

Performance Analysis of Channel Allocation Schemes for Half and

Full Rate Calls in GSM

Milosh V. Ivanovich B.E. (Hons)

Department of Computer Science

Monash University

Thesis submitted for examination

 for the degree of Master of Computing

October 1995

ACKNOWLEDGEMENTS

I thank my supervisor Dr. Moshe Zukerman for his guidance throughout this research

work, particularly with regards to formulation of the overall problem, and for

reviewing this document and providing useful comments.

I would also like to thank Prof. Maxim Gitlits and Paul Fitzpatrick for their

information about GSM standards development and intracell handover, and Dr. Bob

Warfield for his idea on the evaluation of scheme efficiency.

I also greatly thank my father, Dr. Vladimir D. Ivanovic, for proofreading this thesis,

and the examiners for their helpful comments.

DECLARATION

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any other university, and to the best of my knowledge contains

no material previously published or written by another person except where reference

has been made in the text of the thesis.

Signed:

Milosh Vladimir Ivanovich

Department of Computer Science

Monash University

i

ABSTRACT

Manufacturers are following recent standards developments and are currently

developing half rate voice coding/decoding equipment (codecs) of acceptable quality

in order to significantly increase the efficiency of GSM networks. The focus of this

research is on the transition period during which some of the users will use the new

half rate handsets, while others will hold on to their older full rate handsets, thereby

creating a system with a varying mix of two types of traffic: full and half rate users.

This thesis proposes a model for GSM resource management and considers nine

channel allocation schemes, with these two types of traffic loading. The nine schemes

are: Random, First Fit, Best Fit, Repacking, Repacking with Perpetual Reservation

(RPR), Repacking with Perpetual Half Slot Reservation (RPHSR), Repacking with

Random Reservation (RRR), Fixed Boundary and Sliding Boundary. The

performance of each scheme is determined, based upon the criteria of efficiency,

fairness, as well as ease of implementation. Analytic numerical methods are used to

investigate each scheme's efficiency and blocking probability behaviour, and this is

successfully compared with simulation results. The analytic solution is based on a

reduction of the state space to a manageable size using a mapping approach from an

m dimensional state space down to a two or three dimensional state space.

Initially a preliminary study of blocking probability behaviour and efficiency is

carried out for each scheme. The framing structure adopted for this purpose is an

eight timeslot frame, without regard to multiple carrier frequencies or any reserved

broadcast channels. This study immediately eliminates the Fixed and Sliding

Boundary schemes from further consideration due to their extreme unfairness and

inefficiency.

The idea behind the eight timeslot frame is then extended to a more realistic model of

GSM, by modelling n=2 and n=3 carrier frequency systems, made up of a reserved

control/signalling timeslot and 8n-1 user slots. At the expense of significantly

increased CPU resources (time, memory) it was still feasible to analytically evaluate

the blocking probability and efficiency of six of the nine schemes, (with the

exceptions being First Fit and the two already eliminated Fixed and Sliding Boundary

schemes). Comparisons were then made between the original eight timeslot frame

model and the more realistic model, where the systems had one, two and three carrier

frequencies (with 7, 15 and 23 timeslots respectively). The results show that for each

of the six schemes considered, systems of all three sizes perform increasingly better

with a higher proportion of half rate customers. It was also found that the higher the

ii

proportion of half rate callers is, the larger is the capacity benefit gained by

employing more complex schemes. However, the capacity benefit (i.e. increase)

gained by employing the more efficient Repacking family of schemes is generally

found to reduce with increasing system size.

An overall comparison of the schemes, taking into account all traffic mixes, is

performed with special weight of importance paid to the system with three carrier

frequencies (as real network applications are likely to operate on multi-carrier

schemes). The comparison is done by way of awarding scores for the three above

mentioned criteria and obtaining a total.

The scheme with the highest overall total score is that of Repacking with Perpetual

Half Slot Reservation (RPHSR) as it achieves completely equal blocking

probabilities for half and full rate users over a wide range of traffic mixes (total

fairness), and it achieves the best maximum customer capacity subject to a Grade of

Service (GOS) constraint (best efficiency). However, this scheme is not very simple

to implement, and because of this, is challenged by the Best Fit scheme, which runs a

very close second in the overall score. The Best Fit scheme is significantly simpler to

implement, with only slightly worse efficiency than RPHSR, and its only downfall is

that it does not assure equal blocking probability for both user types.

These two schemes are the ones most worthy of considering for possible

implementation in a real network, and therefore the advantages each scheme has over

the other are presented below:

Best Fit

 Simpler to implement.

 No intracell handover affecting voice quality.

RPHSR

 More efficient in utilising network resources.

 Completely fair in terms of blocking probabilities.

iii

CONTENTS

1 Introduction 1

2 A Model of Full and Half Rate Usage

 3

 2.1 GSM Overview and Standards Development 3

 2.1.1 GSM Background 3

 2.1.2 Half Rate Channel Standards Development 4

 2.2 The Model 6

 2.3 Additional Related Teletraffic Issues in Mobile

 and Broadband Networks 8

3 Slot Allocation Schemes 10

 3.1 Random Allocation 11

 3.2 First Fit Allocation 11

 3.3 Best Fit Allocation 12

 3.4 Repacking 12

 3.5 Repacking with Perpetual Reservation (RPR) 13

 3.6 Repacking with Perpetual Half Slot Reservation (RPHSR) 14

 3.7 Repacking with Random Reservation (RRR) 14

 3.8 Fixed Boundary Reservation 16

 3.9 Sliding Boundary Reservation

 16

4 Synthesis of Steady State Equations 18

 4.1 Random Allocation 19

 4.2 Best Fit Allocation 20

 4.3 Repacking 21

 4.4 Repacking with Perpetual Reservation (RPR) 22

 4.5 Repacking with Perpetual Half Slot Reservation (RPHSR) 23

 4.6 Repacking with Random Reservation (RRR) 24

5 Numerical Solution of Steady State Equations 25

 5.1 Transition Rate Matrix Generation 25

 5.2 Matrix Manipulation 28

 5.3 Numerical Solution 29

 5.3.1 Convergence Criteria 29

iv

 5.3.2 Matrix Rank 30

 5.3.3 Computational Limitations 31

6 The Simulations 33

 6.1 Simulating The Allocation Schemes 33

 6.2 The Voice Quality Impact Simulation 33

7 Results 35

 7.1 Preliminary Investigation of Scheme Behaviour 35

 7.2 Finding the Most Fair and Efficient Scheme 43

 7.3 The Impact of Intracell Repacking on Voice Quality 50

 7.4 Simplicity, Efficiency and Fairness Comparison 51

8 Conclusions 54

9 Appendix: C++ Code Listings 56

 9.1 Simulation Programs 56

 9.1.1 Random Scheme 56

 9.1.2 First Fit Scheme 62

 9.1.3 Best Fit Scheme 68

 9.1.4 Repacking Scheme 74

 9.1.5 RPR Scheme 79

 9.1.6 RPHSR Scheme 84

 9.1.7 RRR Scheme 89

 9.1.8 Random Number Generating Program and Header File 94

 9.1.9 Voice Quality Impact Simulation 98

 9.2 Analytic Programs 105

 9.2.1 Fixed Boundary Scheme 105

 9.2.2 Sliding Boundary Scheme 107

 9.2.3 Analytic Optimisation Problem Solver Program 109

10 Bibliography 124

v

LIST OF FIGURES

2.1 A Typical Half and Full Rate Traffic Mix 7

2.2 A Model for Analysing the Traffic Mix in Figure 1 7

4.1 Random Allocation, Examples of Six Transition Types 20

4.2 Best Fit Allocation, Examples of Five Transition Types 21

4.3 Repacking for an Eight Slot System 21

4.4 Repacking with Perpetual Reservation for an Eight Slot System 22

4.5 Repacking with Perpetual Half Slot Reservation for an Eight Slot System 23

4.6 Repacking with Random Reservation for an Eight Slot System 24

5.1 Typical Distribution of Half and Full Rate Calls in the (1,5,3) State 27

5.2 Typical Distribution of Half and Full Rate Calls in the (3,7,3) State 28

5.3 State Transition Rate Matrix, Q, for the Random Allocation scheme 29

7.1 Blocking Probability - Random Scheme 37

7.2 Blocking Probability - First Fit Scheme 37

7.3 Blocking Probability - Best Fit Scheme 38

7.4 Blocking Probability - Repacking Scheme 38

7.5 Blocking Probability - RPR Scheme 39

7.6 Blocking Probability - RPHSR Scheme 39

7.7 Blocking Probability - RRR Scheme 40

7.8 Blocking Probability - Fixed Boundary (50/50) Scheme 41

7.9 Blocking Probability - Sliding Boundary (Traffic Mix Dependent) Scheme 41

7.10 Full/Half Rate Call Blocking Ratios - Schemes 3.1 - 3.7 (= 0.4) 42

7.11 Full/Half Rate Call Blocking Ratios - Schemes 3.8 - 3.9 (= 0.4) 43

7.12 One carrier Frequency System

 - Comparison of Maximal Customer Arrival Rates subject to a 2% GOS 45

vi

7.13 Two Carrier Frequency System

 - Comparison of Maximal Customer Arrival Rates subject to a 2% GOS 45

7.14 Three Carrier Frequency System

 - Comparison of Maximal Customer Arrival Rates subject to a 2% GOS 46

7.15 Proportion of Carried Half Rate Calls Being Repacked for the RRR Scheme 50

vii

LIST OF TABLES

7.1 Percentage Capacity Benefit gained by Employing the Most Efficient Scheme

 (RPHSR) instead of the Simpler to Implement Best Fit Scheme 48

7.2 Scheme Comparison based on the Simplicity, Efficiency and Fairness

 Criteria 52

viii

1

1. INTRODUCTION

With the current observed growth of demand for digital mobile telephony, increasing

the capacity of existing networks is a major priority of the large telecommunications

companies (telcos). It is clear that increased capacity will allow accommodating more

and more new customers, hence bringing in steadily larger revenues. One way of

increasing capacity is to install more base stations, which is based on the principle of

continued use of current equipment, but in greater numbers. An alternative approach

would be to enhance the current equipment so that capacity growth is achieved

through better efficiency rather than increased quantity.

 The purpose of this thesis is to look at this latter method of increasing network

capacity, which may well be more cost effective to implement than pure new

resource allocation. This method relies on the improvement of existing voice coding

technology enabling acceptable quality speech to be encoded into only half the

number of bits (per second) which are currently required.

A typical Time Division Multiplexing Scheme (TDMA) can then immediately fit two

users into the duration of a timeslot previously allocated to just a single user. In

particular, this thesis looks at the Groupe Special Mobile (GSM) standard. GSM later

became Global System for Mobile Communications, and is described in detail in the

standard specifications [ETSI92], and by Mouly and Pautet [MOUL92].

GSM, unlike a few other systems, is truly global, and has been adopted by many

countries (a total of 26 European and 26 non-European countries, including

Australia) [PADG95]. It is a system which uses a combination of TDMA and

Frequency Division Multiple Access (FDMA) with eight timeslots per radio channel.

The implications of being able to fit two users into a timeslot previously long enough

for only one raise two very significant issues which are the primary research

objectives of this thesis. Firstly, the telcos and manufacturers of handsets must decide

about the way in which this extra capacity in the TDMA frames will be used - how

will the calls be packed. And secondly, regardless of the rate of customers' take up of

any new equipment on offer (such as the new handsets outfitted with half rate

coders/decoders, codecs) there will be existing full rate traffic competing with the

50% leaner half rate traffic - from a teletraffic engineering point of view, do the

achievable capacity increases really approach a doubling, as intuition would suggest?

Before these questions can be answered, a mathematical model of the GSM framing

structure must be defined.

2

This model then allows solving for the system states under various parametric

conditions. Efficiency and blocking probability measures can then be obtained, by

suitably varying these input parameters.

The contribution of this thesis is therefore threefold. Firstly, it provides telcos and

manufacturers with an extensive analysis of a comprehensive set of available channel

allocation schemes, while also giving rise to some novel modifications to known

Repacking schemes, [ZUKE88, ZUKE89]. Secondly, guidelines about how to

compare the relative merits of each scheme are proposed. And finally, it proposes a

state reduction technique, of the type of [KAUF81], [ROBE81] and [ZUKE89],

which makes it possible to solve exactly otherwise numerically intractable

computational problems.

3

2. A MODEL OF FULL AND HALF RATE USAGE

2.1 GSM Overview and Standards Development

Before we define the model describing a GSM hybrid full/half rate system,

Subsections 2.1.1 and 2.1.2 present the details of those GSM standards which are

relevant to, or feature in the model defined in Subsection 2.2.

2.1.1 GSM Background

We now give a brief description of the key characteristics of GSM as outlined in the

European Telecommunications Standards Institute (ETSI) standards [ETSI92] with a

focus on framing structure.

GSM uses a combined TDMA/FDMA structure. The time division is effected by

accommodating either eight (at Full rate, 22.8 kbit/s) or sixteen (at Half rate, 11.4

kbit/s) timeslots-per-frame to support speech and data transmission. GSM is also a

frequency division scheme, as each frame belongs to a given carrier. Each carrier has

a bandwidth of 200kHz. The 890-915 MHz band is used for mobile transmission

while 935-960 MHz is used for base station transmission.

Hence at full rate users may transmit or receive in the respective bands in every 8th

timeslot, each of which is of 0.57 ms duration. The time compression associated with

putting eight users into one radio frequency is an inherent requirement for faster base

station transceiver equipment.

[PADG95] explains that the choice of a carrier bandwidth, as large as 200kHz, is

made due to the negative effects of time compression. Namely, the time compression

of the user data (22.8 kbit/s including error correction and coding at full rate) by a

factor of around eight (or sixteen at half rate) implies a bandwidth expansion of the

signal by a corresponding factor. This greatly affects the fading of the received

signal. The presence of reflectors, like mountains, hills, buildings, and others, leads

to many echoes. In a narrowband system, the resulting signal paths cannot be

resolved in time. With a bandwidth of 200kHz, on the other hand, some degree of

resolution becomes possible.

4

2.1.2 Half Rate Channel Standards Development

In the autumn of 1988, ETSI decided to form a new group (Traffic CHannel Half rate

Speech, or TCH-HS) with the aim of creating a task force which would define the

half rate channel of the GSM [MONT95]. The group was also given a specific time-

frame (by 1995 at the latest) to produce a Recommendation on a speech coding

algorithm for half rate speech channels, suitable for the implementation in GSM

[USAI95].

