝑛𝑛𝑛𝑛𝑣𝑣  Binary parameter indicating whether workload 𝑣𝑣 (𝑣𝑣 ∈ 𝑽𝑽) currently uses node 𝑛𝑛 of node type 𝑡𝑡. 
𝐷𝐷𝑟𝑟𝑛𝑛𝑣𝑣  The amount of resource 𝑟𝑟  allocated by a certain node of node type 𝑡𝑡 to workload 𝑣𝑣.  
𝜃𝜃 Weight factor, 𝜃𝜃 ∈ [0,1]. 

Decision variables: 
𝑥𝑥𝑛𝑛𝑛𝑛𝑣𝑣  Binary variable that equals one if workload 𝑣𝑣 uses node 𝑛𝑛 of node type 𝑡𝑡 after the consolidation; zero, 

otherwise. 
𝑦𝑦𝑣𝑣𝑝𝑝 Binary variable that equals one if workload 𝑣𝑣 uses pool 𝑝𝑝 after the consolidation; zero, otherwise. 
𝑧𝑧𝑛𝑛𝑛𝑛 Binary variable that equals one if node 𝑛𝑛 of node type 𝑡𝑡 is active after the consolidation; zero, otherwise. 
𝑁𝑁𝐴𝐴𝐴𝐴𝑛𝑛  Integer variable denoting the number of active nodes after the consolidation. 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 Integer variable denoting the number of migrated elements. 
The objective function and constraints are as follows. 
Objective function: 

minimize: 𝜃𝜃 ⋅ 𝑁𝑁𝐴𝐴𝐴𝐴𝑛𝑛 + (1 − 𝜃𝜃) ⋅ 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 (1) 
Constraints: 
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Explanation 
We aim to minimize the objective function (1) which is the weighted sum of the number of active nodes and the 

number of migrated elements after the consolidation. Constraint (2) ensures that if a workload uses a node of a 
certain node type, i.e., ∑ 𝜂𝜂𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛∈𝑵𝑵𝒕𝒕 = 1, the workload also uses a node of this node type after the consolidation, i.e., 
∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑣𝑣𝑛𝑛∈𝑵𝑵𝒕𝒕 = 1, and if the workload does not use a certain type of node, it cannot use this node type after the 
migration. Constraint (3) ensures that a workload can only use one resource pool. Constraint (4) ensures that a workload 
does not use a pool if the workload does not use nodes from this pool. Constraint (5) ensures that a workload uses a pool 
as long as the workload uses nodes from this pool. Constraint (6) ensures that a node is active as long as there are 
workloads using this node. Constraint (7) ensures that a node is inactive when no workload uses this node. Constraint 
(8) ensures that the capacity of each node is not violated. Constraint (9) ensures the number of active nodes is correctly 
calculated. Constraint (10) ensures that the number of migrated elements is correctly calculated by summing up the 
number of elements whose new placement differs from their initial placement, i.e., 𝜂𝜂𝑛𝑛𝑛𝑛𝑣𝑣 ⋅ (1 − 𝑥𝑥𝑛𝑛𝑛𝑛𝑣𝑣 ) = 1.  

3. Evaluation  

3.1 Parameter Settings 
We considered five types of nodes, i.e., 𝑻𝑻 ={Computing, Memory, A1, A2, A3}, where A1, A2, A3 represent 
three types of accelerators. There are 90 nodes, including 30 computing nodes, 30 memory nodes, 10 A1 nodes, 
10 A2 nodes, and 10 A3 nodes. Each computing node contains 48 (CPU) cores and 192 GB of local memory. Each 
memory node contains 1536 GB of memory. Each of A1, A2, and A3 nodes contains 60 A1, A2, and A3 units, 
respectively. We considered three cases with different disaggregation scales, resulting in different pools: 1, 5, and 
10. In each of the three cases, all nodes of each node type are equally divided. For example, in the 5-pool case, 
each pool contains 6 computing, 6 memory, 2 A1, 2 A2, and 2 A3 nodes. We also considered the server-based 
architecture as a baseline case besides the three CDC cases. There are 90 servers. Each server contains 16 cores, 
64 GB of local memory, and 512 GB of memory. Note that we still differentiate the memory in each server into 
two parts, i.e., local memory and memory. This setting is for the fair comparison between the two architectures 
concerning the number of migrated elements, as they are from different types of nodes in the CDC cases. Among 
the 90 servers, 30 servers contain 20 A1 units each, another 30 servers with 20 A2 units each, and the rest 30 
servers with 20 A3 units each. With these settings, the total capacity of each resource type in the SDC case is equal 
to that in the CDC cases. 

Each workload requires a certain amount of cores, local memory, memory, and one of the three accelerators. The 
required amount of resources are randomly generated, with U[1, 12] of cores, U[1, 48] GB of local memory, U[32, 
384] GB of memory, and U[1, 15] units of A1, A2, or A3. U[a, b] is a random integer value that varies from a to 
b (with a and b included). Workloads are assumed to have the same probability of requiring A1, A2, or A3. We 
considered 120 workloads. We use Java to build a simulation environment and apply random allocation methods 
to accommodate all workloads, with all nodes being active before the consolidation. This allocation result is then 
used as the input for our problem.  

We use the commercial solver AMPL/Gorubi to solve the ILP formulations. We also extend the formulation to 
the SDC case by a simple modification to constraint (10), i.e., introduce factor 3 to the calculation of 𝑁𝑁𝑚𝑚𝑀𝑀𝑀𝑀, as 
each server contains three elements for each workload.  

3.2 Numerical Results 
Fig. 2 gives the approximate Pareto fronts obtained by solving the ILP formulation with varied weights in the 
objective function, and Fig. 3 gives the number of migrated elements changing with the number of saved active 
nodes. We first observe that, for all four test cases, reducing the number of active nodes leads to an increasing 
number of migrated elements, which illustrates the trade-off between the efficiency improvement and migration 
cost in workload consolidation. We further observe from Fig. 2 that the approximate Pareto fronts of the three 
CDC cases are significantly lower than that of the SDC, which implies that CDC, regardless of the disaggregation 
scale, performs better than SDC. We see from Fig. 3 that CDC can save 40 active nodes at most, showing a 29% 
improvement compared to the SDC, which can save 31 active nodes at most. Furthermore, this improvement is 



achieved with fewer migrated elements. The three CDC cases have 136, 124, and 105 migrated elements, all fewer 
than the SDC, which has 138 migrated elements. These results show that the CDI-based architecture can 
simultaneously achieve higher resource efficiency and less migration cost than the server-based architecture.  

  
Figure 2. Approximate Pareto fronts (number of 
migrated elements vs. number of active nodes). 

Figure 3. The number of migrated elements vs. the 
number of saved active nodes. 

When comparing the three CDC cases, we find that the 1-pool CDC performs the best, followed by the 5-pool 
CDC, and finally, the 10-pool CDC. This trend shows that the larger the disaggregation scale, the more benefits 
can be obtained by the CDI. 

4. CONCLUSIONS 
We have provided an ILP formulation for workload consolidation in CDCs to minimize the number of active nodes 
and the number of migrated elements. The results have shown that CDCs with different disaggregation scales can 
save more active nodes with fewer migrated elements as compared to SDCs. In addition, a CDC with a larger 
disaggregation scale has fewer migrated elements than a CDC with a smaller scale.  
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