The main activity of the TCH-HS was the definition of the half rate channel

requirements in terms of speech quality, complexity and delay. These requisites were

defined taking into account the possible evolution of speech coding technology in

the time span of the group's activity. The standardisation of the full rate channel was

nearly complete at the time of the TCH-HS group's inception, and therefore some

margin for slightly lower performance was left to take into account the lower bit rate

of the half rate channel. The three half rate channel requirements, in summarised

form and as specified by the TCH-HS, are outlined below:

 Speech Quality: It was recognised that, due to the lower bit rate of the half rate

channel, in each individual condition the half rate channel performance can differ

significantly from that of the full rate. Two particularly problematic situations,

where half rate performance degrades considerably relative to full rate

performance, are: (1) Mobile to mobile tandeming, where two half rate users

communicate; (2) Background audio noise, such as office and vehicular/traffic

noise. Overall, the TCH-HS decided that, even taking these situations of

extremely low levels of performance into account, the half rate channel should

provide an average speech quality comparable with the full rate one [MONT95].

 Complexity: The foreseeable evolution of the ever improving Very Large Scale

Integration (VLSI) technology, in particular Digital Signal Processing (DSP) was

taken into account when fixing the complexity requirement. The TCH-HS

deemed that a half rate codec with a complexity four times the full rate one could

be implemented at the time of standardisation.

 Delay: The GSM half rate channel delay is not only dependent on the

characteristics of the codec but also on the interleaving depth and the type of

mapping of half rate frames onto the super-frame, and the particular multiplexing

scheme adopted in the Abis interface. The technical details regarding the above

5

three interleaving, mapping and multiplexing considerations are given in

Recommendation 05.02 [SMG91/92]. The overall delay can be divided into

system delays (duration of the speech frame plus the interpolation window, the

transmission delay on the Abis interface and processing delays (delay of speech

encoder and decoder parts). The TCH-HS group decided that, taking all

possibilities into account, the GSM half rate channel delay could range from

190.8ms to 200ms. As the full rate delay is 188.5ms, it seems that even in the

worst case (200ms) the extra 13ms of delay would not degrade transmission

quality, relative to that of the full rate channel.

From these official ETSI half rate channel requirements, we can draw an interesting

conclusion. The latter two requirements would seem to indicate that half rate codecs

will give almost identical delay with a complexity factor (4) which is reasonable,

given the ever-advancing state of the art in DSP/VLSI technology. However, some

latitude was clearly left for the manufacturers when it came to setting the speech

quality half rate standard to be comparable to that of the full rate speech quality.

[MONT95] explains that the TCH-HS's definition of comparable, is that the speech

quality (averaged over many diverse situations including noise and tandeming) must

be

 Quality'half_rate - Quality'full_rate > = -1dB ... (2.1)

where Quality'xxx , (xxx = half_ or full_rate) is the average measure of speech

quality, defined as the "signal to multiplicative noise ratio of speech degraded with

multiplicative noise, by means of using the Modulated Noise Reference Unit

(MNRU)", as detailed in [MONT95]. The difference of -1dB implies that if we were

to linearly characterise speech quality, if full rate were to score 100%, half rate would

receive only 79.4%. Since the complexity and delay requirements do not seem likely

to pose difficulties, the constraint on half rate performance is imposed by this lower

bound on speech quality.

It remains to be seen whether manufacturers will risk exposing customers to

potentially unsatisfactory half rate codec technology only providing, say, 79.4% of

the full rate speech quality, which is itself under attack in given situations. On the

other hand, given the other two requirements can be met without difficulty, an

increased effort to provide a half rate codec with speech quality significantly better

6

than this figure from the TCH-HS group's study, could pave the way for a reasonably

fast and widespread customer acceptance of the half rate channel in GSM, and thus

necessitate the kind of study being undertaken in this thesis.

2.2 The Model

In a simplified model, each frequency (frame) can support exactly eight full rate calls,

with the broadcast channel ignored. This assumption is the basis for our initial 'one

carrier, no broadcast functionality' model. In a real situation however, at least one

timeslot (a timeslot can be used for either one full rate or two half rate channels)

within each cell must be reserved for the broadcast function, meaning that at most

8 1n timeslots (referred to from this point on as just slots) are available for user

traffic in an n carrier cell.

Although the GSM channel structure will often require more than just one control

channel, it can be assumed that one is close enough to an average value for control

channel useage. It can also be stated that this assumption does not impact on the

teletraffic analysis of the problem. Hence we will also consider a more realistic

model of a cell with n=2 and n=3 carriers, and hence 15 and 23 available user-traffic

slots, respectively.

What is of interest to us, in this thesis, is the behaviour of half rate calls within such a

framing structure. Full rate speech calls use one slot in every frame, while half rate

calls will use a single TDMA slot every second frame on average.

It is expected that future mobile terminals will have the capability to operate at both

rates. However, it is reasonable to assume that if a cell is equipped with half rate

capability the terminal will operate in the half rate mode in that cell. The exact time

organisation for slots for full and half rate transmission is summarised in Section

4.2.2.1 [MOUL92] and is in accordance with GSM standards development [ETSI92].

Mixing full and half rate traffic in a frame can result in eight full rate calls, 16 half

rate calls, or any feasible combination. This is illustrated in Figure 2.1.

7

21 3 4 5 6 7 8

Full #1 Full #2 Full #3

Half #1 uses slot 3

in frame 3 Half #3 uses slot 8

in frame 1 &

Half #4 uses slot 8

in frame 2

Half #2 uses slot 5

in frame 1

Half #1 Half #2 Half #3

Full #1 Full #2 Full #3 Half #4

Time Slots

Frame 1

Frame 2

Slot 3 in frame 2 vacant Slot 5 in frame 2 vacant

Figure 2.1: A Typical Half and Full Rate Traffic Mix

For the purpose of evaluating the traffic performance of a mixed full and half rate

network, the arrangement in Figure 1 can be seen as slots being capable of supporting

one full rate call or two half rate calls (refer to Figure 2.2). Note that the boundaries

between the eight slots are considered stone walls, and in that sense, a full rate call

may never be placed across one of these walls.

1 2 3 4 5 6 7 8

Time Slot Number

Full #1

 "Stone Wall"

 Boundary

Full #2 Full #3

Half #1 (First

part of Slot 3)
Half #2 (Second

part of Slot 5)
Halves #3 & #4

(Fill both parts

of Slot 8)

Figure 2.2: A Model for Analysing the Traffic Mix in Figure 2.1

At first glance, it might appear that introducing half rate calls will double the capacity

of a GSM network. However, this optimistic view fails to consider two important

factors: (1) although a half rate call uses on average half a slot, its effective usage is

higher because even under the most efficient packing scheme, when a slot is

occupied by a half rate call, no full rate call can use that slot. In this case, from the

point of view of the full rate traffic, a half rate call effectively takes up an entire slot;

(2) The portion of existing GSM customers that will change over to the new half rate

system is unknown and may be influenced by the cost of buying a new handset and

natural resistance to change.

8

With this notion of mixed traffic the issue is the slot allocation scheme adopted when

full and half rate call arrivals and departures are registered. That is, how should we

store the full and half rate calls (into empty slots and holes) as they arrive, or how

should we reorganise them as they leave. Note the definitions of the above mentioned

bracketed terms: (i) an empty slot is just that - a slot which has no full rate or half rate

calls; (ii) a hole is the empty portion of a slot which has one half rate call occupying

it. The occupying half rate call is referred to as the isolated half. Although some

perform far better than others, the purpose of all of the allocation policies should be

to attempt to allocate resources in such a way that the blocking probabilities of half

and full rate calls are equalised as far as possible, and at the same time kept to a

minimum. The value of blocking probability (e.g. 2%) will be referred to as the

Grade of Service (GOS). The best scheme will provide the maximum number of

customers per cell - capacity, while satisfying the abovementioned GOS constraints

of equality and minimality.

2.3 Additional Related Teletraffic Issues in Mobile and Broadband Networks

The slot allocation problem discussed here in the context of GSM is related to the

problem of Connection Admission Control (CAC) in multiservice networks

[GUER91, HUI89, KELL91]. In particular the reservation schemes outlined in

Section 3 are discussed in [RITT94, TRAN93].

In the domain of mobile network teletraffic research, particularly relevant examples

are given in [CALL95] and [KWON95] where the concept of 'handover load reserve'

is described as the need to set a higher priority for handover requests and at each

base-station to reserve a fixed or variable number of channels for use solely by calls

being handed over from one cell to another. This then guarantees a lower probability

of blocking for handover requests than for new call arrivals. As will be explained in

Section 3, three types of Repacking schemes involve this same concept of reservation

in order to control the blocking probabilities of different types of traffic.

The repacking of half rate calls between channels is used in this work to achieve a

more compressed frame structure with fewer half-empty slots and hence reduce the

blocking probability for full rate calls. The generic concept of repacking active calls,

often referred to as intra-cell handover, stems from early work by Cox and Reudink

[COX73] which looked at 'dynamic channel reassignment' as a means of significantly

increasing channel occupancy (hence capacity) for a fixed probability of blocking.

9

When it became apparent that the increase in capacity, required to keep up with the

growing demand for mobile services, could not be achieved by progressively more

complex dynamic channel assignment and reassignment algorithms, research efforts

began to shift towards microcellular architectures. It was within the context of

microcellular environments where more recent work involving repacking strategies

has appeared, and the focus has been mainly to investigate the possibility of adaptive

channel reassignment based on continual measurements of the radio connection

quality.

Beck and Panzer [BECK88] describe an efficient algorithm which initiates an intra-

cell handover when the reception quality of a call using a given channel decreases

below a given threshold. The algorithm is efficient in the sense that it achieves

'stability' - the actual probability of calls that need a mid-conversation repacking is

maintained at a very low value. In Subsection 7.4 a similar study of intra-cell

handover stability is carried out for the schemes of the Repacking family.

There is also similarity between the dynamic channel assignment schemes in the

work of Sivarajan et al [SIVA90] and some of the schemes which shall be described

in Section 3. For example in [SIVA90] the 'Simple' scheme assigns all incoming calls

to the least available frequency, much like the First Fit scheme detailed in Section 3

and first proposed by Knuth [KNUT73]. Furthermore, the scheme described as

'Maxavail' in [SIVA90] assigns to an incoming call the frequency which maximises

the total number of channels available in the entire system. Although not entirely

identical, such a scheme closely resembles the Best Fit scheme described in Section

3. Best Fit, first proposed by Knuth [KNUT73], maximises the number of entirely

empty slots by grouping half rate calls together upon admission.

10

3. SLOT ALLOCATION SCHEMES

In this section we describe the nine schemes of allocating slots to full and half rate

calls. Each of these schemes, except for Random, is an access control method which

allocates resources in the form of slots to two types of calls. The motivation for

investigating various access control schemes becomes obvious when one considers

that without any form of access control in a shared resource environment [KAUF81],

calls requiring a larger capacity will experience many times the blocking probability

of those with smaller capacity requirements. This will be demonstrated in Section 7

by comparing the performance of the Random scheme with that of schemes where

access control is imposed.

It can be said that all of the schemes are well known except the three variations of

ordinary Repacking: (i) Repacking with Random Reservation; (ii) Repacking with

Perpetual Reservation (of a full slot) and (iii) Repacking with Perpetual Half Slot

Reservation. In Section 7, after a comprehensive analysis of the results, each scheme

is allocated a mark out of 10 for implementation simplicity (10 is the most simple to

implement), fairness (10 is the most fair) and efficiency (10 signifies best utilisation

of network resources while keeping to a pre-defined GOS).

Implementation simplicity is the inverse of scheme complexity, with regard to the

number of algorithmic rules which would need to be implemented in hardware. For

example the Random scheme is much more simple to implement than any scheme

from the Repacking family, because it does not have any of the rules associated with

call repacking. It is also important to precisely define what is meant by the concept of

scheme fairness.

 f
P Blocking

P Blocking

fulls

halves

 log
()

()
10 ... (3.1)

As equation 3.1 illustrates, fairness is the measure of numerical proximity of the

blocking probabilities for the two types of calls, namely full and half rate. When the f

value according to equation 3.1 is zero, we have exactly equal blocking probabilities

for both types of call traffic and it can be said that such a scheme is completely fair.

Negative f values are unfair to half rate calls, while positive f values are unfair to full

rate calls.

Finally, efficiency is the measure of the total offered arrival rate which does NOT

exceed the system's GOS.

11

3.1 Random

Although termed a "scheme", this method is not a true scheme; rather it is a pure

"dice throwing" exercise. Namely, as full and half rate calls arrive, the task of the

processor is to:

(a) In the case of full rate calls, choose at random one of the free slots available,

being careful to keep within the "Stone Wall" boundaries.

(b) In the case of half rate calls, choose at random one of the free holes. Because of

their size, these calls can "see" two empty slots in each ordinary empty slot, and thus

we refer to them occupying at random the first half slot which is available. Clearly

the wall boundaries do not apply here.

Finally, as each call leaves, it leaves either an empty slot or a hole, and there is no

action taken by the processor at this point. Holes may be created by (i) the departure

of one of two half rate occupants within a slot, or (ii) the arrival of a half rate call

into an empty slot. Note that because holes must co-exist with isolated halves, the

creation or elimination of one means the same happens to the other. On the other

hand, empty slots will remain behind when either a full rate call departs, or when an

isolated half rate call departs.

3.2 First Fit

The policy which is simplest to implement, (apart from Random) is First Fit

[KNUT73, ZUKE88, ZUKE89, COFF85]. Under this policy, the eight slots in the

frame are permanently allocated ID numbers (say 0-7). In the case of our system,

each slot may contain (i) no calls {0}, (ii) a half rate call {1}, (iii) two half rate calls

{2} or (iv) a full rate call {3}. To each of these possibilities, the value in the braces is

attached. The allocation scheme then functions as follows:

(a) Each incoming half rate call is allocated to the smallest ID-number slot (i.e.

imaginary packing from the left hand side of the frame), with only 0 or 1 half rate

calls currently there.

(b) Each incoming full rate call is allocated to the smallest ID-number slot that is

empty.

12

Similarly to Random, as each call leaves, it leaves an empty slot or a hole, and there

is no action taken by the processor at that point.

3.3 Best Fit [KNUT73]

This scheme is more efficient than either of the two previous ones, because it

specifically targets the holes that are present in the frame, and eliminates these by

adding to them any new incoming half rate calls [KNUT73, ZUKE88, ZUKE89]. In

this way we have more closely packed frames, freeing up room for the full rate calls.

Specifically, the placement scheme is as follows:

(a) Incoming full rate calls are packed from the left of the frame, exactly as described

in First Fit: allocation to the smallest ID numbered slot which is currently empty.

(b) An incoming half rate call is allocated to a hole. If more than one hole is

available, the one belonging to the slot with the smallest ID number is filled. On the

other hand, if none are available, we place it in the smallest ID numbered slot which

is currently empty.

Once again, no action is taken upon call departure, and a hole remains behind.

3.4 Repacking [ZUKE88, ZUKE89]

This is one of the most efficient methods of slot allocation, and is almost identical to

Best Fit with one major difference: the action taken by the processor when a call

leaves. Namely, upon call departure,

(a) When a full rate call departs leaving an empty slot, no action is taken.

(b) When a half rate call departs, either an empty slot or a hole will remain. In the

former case, no action is taken. In the latter case, if another isolated half is available,

it will be moved into the hole. If not, no action is taken.

Implementation of the repacking strategy makes use of intracell handover including

repacking across different radio frequency carriers within the same cell. In the

13

numerical examples of this research work we have considered both repacking within

a single radio frequency carrier, as well as between multiple carriers.

The reader should note that a large number of intracell handovers during a call will

have a negative effect on the quality of service as perceived by the customer. It is

therefore important to have this number as small as possible. To reduce the number

of intracell handovers, step (b) above will not be performed upon a departure.

Instead, intracell handovers (repacking of two isolated half rate calls) will only be

performed upon an arrival of a full rate call, given that there are no empty slots, and

that there are at least two isolated halves. Although this results in a slightly different

scheme at the physical layer, it does not in any way change the complexity or size of

the state space or the state transition diagram, as will be explained in Section 4. We

now define and clarify the above concepts.

The state of the system is a two or three dimensional vector, depending on the

scheme in question, with the first element representing the number of full rate calls

and the second element representing the number of half rate calls in the system. In

those schemes that require it, the third element of the vector represents the number of

isolated halves in the system. The state space is the finite set of all feasible states. A

state transition diagram, also known as a Markov chain, shows transitions between

states as probability weighted links. Such a diagram is also a representation of the

steady state equations, which when solved yield the steady state probabilities of the

system being in any given state.

The result of such a scheme is that a full rate call arrival will not find a situation

where there is more than one hole (when there is sufficient demand to warrant

repacking). Therefore, we expect an increase in utilisation (where utilisation is

defined as the average number of occupied slots divided by the total number of slots).

The only essential difference between admittance criteria for full and half rate calls is

that when there are seven and a half slots filled, a half rate call will be admitted,

whereas a full rate call will not.

3.5 Repacking with Perpetual Reservation (RPR)

This scheme is a variant of Repacking. The only difference in the scheme, is that the

entire last available slot must always be kept reserved for use only by full rate calls.

This is not necessarily always the same physical slot; rather, it is always the last free

14

slot, whichever one it may be. Therefore, the admission of full rate calls stays

identical, whereas the admission of half rate calls is purposely impeded, in the sense

that they can only ever make use of seven of the eight slots of the frame. The reason

behind this is equalisation, since it is expected that with ordinary Repacking, the

blocking probabilities for half rate calls tend to be far smaller than those of full rate

calls.

3.6 Repacking with Perpetual Half Slot Reservation (RPHSR)

Like RPR, this scheme is another variant of ordinary Repacking. It was first proposed

in [TRAN93]. We reserve half a slot thus introducing a small amount of resource

wastage, and basically "forbidding" the half rate calls to enter the system when only

one half slot remains available. In this way, the blocking probability of full and half

rate traffic is equal for every traffic mix at the expense of lowering the half rate call

utilisation somewhat. This scheme is also discussed in [RITT94, TRAN93] as an

example of a blocking probability balancing mechanism in a CAC context for

Asynchronous Transfer Mode (ATM) networks.

For instance in a transmission system with total capacity for eight basic bandwidth

units (BBUs) the threshold, according to [RITT94, TRAN93], is set at eight minus

the number of BBUs required by the call type with the largest BBU requirement. For

example, if we only have two call types, and the type with the largest requirement

uses one BBU the threshold would equal seven BBUs. If at any stage more BBUs

than the threshold value are occupied, either type of call arrival is blocked. This

guarantees that the same proportion of arriving calls (not necessarily absolute

numbers) will be blocked, for both call types. This idea of blocking probability

equalisation can easily be extended to a multi-service system with many different

bandwidth requirements.

3.7 Repacking with Random Reservation (RRR)

Once again, this is a variation of the Repacking scheme, and bears a lot of

resemblance to the Perpetual Reservation scheme. Unlike RPR or RPHSR, where

either an empty reserved slot or half an empty reserved slot is always put aside (i.e.

deterministic, perpetual reservation), the Random Reservation scheme states that

this reserved slot is only put aside some of the time. In other words, if only one

15

empty slot remains and a half rate call arrives, then with probability p1, the call is

accepted, and with probability ()1 1 p the call is rejected. If only a half of an empty

slot remains is available then with probability p2, the call is accepted, and with

probability ()1 2 p the call is rejected.

The probability p1 is chosen as a function of the arrival rates for the two types of

traffic, 1 and 2 , p f1 1 2 (,) . It is logical that, if perchance the full rate arrivals

were an order of 10 or 100 smaller than half rate arrivals, it would be most beneficial

to have a high value of p1.

p2 on the other hand is associated with the event of already having admitted a half

rate call into the reserved slot, and therefore it should be chosen as a function of not

only the arrival rates, but also of the current number of half rate calls in the system.

That is p f Nh2 1 2 (, ,) . Intuitively, if we have many half rate calls in the system

and a half rate call attempts to fill up the reserved slot, we may reject it because:

(i) There are many other half rate calls, meaning an increased probability of departure

elsewhere, so possible success on a retry.

(ii) Since half rate calls have "run of the system" in such a case, in order to reduce the

difference in the GOS for both types of customers (i.e. force f towards 0), it is

advisable to wait for the lone half within the reserved slot to depart, and thus free

some semi-prioritised space for the full rate customers.

However, for simplicity in this work it was assumed that p2 = 1.0 (i.e. if the reserved

slot has a half already in it, ALWAYS fill it up). Interestingly, the special case of

p1=1.0 and p2 = 0 has already been mentioned above in Subsection 3.6 - it is nothing

more than the case of forcefully preventing the half from entering the system when it

has ()8 1 1
2n half slots full, with a view to equalisation of blocking probability

(RPHSR). On the other hand, the case of p1= 0 is clearly the case of Repacking with

Perpetual Reservation, discussed in Subsection 3.5. Using the eight slot frame, and

testing the RRR scheme with a number of values of p1, the aim was then to

empirically find the optimal p1, which would ensure that fairness in blocking

probabilities for both types of customer was achieved. Clearly, a particular value of

p1 cannot be expected to satisfy every conceivable traffic mix at every conceivable

utilisation. Therefore, it was not surprising that the values of p1 which satisfied this

fairness criterion were in the range 0.5 < p1 < 0.7, for a very wide range of traffic

mixes (0.1 <

1

1 2
 < 0.9). It was therefore decided to take the middle of this range

16

and set p1 = 0.6 for this scheme, regardless of traffic mix, utilisation or frame size.

As results in Section 7 show, this choice turned out to be almost truly optimal

because it promoted the RRR scheme to first place in efficiency and a very close

second to RPHSR in fairness.

We now describe two methods which are not very efficient, but may be considered

by engineers because of their simplicity in implementation.

3.8 Fixed Boundary Reservation

An imaginary wall is imposed at some pre-defined point within the frame. On one

side of this boundary, the slots may only be used by full rate calls, while on the other,

only half rate calls may be accepted. It is immediately apparent that this option is

simple to implement, as it never mixes the two types of traffic. However, the

utilisation of such a scheme is intuitively poor, due to resource wastage. Unlike the

other schemes, this allocation technique is described by the M/M/N/N queue. The

Kendall notation used here [KLEI75] denotes a queue with a Poisson arrival process,

a negative exponential service time distribution, and at most N available servers. This

is a 'blocked calls cleared' situation, where each newly arriving call is given its

private server. If however a call arrives when all N servers are busy, that call is lost.

The probability of this event is well known in literature as Erlang's loss formula or

the Erlang-B formula.

In the specific problem of the Fixed Boundary Reservation scheme, N would be

equal to the number of slots available to incoming calls on a certain side of the

boundary. So if we have an eight slot frame, and divide the resources equally, full

rate calls will receive service from an M/M/4/4 queue, while half rate calls, being

able to fit two-to-a-slot, will be served in an M/M/8/8 queue. The blocking

probability may then easily be obtained by use of a simple recursive version of the

Erlang-B formula [HARR82].

3.9 Sliding Boundary Reservation

Unlike the previous scheme, the sliding boundary allocation scheme has to

periodically make a decision on how to split the eight slots between the two types of

traffic (i.e. it is not pre-defined). Although the term 'sliding' may be sometimes used

17

in literature to imply that one type of traffic can cross over the boundary, what is

described here is essentially a scheme where the boundary cannot be crossed by

either type of traffic, with the boundary location chosen at set periodic intervals

according to the measured traffic mix. Given that the arrival rate of full rate calls is

1, and half rate calls is 2 , the subdivision is made in the following way:

No. of Full Slots Available to Full Rate Calls = round [8*

1

1 2
] ...(3.2)

No. of Full Slots Available to Half Rate Calls = round [8*

2

1 2
] ...(3.3)

Above, the "round" function performs a rounding of a real quantity to the nearest

integer (e.g. 2.345 to 2). The end result is a rather rough matching of the ratio of

available reserved slots and the ratio of traffic intensities. Although rough, this

method at least attempts to work on the principle of demand and supply, and one

would expect less resource wasting.

17

18

4. SYNTHESIS OF STATE TRANSITION DIAGRAMS

One way of solving this problem is to consider a set of as many state variables as

there are slots, each of which could take four values. This would result in a state

space which described every possible permutation of half and full rate caller

occupancies in the available slot. As a result, any such state space would be

enormous, especially for realistic numbers of time slots. However, it is possible to

reduce the state space to a manageable size by using some ideas from [ZUKE89], in a

mapping approach similar to that proposed by Kaufman [KAUF81] and Roberts

[ROBE81]. The only difference is that in our problem, the mapping is from an m

dimensional state space down to a 2 or 3 dimensional state space, rather than a one

dimensional space, as in [KAUF81, ROBE81].

Using the model defined in Section 2 as a framework, all of the allocation schemes

except First Fit, may be described by such a reduced state space where each state is a

vector with the elements: (1) i, the number of full rate calls currently in the frame; (2)

j, the total number of half rate calls; and only for Random and Best Fit schemes, (3)

k, the number of isolated half rate calls in the frame.

The last parameter is only needed for the Random and Best Fit allocation schemes,

because unlike the others, these schemes can have more than one isolated half rate

call. For example, the nature of the scheme behind Repacking, guarantees that a valid

state (4,6) means four full rate calls packed into four slots, and six half rate calls

perfectly compressed into three slots. With Random and Best Fit allocation however,

having six half rate calls could mean any feasible scattered arrangements within the

frame.

First Fit is not included in this type of state evaluation by analytic numerical

methods, because it was not possible to perform the state space reduction mapping.

The reason lies behind the fact that unlike the other methods, each slot is numbered,

and as such, there must be the same number of state parameters as there are slots.

Two or three parameters could not adequately provide a state space description. It

was therefore sensible to only simulate this allocation scheme.

The Fixed and Sliding Boundary allocation techniques are both described by the

M/M/N/N queue, where N is simply the number of slots available to incoming calls

on a certain side of the boundary. Hence, the blocking probability is easily obtained

by use of the Erlang-B formula, so neither state evaluation or simulation is required.

19

On the basis of the model in Section 2, and for the six relevant allocation schemes,

we now proceed to define each one separately, by way of state transition diagrams.

Because of the complexity of the entire 3-D state diagram for Random and Best Fit

Schemes, in Subsections 4.1 and 4.2 we will focus on showing an example of each

transition type.

4.1 Random Allocation

Figure 4.1 is a small subset of the state transition diagram for the Random allocation

scheme, which has been chosen carefully so as to illustrate every type of transition

characterising this scheme.

To each state is attached an extra incoming and outgoing arrow in order to reinforce

the fact that this is a subset of the entire 3-D state transition diagram. Some state

transitions have been purposely left out in Figure 4.1, for clarity, since a typical state

will have six outgoing and six incoming transitions, as the total number of transition

types is six. Of particular interest are the transitions weighted by probabilities. For

example, when we are in the state (2,3,3), there are three empty slots as well as three

holes.

Hence, because the scheme revolves around a completely randomised placement of

all calls into the frame, the probability of the Hole Elimination transition taking place

must be (3/9) while that of the Hole Creation transition (6/9).

Another example is the case where the frame is in the (2,4,2) state and a half rate

caller departs. Once again, the departure is a random process. The frame contains two

isolated halves (and hence holes), as well as two halves packed together in one slot.

Hence, it is intuitive that for half rate call departures the probabilities of the Hole

Elimination and Creation transitions will be equal to (2/4).

20

Half Rate Departure, Hole Elimination

Half Rate Arrival, Hole Elimination

Half Rate Arrival, Hole Creation

Full Rate ArrivalFull Rate Departure

Half Rate Departure, Hole Elimination
Half Rate Departure, Hole Creation

(2,4,2)(2,3,3)

(2,3,1)

(2,4,4)

(1,3,3)

Figure 4.1: Random Allocation, Examples of Six Transition Types

4.2 Best Fit Allocation

As for the previous scheme, a characteristic subset of the Best Fit state transition

diagram has been chosen in order to illustrate the five types of transitions possible.

Firstly, note that the departures are based on exactly the same random process which

was mentioned in Subsection 4.1, and hence probability weighted transitions occur

either creating a hole or eliminating a hole upon departure. The difference between

Random and Best Fit state transition diagrams is evident in the transitions

representing the arrival process.

Namely, the Best Fit scheme specifically targets any available holes to be filled,

therefore unlike in Random allocation, Figure 4.1, where two probability weighted

half rate arrival transitions could occur, only one type of transition resulting from a

half rate arrival is possible in Figure 4.2 below. As a result, this state transition

diagram is characterised by only five types of transitions, as illustrated below. The

example deterministic half rate arrival transitions are highlighted in bold.

21

Half Rate Departure, Hole Elimination

Half Rate Arrival, Hole Elimination

Half Rate Arrival, Hole Elimination

Full Rate ArrivalFull Rate Departure

Half Rate Departure, Hole Elimination

Half Rate Departure, Hole Creation

(2,4,2)(2,3,3)

(2,3,1)

(2,2,2)

(1,3,3)

Figure 4.2: Best Fit Allocation, Examples of Five Transition Types

4.3 Repacking

Because the Repacking family of schemes has two state parameters, the resulting

state spaces will be two dimensional and it is therefore possible to construct 2-D

drawings, as in Figures 4.3 through to 4.6.

(1, 0) (1, 1) (1, 2) (1, 3) (1, 13) (1, 14)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 11) (2, 12)

(7, 0) (7, 1) (7, 2)

(0, 0) (0, 1) (0, 2) (0, 3) (0, 15) (0, 16)

(8, 0)

Figure 4.3: Repacking for an Eight Slot System

22

The examples given are each based on a generic system with eight slots per frame;

note that the state spaces have been only partially drawn (size is very large) to

illustrate their characteristic features (with any irregularities highlighted or shaded).

We start with the simplest of the Repacking family of algorithms.

4.4 Repacking with Perpetual Reservation (RPR)

The state space is similar to that of Repacking, with the major exception being that

the last available slot must always be reserved exclusively for full rate callers. That is

why the diagram is identical to Figure 4.3, except that states (0,15) and (0,16) are

unreachable and hence shaded. Also, let us define full states as those where either (i)

all eight timeslots are occupied, OR (ii) seven and a half slots are occupied and one

half slot hole exists.

Examples are (2,11) and (2,12). As a result of the modified admission scheme, the

diagram shows that such states can now only be reached if the transition into them is

a full rate arrival. This is evident in Figure 4.4 due to the absence of horizontal

transitions to such full states.

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(7, 0) (7, 1) (7, 2)

(0, 0) (0, 1) (0, 2) (0, 3)

(8, 0)

Unreachable States

The horizontally shaded states are the full states.
As far as arrivals are concerned, these states are only

reachable via full rate arrival transitions (VERTICAL)

as shown below.

** From state (1,12)

(2,11) (2,12)

(1,13) (1,14)

(0,13) (0,14) (0,15) (0,16)

Figure 4.4: Repacking with Perpetual Reservation for an Eight Slot System

23

4.5 Repacking with Perpetual Half Slot Reservation (RPHSR)

This scheme is almost identical to RPR, except that there are less full states since

they are now defined as only those states where all eight slots are occupied.

As in the case of the RPR scheme, these full states are inaccessible by horizontal

transitions. In other words, they cannot be reached by half rate arrival transitions -

only by full rate arrival transitions. Since there are less of these states which are

inaccessible by half rate arrivals, and given that the state (0,15) is reachable unlike in

the RPR scheme, intuition suggests that half rate customer utilisation should be

improved for this scheme.

(1, 0) (1, 1) (1, 2) (1, 3) (1, 13) (1, 14)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 11) (2, 12)

(7, 0) (7, 1) (7, 2)

(0, 0) (0, 1) (0, 2) (0, 3) (0, 15) (0, 16)

(8, 0)

Unreachable State

As in the RPR state transition diagram,

(Fig. 4.4) the full states, shaded by hor-

izontal lines, are accessible only via full

rate arrival transitions.

Figure 4.5: Repacking with Perpetual Half Slot Reservation for an Eight Slot

System

24

4.6 Repacking with Random Reservation (RRR)

Figure 4.6 illustrates the concept of random reservation. Given that a half rate call

arrives, the transition into one of the shaded states will occur (i) with probability p1 if

an entire empty slot is available (e.g. transition from state (7,0) to (7,1)), and (ii) with

probability p2 if only half a slot is available (e.g. transition from state (1,13) to

(1,14)). All these shaded states illustrate the non-deterministic filling up of the last

available slot by half rate callers. The rate of entering each shaded state is given

either by p1 2 or p2 2 .

(1, 0) (1, 1) (1, 2) (1, 3)

(0, 13) (0, 14)

(2, 0) (2, 1) (2, 2) (2, 3)

(7, 0) (7, 1) (7, 2)

(0, 0) (0, 1) (0, 2) (0, 3) (0, 15) (0, 16)

(8, 0)

(1, 13) (1, 14)

(1, 12)

(2, 11) (2, 12)

(2, 10)

p

p

p

p

p

p

p

p

Figure 4.6: Repacking with Random Reservation for an Eight Slot System

The family of repacking schemes, as described in the previous section, may be

implemented at the hardware level so that either (a) every departure may potentially

prompt a repacking, or so that (b) only full rate arrivals which cannot fit into the

frame prompt a repacking. The latter scheme minimises the overall number of

repackings, in an attempt to reduce the number of 250-500 ms silent or click periods

which result from intracell handovers. However, from the point of view of state space

complexity, the actual hardware level implementation has no impact on the size of

the valid state space (the drawings in Figures 4.3 - 4.6 stay identical). This is because

there are only two state parameters - the number of fulls and number of halves, in the

frame. As a result, the frame can have the halves distributed in any fashion, under the

condition that when the need arises maximal packing compression will be effected.

As far as blocking probability is concerned, this is equivalent to performing the

repacking upon every half rate departure.

24

25

5. GENERATION AND NUMERICAL SOLUTION OF STEADY STATE

 EQUATIONS

The analytic method was based on generating the state transition rate matrix, Q, and

solving the related set of equations using a Gauss-Seidel iteration technique. The

focus in this section is on the way such a large matrix is generated, and various

computational aspects, including limitations. As outlined in [HUEB93] and

[RITT94] it would seem that rather than iteratively solving a large number of steady

state equations, this type of problem is amenable to solution using the exact product-

form (and hence Kaufman-Roberts recursion [KAUF81, ROBE81]) method, as the

number of traffic classes is sufficiently small (two classes).

However, closer examination of the state transition diagrams presented in Section 4

reveals that pure Repacking is the only scheme for which the product-form equations

could be used. This is the case because, for example, in the Repacking state (3,7) we

can always say that the rates of departure are: (i) 3full for full rate calls and (ii) 7half

for half rate calls respectively, independent of any other factors. On the other hand,

the other three Repacking family members, and Random and Best Fit allocation, all

either have specific weighting factors associated with particular transitions, giving a

'non-standard' state transition diagram, or they map two traffic classes to a 3D state

space; in either case, it makes it impossible to use the exact recursive or product-form

solutions.

Taking the Random state space as an example, the departure rates from the state

(3,7,3) are 3full as before for full rate calls; however, the half rate call departures are

complicated by the completely random possibility of either an isolated or non-

isolated half rate call departing. This phenomenon, along with the way each

particular allocation scheme requires certain states to be unreachable or only entered

with certain probabilities, makes it impossible to use the exact product-form solution.

5.1 Transition Rate Matrix Generation

The state parameters are: i = number of full rate calls ("fulls") present; j = total

number of half rate calls ("halves") present; k = number of isolated half rate calls

present in the frame. As usual, x x, are the arrival/departure rates, with x = 1 for

full rate and x = 2 for half rate calls. It should be noted that the matrix generation

26

algorithm, presented in four steps below, specifically considers valid states only,

eliminating all (i, j, k) points not satisfying this requirement.

Step 1

Obtain the numerical difference in the state parameter indices.

(, ,) (' , ' , ') (, ,)i j k i j k i j k ... (5.1)

Note that the destination and source states, (i', j', k') and (i, j, k), must always be

valid.

Step 2

Determine whether the difference (i, j, k) represents a valid state transition. If not,

then Q(i' , j', k') = 0, otherwise follow through to Step 3.

Step 3

From the difference determine what type of state transition event has occurred. The

event then has a subset of two or one possible sub-events, based on the (i) slot

allocation scheme, and (ii) the source state. Having determined the sub-event, finally

record the relevant rate of transition (e.g. Q(i' , j', k') = 1 or Q(i' , j') = 2).

Step 4

Perform blocked state check to see whether, for that allocation scheme, the state in

question is one in which the arrivals of full or half rate calls will cause blocking.

In order to illustrate the algorithm, it is necessary to provide some examples, each

looking at a different allocation scheme. Note the increased complexity associated

with the Random Allocation and Best Fit schemes as opposed to the Repacking

family, is due to the need for one more state parameter.

27

Example 1

As the first example, consider the Random Allocation scheme and a transition from

state (1,5,3) to state (1,6,4). The index-difference is (0,1,1) and tells us that a half rate

call has arrived, increasing the number of isolated half rate calls. This breaks down

into the following event specification,

 Scheme: Random Allocation

 Event: Half Rate Call Arrival

 Sub-Event: Isolated Half Creation

 Q Matrix Entry: Q(1, 6, 4) = (6/9)*2

 Blocked State (Destination): Fulls - No ; Halves - No.

The term (6/9) is a measure of the probability of the "Isolated Half Creation" sub-

event occurring, given a "Half Rate Call Arrival" event occurring. The probability is

6/9 because, when we are in the state (1,5,3), out of the available nine empty half

slots, six are in empty slots, and the other three are holes matched up with isolated

halves. Figure 5.1 illustrates this.

Time Slot

1 842 3 5 6 7

Full
Packed Halves

Isolated Halves

Figure 5.1: Typical Distribution of Half and Full Rate Calls in the (1,5,3) State

Example 2

The transition involving the departure of a half rate call in the Best Fit allocation

scheme, is our next illustration. Figure 5.2 illustrates the call type distribution in the

state (3,7,3), that is, prior to a half rate call departure. As an example let us assume

that the half rate call departure will create another isolated half rate call. Hence, when

the departure occurs, the state changes from (3,7,3) to (3,6,4), since one of the four

half rate calls which are packed two-to-a-timeslot, departs.

28

 Scheme: Best Fit Allocation

 Event: Half Rate Call Departure

 Sub-Event: Isolated Half Creation

 Q Matrix Entry: Q(3, 6, 4) = (4/7)*2

 Blocked State (Destination): Fulls - Yes ; Halves - No.

Time Slot

1 842 3 5 6 7

Full

Isolated Halves

FullFull Packed

Halves

Figure 5.2: Typical Distribution of Half and Full Rate Calls in the (3,7,3) State

Example 3

Consider the Repacking scheme, and the transition from state (4,6) to state (4,7). An

index difference of (0,1) tells us that the arrival of a half rate call is in question. The

absence of the third state parameter means that there are no sub-events associated

with events.

 Scheme: Repacking

 Event: Half Rate Call Arrival

 Q Matrix Entry: Q(4, 7) = 2

 Blocked State (Destination): Fulls - Yes ; Halves - No.

5.2 Matrix Manipulation

Part of a typical Q matrix is shown in Figure 5.3. Note that the given matrix is for

illustration purposes only, and therefore not all of its elements are shown. This matrix

has been generated for the case of a single carrier, with just one eight-slot frame. The

resulting size is 160 by 160 elements, thus the reason for showing only part of it.

With the matrix in the form shown in Figure 5.3, the steady state equations may be

expressed as

 pQ 0 ... (5.2)

29

 (i',j',k')

(i,j,k)

(0,0,0) (0,1,1) .

.

.

.

(1,0,0) (1,1,1) . .

. .

(7,0,0) . .

.

(8,0,0)

(0,0,0) () 1 2

2 1 0 0 0

(0,1,1) 2 () 1 2 2
 0 1 0 0

. . .

(1,0,0) 1 0 () 1 2 1
 1 0 0

(1,1,1) 0 1 2 () 1 2 1 2
 0 0

. . .

(7,0,0) 0 0 0 0 () 1 2 17
 1

. . .

(8,0,0) 0 0 0 0 81 - 81

Figure 5.3: State Transition Rate Matrix, Q, for the Random Allocation scheme

The unknown in the above equation is the p matrix, a row vector of the probabilities

of state

p [....]p p pm1 2
 ... (5.3)

Equation (5.2), however, is not a form practical for implementing the Gauss-Seidel

iterative process [COOP81]. Hence we manipulate the elements of the original Q

matrix, creating an augmented matrix, Q', and enabling the matrix equation to be

written in the form

pQ' p ... (5.4)

The manipulation revolves around two operations: column i of Q is divided by -qii

and the ith diagonal element of Q is set to zero.

5.3 Numerical Solution

5.3.1 Convergence Criteria

Let us consider a general set of linear equations, following the methodology of 4.6 in

[COOP81]

Qx b ...(5.5)

This is of the form of equation (5.2), where Q is a given square matrix, while b is a

given vector (the zero vector in this case) and x, the unknown vector is equivalent to

30

our p. A sufficient condition for convergence of a Gauss-Seidel iteration scheme is

that Q be irreducible and exhibit weak diagonal dominance. So if qij is the element in

row i, column j, of our irreducible matrix Q, then convergence will be guaranteed if

 q qii ij

j
j i

m

1

 (i = 1,2, ... ,m) ...(5.6)

and for at least one i q qii ij

j
j i

m

1

, ...(5.7)

where m is the number of rows (hence columns, since we have a square matrix) of Q.

It is apparent by inspection of the sample Q matrix in Fig. 5.3, that this criterion for

convergence is only partially met. Namely, equation (5.6) is true while equation (5.7)

is not satisfied in any row. This should come as no surprise since [COOP81] explains

that this criterion is not usually fully satisfied by steady state probability state

equations.

Even with only equation (5.6) holding true for most probability state equations, they

still have a large concentration of "mass" of the matrix Q along the main diagonal

with a large number of zero elements off the main diagonal. This phenomenon is

clearly evident in our sample Q matrix in Fig. 5.3.

It has been found that Gauss-Seidel iteration proves very useful in the context of

solving such probability state equations, since this 'main-diagonal concentrated-mass'

property makes the iteration process more likely, and faster to converge.

5.3.2 Matrix Rank

Each of the allocation scheme Q-matrices, if it has for example m rows by m

columns, shall be of rank (m-1). That is, each row sums to zero and any one of the

columns can be derived from the other (m-1).

Hence, one of the equations is redundant and the other (m-1) equations determine the

solution up to a constant factor. This factor is the normalisation condition of all state

probabilities summing to one,

31

pi
i

m

1

1 ...(5.8)

It has been shown that, for many applications, although one equation is redundant,

the convergence of the procedure is sometimes accelerated by using all the state

equations. In the presented solution algorithm all the state equations are used.

Furthermore, the normalisation equation, (5.8), can be applied after each complete

round of iteration or after the last stage. In the solution algorithm used, the

normalisation is done at the end of the iterations.

5.3.3 Computational Benefits and Limitations

With the state reduction mapping being employed, the speed of the Gauss-Seidel

iterations converging to a solution (with Rel. Error < 10-5) in comparison to the

simulations, was as expected many times faster, and allowed us to explore

performance analysis in depth. Namely, for a given GOS, of say 2%, by solving an

optimisation problem, we found the maximum system capacity (defined as the

number of full plus half rate call arrivals) at varying traffic mixes (0 to 100% full rate

call arrivals as a proportion of all call arrivals). This will be further explained in

Section 7. Because of the size of the state space, this type of analysis was only

numerically tractable for systems of up to three carriers (frames with 3 x 8 timeslots,

minus the reserved broadcast channel).

In the case of the Repacking scheme only, it was decided to use the exact recursive

solution presented in [RITT94] to verify the state space enumeration method. The

Kaufman-Roberts algorithm [KAUF81, ROBE81] for a two class system is of the

form,

 ()

:

:

 () :

p m

m

m

m
p m m m m Mi i

i

i

i

1 0

0 0

1
0

1

2

 ... (5.9)

Let C represent a basic bandwidth unit (BBU) - the greatest common divisor of the

individual classes' bandwidth requirements Ci, where the index i = 1 for full rate

users and i = 2 for half rate users. In equation (5.9) the state denoted by m represents

the total capacity used by all users, measured in the number of BBUs. mi is the

32

number of BBUs required for users of class i. In our case, m1 = 2 BBUs for full rate

calls and m2 = 1 BBU for half rate calls. In general the BBU requirement is

determined by the use of m C Ci i / , and the maximal number of basic bandwidth

units, M, supportable is governed by the overall capacity C, such that M C C / .

The brackets indicate the largest integer smaller than that quantity. In this work, half

a slot is the BBU and so M is equal to twice the number of slots available to user

traffic (i.e. M = 2*N_Channels).

Note that there are only M states in one dimension, since the users' requirements are

mapped from two dimensions to one by use of the mi variable. The state probabilities

are, after normalisation,

 p m p m p m
m

M

() () ()

0

1

 ...(5.10)

And finally the blocking probability Bi for class-i calls can be calculated as,

 B p mi

m M m

M

i

 ()
1

 ...(5.11)

Given that the Gauss-Seidel solution process which enumerated state (and hence

blocking) probabilities converged to a relative error of E < 10-d, by testing for d = 3,

4 .. 10, it was found that both methods of solution for Repacking yielded identical

blocking probabilities to the dth decimal place.

33

6. THE SIMULATIONS

6.1 Simulating the Allocation Schemes

In this research, both the numerical solver programs and the simulations which

verified these, had a common thread - the exploitation of the same state space. The

obvious exceptions were the Fixed and Sliding Boundary schemes which did not

require simulations, and the First Fit scheme, which had the requirement for the same

number of state parameters as there were timeslots, without any possibility of

reduction, as explained in Sections 4 and 5. As a result, only simulation of the First

Fit scheme was feasible.

All of the simulations were of the Monte Carlo type and of a discrete-event digital

nature [COOP81], where the specified average arrival and departure rates were used

as parameters to random number generation subroutines. A significantly large

number of discrete events caused the entire valid state space to be visited, with the

probability of blocking and other useful statistics being recorded during the run.

While the simulations were a good way of confirming the accuracy of analytic

results, they did take up significant resources (CPU time) and it was not practical to

obtain a fully blown performance analysis of the methods. For example, the required

length of time to solve the optimisation problem mentioned in Subsection 5.3.3

would have been totally impractical, and a couple of orders of magnitude longer than

solving it by numerical analytic means. This phenomenon was especially pronounced

in the case of the First Fit simulation, due to its increased state space complexity.

6.2 The Voice Quality Impact Simulation

As the results in Section 7 will demonstrate, in terms of the overall score, one of the

two best (although reasonably complex) schemes is that of Repacking with Random

Reservation (RRR), since it achieves almost exactly equal blocking probabilities for

half and full rate calls over a wide range of traffic mixes; it also achieves the equal

best maximum customer capacity subject to a GOS constraint. It can therefore be

taken to be a good representative of the Repacking family of schemes.

In order to find out the detrimental effect of repacking on voice quality, a simulation

of the RRR scheme was designed with the specific aim of obtaining a quantitative

measurement of how likely a given customer's call is to be subjected to an intracell

handover (i.e. to be repacked). It was outlined in Subsection 3.4 that a large number

34

of intracell handovers during a call will have a negative effect on the quality of

service as perceived by the customer. It is therefore important to have this number as

small as possible, and hence implement all of the repacking schemes (3.4 - 3.7) in

such a way so that the repacking of two isolated half slots (and hence the elimination

of two holes) will only be performed upon an arrival of a full rate call, given that

there are no empty slots, and that there are at least two isolated halves. Although this

results in a slightly different scheme at the physical layer, Section 4 has shown that it

does not in any way change the complexity or size of the state space.

This Voice Quality Impact simulation therefore uses this "repack-only-when-

necessary" variant of the scheme, and like the First Fit simulation, keeps track of the

exact current state of each slot - whether it is empty, or has one/two half rate calls, or

a full rate call. Upon completion the simulation gives the parameter which then

quantifies the impact of repacking on voice quality,

E[Calls_Repacked] = (Number_Half Rate Calls Repacked)

 / (Number_Half Rate Calls Carried) ...(6.1)

where the total number of half rate calls carried is simply the number of offered calls

less the number of blocked calls. This parameter is a mean or expected value for the

proportion of all carried half rate calls which are repacked. Importantly, one should

note that full rate calls are never repacked, hence only half rate calls are considered

since only they may suffer an eventual degradation of voice quality.

This Voice Quality Impact simulation is run with the same traffic conditions which

were solved for the RRR scheme in the GOS-constrained optimisation problem.

Thus, we are observing the probability of intracell handover-related voice quality

degradation specifically under optimal traffic conditions and for the optimal scheme,

with regards to efficiency. The fact that this highest achievable traffic loading also

represents the worst case scenario for half rate call voice quality degradation is very

useful, because it shows at what expense to quality this ideal scheme operates, if it

was to operate at the desired conditions (i.e. peak utilisation).

35

7. RESULTS

7.1 Preliminary Investigation of Scheme Behaviour

Before performing direct quantitative comparisons between the maximum available

capacity of each scheme, which is undertaken in Subsection 7.2, it is worthwhile to

investigate the blocking probability of the nine schemes under varying traffic mixes.

An eight-slot frame is chosen. Because the goal of this Subsection is to explore the

general behaviour patterns of the blocking vs. traffic-mix curves, we do not consider

here specific systems of say, one or three carriers, with reserved broadcast channels

(i.e. 7 or 23 slot frames, respectively). Such multiple carrier frequency systems are

investigated in Subsections 7.2 - 7.4.

Figures 7.1 to 7.9, display for each scheme, the full and half rate call blocking

probabilities against the proportion of full rate calls arriving, denoted by

PFull

1

1 2

 ... (7.1)

The proportion of half rate call arrivals is conversely given by

PHalf

2

1 2

 ... (7.2)

 The offered traffic per channel is given by

1
1
2 2

N Channels_ *
 ... (7.3)

where N_Channels is the total number of slots available to the users (in this

subsection it is eight). The offered traffic per channel should not be unequivocally

treated as utilisation, which is defined by [KLEI75] as the 'ratio of the rate at which

work enters the system to the maximum rate (capacity) at which the system can

perform this work'. Had our frame represented a purely lossless system, then (7.4)

would be both the utilisation and offered traffic per channel, as for an M/M/ queue.

However, since the system under consideration has a finite capacity and blocking of

calls is possible, the relationship between utilisation, U, and offered traffic per

channel, is given by

U P Blocking (())*1 ... (7.4)

36

In all the cases considered in this research work, it can be stated that P(Blocking) <

0.02, meaning that the offered traffic per channel provides a very good

approximation of utilisation. This offered traffic is the control parameter in all of the

graphs, and each curve is obtained at both =0.4 and at =0.7 levels. The call

holding time (1/) was assumed to be the same for both full and half rate calls, and

we set it at 3 minutes, as was done in [ZUKE89]. Figures 7.1 through 7.7 were

obtained by simulation, and were then compared to the corresponding data points

obtained by the numerically solving the equations resulting from the Q matrix. As

expected, given the very small 95% confidence interval radii (i.e. a CI radius is given

by (95% CI for Value)/2*Value and for the simulated probabilities of blocking is

always less than 1%) [LARS69] there is virtually no discrepancy between the two

sets of points, making it unnecessary to plot both.

Figures 7.1, 7.2 and 7.3 show that, for the Random, First Fit and Best Fit allocation

methods respectively, the P(Blocking) for full and half rate calls behaves differently

as the traffic mix is changed. Namely, as we go from a proportion of zero to 100%

full rate calls, P(Blocking) decreases for full rate calls, the opposite being true for

half rate calls. This is observed because all three methods do not achieve good

packing compression, mainly as a result of holes being created upon departures of

half rate calls (while Random does not even attempt to "pack tightly" upon arrivals,

hence it's the worst of the three). From the point of view of full rate calls, the more

half rate calls in the traffic mix, the more chance of isolated half rate calls being

around and making it impossible for full rate calls to occupy an empty slot. Half rate

calls on the other hand can fit into isolated gaps, so their P(Blocking) only increases

when there are more and more full rate calls in the mix (simple resource contention).

The family of Repacking schemes, shown in Figures 7.4 through 7.7, exhibits

different behaviour governed by two effects. The RPR and RPHSR schemes, shown

in Figures 7.5 and 7.6, are susceptible only to one of these, the batch arrivals effect.

If half of a slot is considered to be the basic resource unit of a frame, then full rate

call arrivals may be viewed as batch arrivals of two units at a time. Consequently,

more batch arrivals (more full rate call arrivals) will cause the system to approach the

full state more often. This increases blocking probability for both call types as the

proportion of full rate calls increases. Figure 7.4 shows the blocking probability

curves for the ordinary Repacking scheme. It is evident that for traffic mixes

dominated by fulls (>50%) the curves have almost identical shapes as those for the

RPR and RPHSR schemes.

37

Figure 7.1: Blocking Probability - Random Scheme

Figure 7.2: Blocking Probability - First Fit Scheme

38

Figure 7.3: Blocking Probability - Best Fit Scheme

Figure 7.4: Blocking Probability - Repacking Scheme

39

Figure 7.5: Blocking Probability - RPR Scheme

Figure 7.6: Blocking Probability - RPHSR Scheme

40

Figure 7.7: Blocking Probability - RRR Scheme

However, when the traffic mix is made up of mostly halves, the loss curves for the

two schemes differ in that ordinary Repacking suffers from the last half slot effect.

Unlike RPR and RPHSR, where the last slot may only be occupied by one full

exclusively, or by one full or one half rate call, the Repacking scheme permits two

half rate calls to occupy the last available slot. As a result full arrivals experience

more loss when there is a high proportion of half rates in the mix. This effect

explains why the loss curves for full rate calls in Figure 7.4 are 'flatter' near the origin

than the curves in Figures 7.5 and 7.6. Since RRR (p1=0.6 and p2 = 1.0) is just a

more general form of Repacking (p1=1.0 and p2 = 1.0), RPHSR (p1=1.0 and p2 = 0)

and RPR (p1=0), Figure 7.7 shows the loss curves for the RRR scheme to lie

somewhere in between those of Figures 7.4, 7.5 and 7.6, as it is partially susceptible

to both of the above mentioned effects. Figure 7.6 also illustrates that the RPHSR

scheme is the only one to provide total fairness (as defined in Section 3, with f = 0) at

all levels of offered traffic.

Figures 7.8 and 7.9 illustrate the extreme unfairness inherent in both the Fixed and

Sliding Boundary schemes. The common thread in both graphs is that the probability

of blocking rises very rapidly (to catastrophic levels) if the traffic mix is made up

largely of one type of customer. This is expected, because the scheme is too

simplistic in its resource allocation. Namely, either a permanent or dynamically

allocated number of slots is reserved for exclusive use by one type of customers.

41

Figure 7.8: Blocking Probability - Fixed Boundary (50/50) Scheme

Figure 7.9: Blocking Probability - Sliding Boundary (Traffic Mix Dependent)

Scheme

42

The probability of encountering periods where very few customers of that type arrive

is expected to be reasonably high. These periods cause severe wastage of resources

and network under-utilisation, and a very likely side-effect of blocking for the other

type of customer, who might be experiencing a busy spurt and can never access the

free slots, on the other side of the boundary.

Using the definition of fairness in Section 3, Figures 7.10 and 7.11 provide an insight

into the logarithm of the ratio of full rate call blocking to half rate call blocking (i.e.

the defined f-value), at the =0.4 level of offered traffic per channel. The graph in

Figure 7.11 shows that the two schemes of mutually-exclusive resource usage (Fixed

and Sliding Boundary Schemes) are extremely unfair with f 0 , due to the

probability of full rate call blocking always being many orders of magnitude larger

than its half rate call counterpart. It is for this reason that the Fixed and Sliding

Boundary Schemes are judged to be the worst (relative to our other schemes) and are

not considered in further analysis, whose aim is to identify the best allocation

scheme. Figure 7.10 on the other hand, shows all of the other methods being at least

within the same order of magnitude in regard to fairness (f 1 for all schemes

except Random). The reader should note the convergence towards a mix-insensitive

f-value of zero, as we go from the most unfair scheme, Random allocation, towards

the fairest scheme, Repacking with Perpetual Half Slot Reservation.

Figure 7.10: Full/Half Rate Call Blocking Fairness - Schemes 3.1 - 3.7 (at =0.4)

43

Figure 7.11: Full/Half Rate Call Blocking Fairness - Schemes 3.8 - 3.9 (at =0.4)

The final observation to be made about Fig. 7.10 is that it exemplifies the general

statement about access control in Section 3, where it was pointed out that schemes

with progressively less access control were progressively more unfair. The Random

scheme has no access control with full and half rate calls able to take any slot or hole

that is available to them. Such a scheme, as its f-value range [1.5, 2] illustrates, is

much more unfair than a scheme with stringent access control such as RPHSR, where

a range of conditions (i.e. control) is imposed on the access of arriving calls.

7.2 Finding the Most Fair and Efficient Scheme

Having eliminated the Fixed and Sliding Boundary schemes we are left with seven

schemes: the Random, First Fit, Best Fit, Repacking, RPR, RPHSR and RRR

schemes. Also, simulation results in Subsection 7.1 have shown that the blocking

probability behaviour and fairness of the First Fit scheme is considerably worse than

those of Best Fit, and only slightly better than the worst allocation scheme, Random.

Hence it is fair to assume that First Fit can be safely eliminated from the contenders

for the best scheme. Figure 7.10 demonstrates clearly that the fairest scheme is

RPHSR, in which the algorithm for admission guarantees equality of blocking

probability for both types of calls (i.e. f = 0 for all traffic mixes). The reason for this

observed phenomenon was illustrated by way of Figure 4.6. Namely, each blocking

44

state for the RPHSR scheme (in an eight slot frame examples are (0,15) or (2,12))

will cause an arriving call to be blocked whether this arriving call is full rate or half

rate. This guarantees that the same proportion (not necessarily absolute number) of

arriving calls of either type is blocked. Almost equally good in terms of scheme

fairness is RRR, which performs only slightly worse. However, RRR is also a more

complicated scheme to implement at the physical layer, meaning that the preferred

scheme, fairness-wise is RPHSR.

Finding the most efficient scheme is more difficult. In order to accomplish this, it

was necessary to find the maximum customer capacity allowed while keeping

blocking for both customer types under a certain GOS (a figure of 2% was adopted).

This quantity needs to be computed for each scheme, and for a number of traffic

mixes ranging from 0% to 100% full rate calls (as a fraction of the total call arrivals),

in order to also investigate the sensitivity to traffic-mix. Finding this maximum

customer capacity under the GOS constraint required the formulation of an

optimisation problem.

The blocking probability P(Blocking)x is a function of the proportion of the rate of

full rate call arrivals, denoted by , and the total system arrival rate, denoted by ;

where x = 1 for full rate calls; x = 2 for half rate calls. The following relationships are

apparent:

1

1 2

,

,

/ .C

 ... (7.5)

where 1, 2 are as defined earlier;

C = total number of customers in the system;

 = number of call attempts per unit time per customer.

 Constraints,
() ()

() ()

1

2

1

2

P Blocking GOS

P Blocking GOS

 , where the GOS is chosen to be 2%.

 Optimisation Problem: Maximise C, subject to both constraints for any given .

Because C and are related by the positive constant , which is taken to be identical

for all customers, the optimisation problem can now be restated as:

Maximise , subject to both constraints, for any given .

45

Figure 7.12: One Carrier Frequency System - Comparison of Maximal

Customer Arrival Rates subject to a 2% GOS

Figure 7.13: Two Carrier Frequency System - Comparison of Maximal

Customer Arrival Rates subject to a 2% GOS

46

Figure 7.14: Three Carrier Frequency System - Comparison of Maximal

Customer Arrival Rates subject to a 2% GOS

Looking at Figures 7.12 through to 7.14, where the maximal value of (the

equivalent measure of capacity) is plotted versus for systems with one carrier

frequency (7 Slots), two carrier frequencies (15 Slots) and three carrier frequencies

(23 Slots), it is noticeable that the data point where all the arrivals are half rate calls

(i.e. 0% fulls, or = 0) is clearly discontinuous from the others. Although Figures

7.12 - 7.14 do not show any points for < 0.1, it has been observed that as

approaches 0:

1. The maximal capacity of the Random, Best Fit and Repacking schemes

asymptotically approaches an intermediate value, before making a discontinuous

jump to the value shown on the graph at = 0 (ideal peak capacity). This is due

to the fact that at very small values of , it is those few present full rate calls

which suffer extreme blocking probabilities because of their inability to 'get in'.

In order to keep to the pre defined GOS of 2%, the overall user capacity must be

constrained. When there are absolutely no full rate calls arriving, this constraint

disappears.

2. On the other hand, the maximal capacity of the RRR, RPR, and RPHSR schemes

continuously approaches a value which is just below the ideal peak capacity

shown on the graph. Because each of these schemes imposes a certain degree of

47

blocking probability balancing, even when there are very few full rate calls, they

are treated approximately equally in terms of access to resources.

The point = 0 represents the situation where we are left with homogenous half

rate traffic. In this case, there is no need to impose any form of access control. The

above graphs were produced with the assumption that when this point is reached,

none of the schemes is used and the system becomes an M/M/N/N queue and

blocking calculated by the Erlang loss formula using N = 2*N_Channels. In this case

the maximum capacity is equal to the ideal peak capacity as shown.

This assumption is particularly well justified in the case of the non reservation

schemes, by observing that when = 0, the Random, Best Fit and Repacking

schemes all yield identical blocking probabilities to those obtained by use of the

Erlang-B formula with N = 2*N_Channels. This holds since none of these schemes

prevents access by half rate calls to any part of the frame.

On the other hand, the RPR, RPHSR and RRR schemes all prevent part of the frame

resources from being utilised by half rate calls. It was found that, with homogenous

half rate traffic this 'prevention of access' causes each of these schemes to give a

slightly higher value of blocking probability than that for the Random, Best Fit and

Repacking schemes. This happens because in the case of the RPR and RPHSR

reservation schemes at = 0, N < 2*N_Channels. In the case of RRR, although it is

not an exact Erlang system (i.e. an M/M/N/N queue), its equivalent capacity is less

than 2*N_Channels. With this in mind, in the case of these reservation schemes, it is

apparent that the assumption about the system becoming a simple M/M/N/N queue

with N = 2*N_Channels at = 0 is somewhat idealised: it is assumed that if the

network operator has the knowledge that the network is being used by 100%

homogenous half rate traffic, it makes the decision to relax all forms of access

control and essentially return to Random slot allocation.

The reality might be that the network operator is unsure that all full rate customers

have switched to half rate handsets, and as a result the access control algorithm of the

RRR, RPHSR or RPR scheme continues to function (and deny access to some half

rate calls) even when there is no need. This explains observation 2. from above,

where it is noted that for = 0, these three schemes actually yield a maximal

capacity slightly lower than the ideal peak capacity shown on the graph.

Given the enormous capacity benefit of having a network with 100% half rate calls,

and keeping in mind that there would then be no need for implementing any

48

allocation scheme other than Random, the network operators should perform

economic evaluation studies in order to ascertain whether it would be more profitable

to simply upgrade all customers to half rate handsets, thereby moving the network to

this optimal state.

However, the indicator of scheme performance is obviously the other part of the

curves (= 0.1 - 1.0 of full rate calls) because given the forecast difficulty in half

rate handset market penetration, and the unlikelihood of any operator immediately

upgrading all customers to half rate handsets, this region will usually be the real

network situation. With this in mind, it is clear that the optimal performance is

again given by the RPHSR and RRR schemes, for all three systems (one carrier

frequency, two carrier frequencies and three carrier frequencies). A general feature of

all three graphs is that all schemes, in systems of all three sizes, perform increasingly

better with a higher proportion of half rate calls. This is intuitively to be expected,

because regardless of the scheme, when more half rate calls arrive, we are able to

squeeze two users to a single slot more often. Also note that the higher the proportion

of half rate calls is, the larger is the benefit gained by employing more complex

schemes.

The three figures also highlight that in general, the capacity benefit gained by

employing the more efficient repacking family of schemes either reduces with

increasing system size, or does not significantly improve. Table 7.1 below compares

the capacity benefit of employing the most efficient scheme, RPHSR, instead of a

much simpler scheme, Best Fit allocation. Note that the comparison is made for all

three system sizes, and at three representative traffic mixes (= 0.1, 0.5 and 0.9 of

full rate calls).

System

size ----->

One carrier

frequency

Two carrier

frequencies

Three carrier

frequencies

Traffic Mix:

 = 0.1

Capacity Benefit =17.5%

Capacity Benefit = 13.9%

Capacity Benefit = 11.9%

Traffic Mix:

 = 0.5

Capacity Benefit =6.5%

Capacity Benefit = 5.9%

Capacity Benefit = 6.1%

Traffic Mix:

 = 0.9

Capacity Benefit =-1.4%

Capacity Benefit = 1.7%

Capacity Benefit = 3.1%

Table 7.1: Percentage Capacity Benefit gained by Employing the Most Efficient

Scheme (RPHSR) instead of the Simpler to Implement Best Fit Scheme

49

An interesting feature of the table is the negative capacity benefit observed for a one

carrier system with 90% full rate calls and 10% half rate calls (= 0.9). This occurs

because the RPHSR scheme prevents half rate calls from getting into that final

available half slot, while the Best Fit scheme does not. As a result, especially at

traffic mixes which have few half rate calls, it is more probable that the half rates will

often be attempting to squeeze into this last slot with a blocking outcome. Note that

the negative value is only observed for the one carrier frequency system, because a

reserved half slot represents a wasted 1/14 of total system resources, as opposed to

the less significant proportions of 1/30 or 1/66 for the larger systems respectively.

Systems of practical significance would certainly have more than one carrier

frequency, so from this point of view, the third column in Table 7.1 is the most

important one, when making a decision about which scheme to adopt.

The table confirms that this decision cannot be made just once, independently of the

traffic mix. Namely, employing a scheme which is more complex to implement than

Best Fit, such as RPHSR, does not yield significant capacity improvements in the

range where only 10-50% of all customer arrivals are Half Rate (= 0.5 to 0.9). An

11.9% capacity improvement is recorded at a time when 90% of all arrivals are Half

Rate (= 0.1), and this for instance might be considered enough of a benefit to offset

the cost of implementing RPHSR over Best Fit. We now summarise the advantages

each scheme has over the other:

Best Fit

 Simpler to implement.

 No intracell handover affecting voice quality.

RPHSR

 More efficient in utilising network resources.

 Completely fair in terms of blocking probabilities.

Although the above points are reasonably self explanatory, it should be noted that the

most significant downfall of the Best Fit scheme is that it is very unfair, with full rate

calls suffering roughly twice the blocking probability of their half rate counterparts.

Nonetheless, each of the two schemes has the discussed advantages over the other,

and ultimately a dollar value can be assigned to each of these, in order to

economically rationalise the cost benefit comparison of implementing one scheme

over the other. This is an area for future study.

50

7.3 The Impact of Intracell Handover on Voice Quality

As discussed in Section 3, each of the Repacking family members would involve the

moving of a half rate customer's call from one slot to another, as necessitated by the

idea behind the repacking scheme. This moving is termed intracell handover, and

involves the customer being placed in a different slot either, (i) within the same

carrier frequency frame , or (ii) within a different carrier frequency frame.

Which of the two occurs is irrelevant, since both produce up to a 450 ms period

where voice is cut off (an audible click is often heard at such times). It is therefore of

great interest to the network operator, how badly the Repacking schemes affect the

voice quality of half rate calls. We now proceed to investigate the proportion of

repackings per carried half rate call for RRR, one of the two best Repacking schemes.

Note that each of the four Repacking schemes will behave approximately identically,

as far as intracell handover is concerned, so RRR is a representative sample of the

family of schemes (while being equal first in terms of efficiency). The investigation

is carried out at the optimised traffic levels which were obtained by maximising

for the RRR scheme (see Subsection 7.2).

Figure 7.15 Proportion of Repackings per Carried Half Rate Call for the RRR Scheme

51

The most important observation one can make from Figure 7.15 is that, for all three

system sizes, the proportion of carried half rate calls which are repacked is very

small, the worst case being 2.4%. As expected, the more half rate calls in the traffic

mix, the lower the probability of repack-prompting full rate call arrivals, and this is

evident in the curves for all three system sizes. On the other hand, the proportion of

repackings per carried half rate call, after an initial period of monotonic increase with

increasing , begins to again decline as approaches 1.0. This can be accounted for

by the fact that for close to 1.0, there is a smaller number of half rate calls in the

system, and hence the probability that full rate calls will arrive at an instant when the

frame has enough holes embedded in it to prompt a repacking, is significantly

decreased.

Interestingly, the more carrier frequencies in a system, the higher the proportion of

repacked half rate calls. This is explained by the fact that larger systems, with more

carriers, can accommodate a higher offered traffic per channel, for a given GOS.

There are three possible events which may take place upon a full rate call arrival: (1)

there is an empty slot available and it is allocated with no further action, (2) an empty

slot is not available but can be made available by repacking (intracell handover), and

(3) an empty slot is not available and can not be made available by repacking. With a

higher offered traffic per channel, the probability of Event (1) occurring upon a full

rate call arrival is lower.

Given that the GOS is maintained and given that in this analysis the system is

optimised to operate at the GOS, the probability of Event (3) occurring upon a full

rate call arrival is always bounded by the almost equalised probabilities of blocking

for the two traffic types (i.e. the GOS value of 2%). This is true because P(Blocking)1

 P(Blocking)2 for the RRR scheme at most traffic mixes. Hence the probability of

Event (2) increases and with it the number of intracell handovers, explaining the

higher proportion of half rate calls repacked in larger systems. Even with this in

mind, the conclusion which we can draw is that the Repacking family of schemes,

which are the most efficient, are almost negligibly affected by intracell handover-

related voice quality degradation.

7.4 Simplicity, Efficiency and Fairness Comparison

Table 7.2 provides a comprehensive comparison of all schemes, by focussing on the

three main criteria of simplicity, efficiency and fairness. Each scheme is awarded a

52

score out of ten, which is then summed in the last column, giving an overall score. If,

for example, RPHSR is the most efficient scheme, its score will be 10/10 for

efficiency, with all the other scores given relative to this mark. Note that the row of

scores for the First Fit scheme is based on an assumption that its efficiency

performance is somewhere in between that of the Random and Best Fit schemes.

Scheme Implementation

Simplicity

Fairness Efficiency Total

Random 8 3 3 14

First Fit 9 4 5 18

Best Fit 8 7 7 22

Repacking 5 7 9 21

RPR 4 8 7 19

RPHSR 4 10 10 24

RRR 3 9 10 22

Fixed Boundary 10 0 0 10

Sliding Boundary 9 0 0 9

Table 7.2: Scheme Comparison based on the Simplicity, Efficiency and Fairness

Criteria

It is immediately obvious that the RPHSR, RRR and Best Fit are the three best-

scoring schemes, in terms of the total. However, implementation simplicity is a

significant factor in any scheme consideration, and both Repacking schemes have

low scores in this respect, especially RRR (which is the most complex scheme to

implement, effectively ruling it out). It was therefore decided to single out a scheme

which scored well for simplicity, but also had a good overall score. The only such

scheme is Best Fit, and its row, along with the row for RPHSR has been shaded, so

as to denote that these two schemes are the ones most worthy of considering for

possible implementation in a real network.

Although the three components of the total score are weighted equally in the above

scheme comparison, there are cases for either fairness or simplicity to dominate the

other criteria. Namely, one could argue that fairness would have to be the most

important criterion since customers do not want to pay more for full rate handsets

which have better transmission quality, yet experience call blocking several orders of

magnitude worse than their cheaper half rate counterparts. On the other hand, it can

be argued that implementation simplicity is the limiting factor in any decision by

53

network operators about which schemes to implement. Schemes which are complex

are expensive both in the material sense of implementing them in the necessary

hardware, and also in the sense that they consume valuable processing time at either a

Mobile Switching Centre (MSC) or at a Base Station Site (BSS) responsible for the

call.

The decision on which criteria for comparing the nine schemes should be weighted

more than others ultimately lies with the network operator in conjunction with the

relevant telecommunications regulatory body (e.g. Austel in Australia).

54

8. CONCLUSIONS

This thesis has proposed a model for GSM resource management and considered

nine channel allocation schemes, with two types of traffic loading: full and half rate

calls. The performance of each scheme was determined, based upon the criteria of

efficiency, blocking probability equality for both types of user, as well as

implementation efficiency. Analytic numerical methods were used to investigate each

scheme's efficiency and blocking probability behaviour, and this was successfully

compared with simulation results.

Initially a preliminary study of blocking probability and efficiency was carried out for

each scheme. The framing structure adopted for this purpose was a generic eight slot

frame, without regard to multiple carrier frequencies or any reserved broadcast

channels. This study immediately eliminated the Fixed and Sliding boundary

schemes from further consideration, due to their extreme unfairness and inefficiency.

The idea behind the eight slot frame was then extended to a more realistic model of

GSM, by modelling n=2 and n=3 carrier frequency systems, made up of a reserved

control/signalling slot and 8n-1 user slots. At the expense of significantly increased

CPU resources (time, memory) it was still feasible to analytically evaluate the

blocking probability and efficiency of six of the nine schemes, (with the exceptions

being First Fit and the two already eliminated Fixed and Sliding Boundary schemes).

The results showed that all schemes considered, regardless of system size, perform

increasingly better with a higher proportion of half rate calls. It was also found that

the higher the proportion of half rate calls was, the larger was the capacity benefit

gained by employing more complex schemes. However, the capacity benefit gained

by employing the more efficient Repacking family of schemes was found to either

reduce with increasing system size, or to not significantly improve.

An overall comparison of the schemes taking into account all traffic mixes was

performed with special weight of importance paid to the system with three carrier

frequencies (as real network applications will certainly operate on multi-carrier

schemes). The comparison was done by way of awarding scores for the three above

mentioned criteria and obtaining a total.

55

The scheme with the highest overall total score was that of Repacking with Perpetual

Half Slot Reservation (RPHSR) as it achieved completely equal blocking

probabilities for half and full rate calls over a wide range of traffic mixes (total

fairness), and it achieved the best maximum customer capacity subject to a GOS

constraint (best efficiency). However, this scheme was not very simple to implement,

and because of this, was challenged by the Best Fit scheme, which ran a very close

second in the overall score. The Best Fit scheme was significantly simpler to

implement, with only slightly worse efficiency than RPHSR, and its only downfall

was that it did not assure equal blocking probability for both user types.

An important final note needs to be made in order to put these various issues into

perspective. As intuitively expected, the point where all the arrivals are half rate

calls, yields maximal capacity in terms of arrivals, for each scheme. Given the

enormous observed capacity benefit of having a network with 100% half rate

customers (see Figures 7.12 - 7.14), and keeping in mind that there would then be no

need for implementing any allocation scheme other than Random, the network

operators should make it a priority to perform economic evaluation studies in order to

ascertain whether it would be more profitable to simply upgrade all customers to half

rate handsets, thereby moving the network to this optimal state.

56

9. APPENDIX: C++ CODE LISTINGS

9.1 Simulation Programs

9.1.1 Random Scheme

/* Multirate Channel Allocation Simulation: Random Method ___________________________ 11/9/95 */

/* Note: This is the simulation, dealing with 8 Full Rate timeslots */

/*== */

/* Milosh V. Ivanovich , September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "rand_por.cc"

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

void HalfRateArrival(void); /* The jist of the program --> these perform all the tasks */

void HalfRateDeparture(void);

void FullRateArrival(void);

void FullRateDeparture(void);

void simulate_empty(void);

void simulate_halves(void);

void simulate_fulls(void);

void simulate_all(void);

/* Global Variables */

double l1[11],l2[11]; /* Arrays of average arrival rate for full and half rate calls */

double HalfBlocked[10][11], FullBlocked[10][11]; /* Arrays for full and half rate call blocking probability */

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11];

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11];

/* Counter vars. for the offered and lost full and half rate calls */

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */

int Halves = 0, Fulls = 0, IsolHalves = 0, k = 0;

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

57

Output Parameters: none.

Side-Effects: Keeps track of system state and depending on current state, calls the appropriate

 "simulate_xxxx" functions for different l1[k] and l2[k] values, records blocking

 probability plus confidence interval statistics in output data file (pointed to by

 **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

 

  unsigned long NumEvents, i;       /* Number of events that have occurred so far; i is a multi-purpose counter*/ 

           /* index           */ 

  int      seed, run;         /* Arbitrary seed for external RND NUM generator. The run var controls */ 

           /* the no. of times the simulation is performed for Conf. Int. purposes        */ 

  double   p1;          /* Proportion of full rate calls in traffic mix.      */ 

 

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

   /* check for output data file */ 

 if ((fp = fopen(argv[1], "w+t")) == NULL) { 

   fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

   exit(1); 

 } 

 

 /* printf("\n\n How many events to simulate ??  "); 

  scanf("%d", &NumEvents);                */  NumEvents = 10000000; 

  

 /* printf("\n\n Seed? --> "); 

  scanf("%d",&seed);     */  seed = 101; 

  Myrand.seed(seed);       

 

  for(run=0; run<10; run++) 

    

    for(k=0; k <= 10; k++) { 

     

       HalvesAttempted = FullsAttempted = HalvesLost = FullsLost         /* customary initilization */  

       = Halves = Fulls = IsolHalves = 0; 

    

      p1 = k * 0.1;      /* proportion of FULL RATE traffic    */ 

      l1[k] = 0.45*8*m1 * (2*p1/(p1 + 1));         /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu  */ 

      l2[k] = 2*(0.45*8*m1 - l1[k]);  /* is the average weighted arr. rate          */ 

 

printf("lambda1 = %g; lambda2 = %g ;overall A.R. = l1[k]+0.5*l2[k] = %g\n\n",l1[k],l2[k],(l1[k]+0.5*l2[k]));    

               

      for(i=0; i<NumEvents; i++) { 

  

         if ((Halves==0) && (Fulls==0))               /* This code calls up the appropriate event    */ 

          simulate_empty();      /* dependent on the given state of the system  */ 

         else if ((Halves>0) && (Fulls==0)) 

          simulate_halves(); 

         else if ((Halves==0) && (Fulls>0)) 

          simulate_fulls(); 

         else if ((Halves>0) && (Fulls>0)) 

          simulate_all(); 

         else { 



58 

          printf(" This shouldn't happen !!\n"); 

          exit(1);  

      } 

    } 

 

  HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted); 

  SumHB[k] += HalfBlocked[run][k]; 

  SumHB2[k] += pow(HalfBlocked[run][k],2); 

 

  FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted); 

  SumFB[k] += FullBlocked[run][k]; 

  SumFB2[k] += pow(FullBlocked[run][k],2); 

 

 /* printf(" The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

  printf("\n ---------------------------------------------------------------------"); 

  printf("\n\t\t\t\t     %lf             %lf           \n\n", FullBlocked[run][k], HalfBlocked[run][k]); 

  printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost, 

          FullsAttempted, FullsLost); */ 

  }  

 

  fprintf(fp, "RANDOM PACKING.   Events = %d.    Seed = %d.\n\n", NumEvents, seed); 

  fprintf(fp, "Lambda_tot  ;  Fulls Prop.  ;  HBlock  ;  Left_CI  ;  Right_CI  ;  FBlock  ;  Left_CI  ; "); 

  fprintf(fp, " Right_CI\n\n"); 

  

  /* Calculate Mean and 95% Confidence Intervals */ 

 

  for (k=0; k<=10; k++) { 

   MeanHB[k] = SumHB[k] / 10.0; 

   S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));  

   L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10); 

   L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10); 

 

   MeanFB[k] = SumFB[k] / 10.0;      

   S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2)); 

   L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10); 

   L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10); 

  

   fprintf(fp, "%5.4lf;  %5.4lf;  %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k), 

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]); 

    

  } 

 } 

 

/* Functions*/ 

/* TYPE OF ALLOCATION : RANDOM                                                  */ 

/*========================================================================*/ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  HalvesAttempted, Halves, IsolHalves and HalvesLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) {

 double x, LoneSlots, SharedSlots;

 HalvesAttempted++; /* Register the arrival/attempt */

59

 if (Halves + 2*Fulls < 16) {

 LoneSlots = double(16 - (2*Fulls + 2*IsolHalves + (Halves-IsolHalves)));

 SharedSlots = double(IsolHalves);

 x = Myrand.uniform(0,(LoneSlots+SharedSlots));

 if (x<LoneSlots) {

 IsolHalves++;

 Halves++;

 }

 else {

 IsolHalves--;

 Halves++;

 }

 }

 else

 HalvesLost += 1; /* There wasn't a single half-gap anywhere. Loss occurs. */

}

/*~~

Function: HalfRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Halves and IsolHalves are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) { 

 

    double x; 

 

    x = Myrand.uniform(0, double(Halves)); 

    if (x < double(IsolHalves)) { 

       Halves--; 

       IsolHalves--;  

    } 

    else { 

       Halves--; 

       IsolHalves++; 

    } 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  FullsAttempted, Fulls, and FullsLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) {

 FullsAttempted++; /* Register the arrival/attempt */

 if ((Halves-IsolHalves) + 2*Fulls + 2*IsolHalves < 16)

 Fulls++;

 else

 FullsLost += 1; /* There wasn't a single full-gap anywhere. Loss occurs. */

}

/*~~

Function: FullRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Fulls is decremented.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) { 

                 

      Fulls--;                    /* Nothing much else to do */ 



60 

} 

 

/* One of two, three or four events may occurr depending on the state the system is in   */ 

/* An event can either be the arrival of a Full OR Half rate call, or the departure   */ 

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that  */ 

/* when there are zero calls in the system, no departures can occurr, so we can only invoke  */ 

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number     */ 

/* limits [0,(l1[k]+l2[k])], and determine what has happened.      */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_empty 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]));

 if (X<l1[k])

 FullRateArrival();

 else

 HalfRateArrival();

}

/*~~

Function: simulate_halves

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival or

 HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2)); 

     if (X<l1[k])  

        FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        HalfRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_fulls 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 FullRateDeparture();

61

}

/*~~

Function: simulate_all

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 HalfRateArrival or HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1)) 

        FullRateDeparture(); 

     else  

        HalfRateDeparture(); 

} 



62 

9.1.2 First Fit Scheme 

 
/* Multirate Channel Allocation Simulation: First Fit Scheme_______________________________ 3/9/95 */ 

 

/* Note: This is the simulation dealing with 8 Full Rate timeslots        */ 

/* ======================================================================= */ 

 

/* Milosh V. Ivanovich , September 1995                          */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include "rand_port.cc"  

 

#define m1 0.333                         /* Avg. 3 min. holding time for both types of calls, as usual in telephony */ 

#define m2 0.333 

 

/* Prototypes */ 

 

void HalfRateArrival(void);  /* The jist of the program --> these perform all the tasks */ 

void HalfRateDeparture(void); 

void FullRateArrival(void); 

void FullRateDeparture(void); 

 

void simulate_empty(void);          

void simulate_halves(void); 

void simulate_fulls(void); 

void simulate_all(void); 

 

/* Global Variables */ 

 

double l1,l2;            /* The arrival rates, which will be varied ...                               */ 

int State[8] = {0}; /* Array displaying the state of each channel   */ 

   /* 0 - No calls; 1 - One half rate call; 2 - Two half  rate calls; 3 - One  full  */ 

   /* rate call.        */ 

 

int AvailHalves[16] = {0}; /* Arrays pointing to the locations in the frame where full or half rate */ 

int AvailFulls[8] = {0};  /* call departures could randomly occur.    */ 

 

double HalfBlocked[10][11], FullBlocked[10][11];     /* Arrays for full and half rate call blocking probability */ 

 

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */ 

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11]; 

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11]; 

 

/* Counter vars. for the offered and lost full and half rate calls */ 

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;              

 

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */ 

int Halves = 0, Fulls = 0, k =0;  

FILE    *fp;           /* File pointer to output data file */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  main 

Input Parameters: int argc - Number of command line arguments. 

   char **argv - pointer to command line argument string (the datafile string). 



63 

Output Parameters: none. 

Side-Effects:  Keeps track of system state and depending on current state, calls the appropriate  

  "simulate_xxxx"  functions for different l1[k] and l2[k] values, records blocking   

 probability plus confidence interval statistics in output data file (pointed to by    

 **argv). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) {

 unsigned long NumEvents, i; /* Number of events that have occurred so far; i is a multi-purpose counter*/

 /* index */

 int seed, run; /* Arbitrary seed for external RND NUM generator. The run var controls */

 /* the no. of times the simulation is performed for Conf. Int. purposes */

 double p1; /* Proportion of full rate calls in traffic mix. */

 /* check command line arguments */

 if (argc != 2) {

 printf("Usage: %s data_file\n", argv[0]);

 exit(1);

 }

 /* check for output data file */

 if ((fp = fopen(argv[1], "w+t")) == NULL) {

 fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]);

 exit(1);

 }

 /* printf("\n\n How many events to simulate ?? ");

 scanf("%d", &NumEvents); */ NumEvents = 10000000;

 /* printf("\n\n Seed? --> ");

 scanf("%d",&seed); */ seed = 101;

 Myrand.seed(seed);

 for(run=0; run < 10; run++)

 for(k=0; k <= 10; k++) {

 HalvesAttempted = FullsAttempted = HalvesLost = FullsLost /* customary initilization */

 = Halves = Fulls = 0;

 for(x=0; x < 8; x++) {

 State[x] = 0;

 AvailFulls[x] = 0;

 AvailHalves[x] = 0; AvailHalves[(2*x + 1)] = 0;

 }

 p1 = k * 0.1; /* proportion of FULL RATE traffic */

 l1 = 0.4*8*m1 * (2*p1/(p1 + 1)); /* arbitrary off. traffic per ch. of 0.4, hence 0.4*8*mu */

 l2 = 2*(0.4*8*m1 - l1); /* is the average weighted arr. rate */

 printf("lambda1 = %g ; lambda2 = %g ; overall A.R. = l1+0.5*l2 = %g\n\n", l1,l2,(l1+0.5*l2));

 for(i=0; i<NumEvents; i++) {

 if ((Halves==0) && (Fulls==0)) /* This code calls up the appropriate event */

 simulate_empty(); /* dependent on the given state of the system */

 else if ((Halves>0) && (Fulls==0))

64

 simulate_halves();

 else if ((Halves==0) && (Fulls>0))

 simulate_fulls();

 else if ((Halves>0) && (Fulls>0))

 simulate_all();

 else {

 printf(" This shouldn't happen !!\n");

 exit(1);

 }

 }

 HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted);

 SumHB[k] += HalfBlocked[run][k];

 SumHB2[k] += pow(HalfBlocked[run][k],2);

 FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted);

 SumFB[k] += FullBlocked[run][k];

 SumFB2[k] += pow(FullBlocked[run][k],2);

/* printf("\n\n The Probability of Blocking is: Full Rate Calls Half Rate Calls ");

 printf("\n ---");

 printf("\n\t\t\t\t %lf %lf \n\n", FullBlocked[run][k], HalfBlocked[run][k]); */

 }

 fprintf(fp, "FIRST FIT. Events = %d. Seed = %d.\n\n", NumEvents, seed);

/* Calculate Mean and 95% Confidence Intervals */

 for (k=0; k<=10; k++) {

 MeanHB[k] = SumHB[k] / 10.0;

 S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));

 L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10);

 L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10);

 MeanFB[k] = SumFB[k] / 10.0;

 S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2));

 L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10);

 L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10);

 fprintf(fp, "%g\t %g\t %g\t %g\t %g %g\n", MeanHB[k],

 L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]);

 }

}

/* Functions */

/* TYPE OF ALLOCATION : FIRST FIT */

/*===*/

/*~~

Function: HalfRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: HalvesAttempted, State[i],. Halves, and HalvesLost modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) { 

 

    int i,NoGap=0;          /* counter and index variables */ 

    HalvesAttempted++;  /* Register the arrival/attempt */ 

    for (i=0; i<8; i++) {  /* First, work out which slots are free */ 



65 

       if (State[i] < 2) { 

         Halves++; 

         State[i] += 1; 

         break; 

       }    

       else 

         NoGap++;       

   } 

   if (NoGap == 8) 

      HalvesLost += 1;        /* There wasn't a single half-gap anywhere. Loss occurs.   */   

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  State[i],. and Halves modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) {

 int i,j,RandNum,Selected; /* counter and index variables */

 for(i=0,j=0; i<8; i++) { /* First, work out which slots are eligible for HR depart.. */

 if (State[i] == 2) {

 AvailHalves[j] = 2*i;

 j++;

 AvailHalves[j] = 2*i + 1;

 j++;

 }

 else if (State[i] == 1) {

 AvailHalves[j] = 2*i;

 j++;

 }

 }

 RandNum = Myrand.uniformInt(0,(j-1)); /* Second, have a "lottery" from which one of the available */

 Selected = AvailHalves[RandNum]; /* half rate channels departs */

 State[(Selected/2)] -= 1;

 Halves--;

}

/*~~

Function: FullRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: FullsAttempted, State[i],. Fulls, and FullsLost modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) { 

 

    int i, NoGap = 0;                       /* counter and index variables */ 

    FullsAttempted++;               /* Register the arrival/attempt */ 

    for(i=0; i<8; i++) {       /* Place in leftmost free FULL slot */ 

       if (State[i] == 0) { 

   Fulls++;           

          State[i] = 3; 

          break; 

       }  

       else 

          NoGap++;                                             

    } 

    if (NoGap == 8) 

     FullsLost += 1;       /* There wasn't a single half-gap anywhere. Loss occurs.   */      



66 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  State[i] and Fulls modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) {

 int i,j,RandNum,Selected; /* counter and index variables */

 for(i=0,j=0; i<8; i++) /* First, work out which slots are eligible for FR departure ... */

 if (State[i] == 3) {

 AvailFulls[j] = i;

 j++;

 }

 RandNum = Myrand.uniformInt(0,(j-1)); /* Second, have a "lottery" from which one of the available */

 Selected = AvailFulls[RandNum]; /* full rate channels departs. */

 State[Selected] = 0;

 Fulls--;

}

/* One of two, three or four events may occurr depending on the state the system is in */

/* An event can either be the arrival of a Full OR Half rate call, or the departure */

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that */

/* when there are zero calls in the system, no departures can occurr, so we can only invoke */

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number */

/* limits [0,(l1+l2)], and determine what has happened. */

/*~~

Function: simulate_empty

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) { 

 

    double   X; 

    X = Myrand.uniform(0,(l1+l2)); 

    if (X<l1)  

       FullRateArrival(); 

    else 

       HalfRateArrival();      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_halves 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival  or  

  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) {

 double X;

 X = Myrand.uniform(0,(l1+l2+Halves*m2));

 if (X<l1)

 FullRateArrival();

 else if ((X>=l1)&&(X<l1+l2))

 HalfRateArrival();

 else

 HalfRateDeparture();

67

}

/*~~

Function: simulate_fulls

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture or

 HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1+l2+Fulls*m1)); 

     if (X<l1)  

         FullRateArrival(); 

     else if ((X>=l1)&&(X<l1+l2))  

 HalfRateArrival();  

     else  

        FullRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_all 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  HalfRateArrival  or  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) {

 double X;

 X = Myrand.uniform(0,(l1+l2+Fulls*m1+Halves*m2));

 if (X<l1)

 FullRateArrival();

 else if ((X>=l1)&&(X<l1+l2))

 HalfRateArrival();

 else if ((X>=l1+l2)&&(X<l1+l2+Fulls*m1))

 FullRateDeparture();

 else

 HalfRateDeparture();

}

68

9.1.3 Best Fit Scheme

/* Multirate Channel Allocation Simulation: Best Fit Scheme __________________ 11/9/95 */

/* Note: This is the simulation dealing with 8 Full Rate timeslots */

/*=== */

/* Milosh V. Ivanovich , September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "rand_por.cc"

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

void HalfRateArrival(void); /* The jist of the program --> these perform all the tasks */

void HalfRateDeparture(void);

void FullRateArrival(void);

void FullRateDeparture(void);

void simulate_empty(void);

void simulate_halves(void);

void simulate_fulls(void);

void simulate_all(void);

/* Global Variables */

double l1[11],l2[11]; /* Arrays of average arrival rate for full and half rate calls */

double HalfBlocked[10][11], FullBlocked[10][11]; /* Arrays for full and half rate call blocking probability */

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11];

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11];

/* Counter vars. for the offered and lost full and half rate calls */

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */

int k, Halves = 0, Fulls = 0, IsolHalves = 0;

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: Keeps track of system state and depending on current state, calls the appropriate

 "simulate_xxxx" functions for different l1[k] and l2[k] values, records blocking

69

 probability plus confidence interval statistics in output data file (pointed to by

 **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

 

unsigned long NumEvents, i;       /* Number of events that have occurred so far; i is a multi-purpose counter*/ 

           /* index           */ 

  int      seed, run;         /* Arbitrary seed for external RND NUM generator. The run var controls */ 

           /* the no. of times the simulation is performed for Conf. Int. purposes        */ 

  double   p1;          /* Proportion of full rate calls in traffic mix.      */ 

   

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

   /* check for output data file */ 

 if ((fp = fopen(argv[1], "w+t")) == NULL) { 

   fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

   exit(1); 

 } 

 

  /*printf("\n\n How many events to simulate ??  "); 

  scanf("%d", &NumEvents);                */ NumEvents = 10000000; 

  

 /* printf("\n\n Seed? --> "); 

  scanf("%d",&seed);               */    seed = 101; 

  Myrand.seed(seed);       

 

  for(run=0; run<10; run++)   

 

    for(k=0; k <= 10; k++) { 

     

      HalvesAttempted = FullsAttempted = HalvesLost = FullsLost         /* customary initilization */  

      = Halves = Fulls = IsolHalves = 0; 

    

      p1 = k * 0.1;              /* proportion of FULL RATE traffic   */ 

      l1[k] = 0.45*8*m1 * (2*p1/(p1 + 1));     /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu  */ 

      l2[k] = 2*(0.45*8*m1 - l1[k]);            /* is the average weighted arr. rate    */ 

 

printf("lambda1 = %g  ;  lambda2 = %g  ;  overall A.R. = l1+0.5*l2 = %g\n\n", l1[k],l2[k],(l1[k]+0.5*l2[k])); 

               

      for(i=0; i<NumEvents; i++) { 

 

  if ((Halves==0) && (Fulls==0))           /* This code calls up the appropriate event    */ 

   simulate_empty();     /* dependent on the given state of the system  */ 

  else if ((Halves>0) && (Fulls==0)) 

   simulate_halves(); 

  else if ((Halves==0) && (Fulls>0)) 

   simulate_fulls(); 

  else if ((Halves>0) && (Fulls>0)) 

   simulate_all(); 

  else { 

   printf(" This shouldn't happen !!\n"); 

   exit(1); 

 } 



70 

      } 

 

  HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted); 

  SumHB[k] += HalfBlocked[run][k]; 

  SumHB2[k] += pow(HalfBlocked[run][k],2); 

 

  FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted); 

  SumFB[k] += FullBlocked[run][k]; 

  SumFB2[k] += pow(FullBlocked[run][k],2);   

 

/*  printf(" The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

  printf("\n ---------------------------------------------------------------------"); 

  printf("\n\t\t\t\t     %lf             %lf           \n\n", FullBlocked[run][k], HalfBlocked[run][k]); 

  printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost, 

          FullsAttempted, FullsLost); */ 

  } 

   

  fprintf(fp, "BEST FIT.   Events = %d.    Seed = %d.\n", NumEvents, seed); 

  fprintf(fp, "Lambda_tot  ;  Fulls Prop.  ;  HBlock  ;  Left_CI  ;  Right_CI  ;  FBlock  ;  Left_CI  ; "); 

  fprintf(fp, " Right_CI\n\n"); 

 

  /* Calculate Mean and 95% Confidence Intervals */ 

 

  for (k=0; k<=10; k++) { 

   MeanHB[k] = SumHB[k] / 10.0; 

   S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));  

   L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10); 

   L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10); 

 

   MeanFB[k] = SumFB[k] / 10.0;      

   S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2)); 

   L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10); 

   L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10); 

  

     

   fprintf(fp, "%5.4lf;  %5.4lf;  %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k), 

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]); 

  } 

 }    

 

/* Functions */ 

/* TYPE OF ALLOCATION : BEST FIT ( Using States)                                               */ 

/*===========================================================================*/ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  HalvesAttempted, Halves, IsolHalves and HalvesLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) {

 HalvesAttempted++; /* Register the arrival/attempt */

 if (Halves + 2*Fulls < 16) {

 if (IsolHalves == 0) {

 IsolHalves++;

 Halves++;

71

 }

 else {

 IsolHalves--;

 Halves++;

 }

 }

 else

 HalvesLost += 1; /* There wasn't a single half-gap anywhere. Loss occurs. */

}

/*~~

Function: HalfRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Halves and IsolHalves are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) { 

 

    double x; 

    x = Myrand.uniform(0, double(Halves)); 

    if (x < double(IsolHalves)) { 

       Halves--; 

       IsolHalves--;  

    } 

    else { 

       Halves--; 

       IsolHalves++; 

    } 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  FullsAttempted, Fulls, and FullsLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) {

 FullsAttempted++; /* Register the arrival/attempt */

 if ((Halves-IsolHalves) + 2*Fulls + 2*IsolHalves < 16)

 Fulls++;

 else

 FullsLost += 1; /* There wasn't a single full-gap anywhere. Loss occurs. */

}

/*~~

Function: FullRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Fulls is decremented.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) { 

                 

      Fulls--;                        /* Nothing much else to do */ 

} 

 

/* One of two, three or four events may occurr depending on the state the system is in   */ 

/* An event can either be the arrival of a Full OR Half rate call, or the departure   */ 

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that  */ 

/* when there are zero calls in the system, no departures can occurr, so we can only invoke  */ 

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number           */ 

/* limits [0,(l1+l2)], and determines what has happened.      */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



72 

Function:  simulate_empty 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]));

 if (X<l1[k])

 FullRateArrival();

 else

 HalfRateArrival();

}

/*~~

Function: simulate_halves

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival or

 HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) { 

 

     double   X; 

 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2)); 

     if (X<l1[k])  

        FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        HalfRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_fulls 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 FullRateDeparture();

}

/*~~

Function: simulate_all

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 HalfRateArrival or HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) { 



73 

 

     double   X; 

 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1)) 

        FullRateDeparture(); 

     else  

        HalfRateDeparture(); 

} 



74 

9.1.4 Repacking Scheme 

 
/* Multirate Channel Allocation Simulation: Repacking Scheme ________________ 11/9/95             */ 

 

/* Note: This is the simulation dealing with 8 Full Rate timeslots      */ 

/* ========================================================================== */ 

 

/* Milosh V. Ivanovich , September 1995                       */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include "rand_por.cc" 

 

#define m1 0.333                         /* Avg. 3 min. holding time for both types of calls, as usual in telephony */ 

#define m2 0.333 

 

/* Prototypes */ 

 

void HalfRateArrival(void);  /* The jist of the program --> these perform all the tasks */ 

void HalfRateDeparture(void); 

void FullRateArrival(void); 

void FullRateDeparture(void); 

 

void simulate_empty(void);          

void simulate_halves(void); 

void simulate_fulls(void); 

void simulate_all(void); 

 

/* Global Variables */ 

 

double l1[11],l2[11];               /* Arrays of average arrival rate for full and half rate calls */ 

 

double HalfBlocked[10][11], FullBlocked[10][11];     /* Arrays for full and half rate call blocking probability */ 

 

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */ 

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11]; 

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11]; 

 

/* Counter vars. for the offered and lost full and half rate calls */ 

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;              

 

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */ 

int k, Halves = 0, Fulls = 0;  

FILE    *fp;           /* File pointer to output data file */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  main 

Input Parameters: int argc - Number of command line arguments. 

   char **argv - pointer to command line argument string (the datafile string). 

Output Parameters: none. 

Side-Effects:  Keeps track of system state and depending on current state, calls the appropriate  

  "simulate_xxxx"  functions for different l1[k] and l2[k] values, records blocking   

 probability plus confidence interval statistics in output data file (pointed to by    

 **argv). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 


75

void main(int argc, char **argv) {

 unsigned long NumEvents, i; /* Number of events that have occurred so far; i is a multi-purpose counter*/

 /* index */

 int seed, run; /* Arbitrary seed for external RND NUM generator. The run var controls */

 /* the no. of times the simulation is performed for Conf. Int. purposes */

 double p1; /* Proportion of full rate calls in traffic mix. */

 /* check command line arguments */

 if (argc != 2) {

 printf("Usage: %s data_file\n", argv[0]);

 exit(1);

 }

 /* check for output data file */

 if ((fp = fopen(argv[1], "w+t")) == NULL) {

 fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]);

 exit(1);

 }

 /* printf("\n\n How many events to simulate ?? ");

 scanf("%d", &NumEvents); */ NumEvents = 10000000;

 /* printf("\n\n Seed? --> ");

 scanf("%d",&seed); */ seed = 101;

 Myrand.seed(seed);

 for(run=0; run<10; run++)

 for(k=0; k <= 10; k++) {

 HalvesAttempted = FullsAttempted = HalvesLost = FullsLost /* customary initilization */

 = Halves = Fulls = 0;

 p1 = k * 0.1; /* proportion of FULL RATE traffic */

 l1[k] = 0.45*8*m1 * (2*p1/(p1 + 1)); /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu */

 l2[k] = 2*(0.45*8*m1 - l1[k]); /* is the average weighted arr. rate */

printf("lambda1 = %g ; lambda2 = %g ; overall A.R. = l1[k]+0.5*l2[k] = %g\n", l1[k],l2[k],(l1[k]+0.5*l2[k]));

fprintf(fp,"lambda1 = %g ; lambda2 = %g ; check total A.R. = l1[k]+l2[k] = %g\n\n",l1[k],l2[k],(l1[k]+l2[k]));

 for(i=0; i<NumEvents; i++) {

 if ((Halves==0) && (Fulls==0)) /* This code calls up the appropriate event */

 simulate_empty(); /* dependent on the given state of the system */

 else if ((Halves>0) && (Fulls==0))

 simulate_halves();

 else if ((Halves==0) && (Fulls>0))

 simulate_fulls();

 else if ((Halves>0) && (Fulls>0))

 simulate_all();

 else {

 printf(" This shouldn't happen !!\n");

 exit(1);

 }

 }

76

 HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted);

 SumHB[k] += HalfBlocked[run][k];

 SumHB2[k] += pow(HalfBlocked[run][k],2);

 FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted);

 SumFB[k] += FullBlocked[run][k];

 SumFB2[k] += pow(FullBlocked[run][k],2);

 printf("\n\n The Probability of Blocking is: Full Rate Calls Half Rate Calls ");

 printf("\n ---");

 printf("\n\t\t\t\t %lf %lf \n", FullBlocked[k], HalfBlocked[k]);

 printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost,

 FullsAttempted, FullsLost);

 }

 fprintf(fp, "PURE REPACKING. Events = %d. Seed = %d.\n", NumEvents, seed);

 fprintf(fp, "Lambda_tot ; Fulls Prop. ; HBlock ; Left_CI ; Right_CI ; FBlock ; Left_CI ; ");

 fprintf(fp, " Right_CI\n\n");

 /* Calculate Mean and 95% Confidence Intervals */

 for (k=0; k<=10; k++) {

 MeanHB[k] = SumHB[k] / 10.0;

 S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));

 L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10);

 L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10);

 MeanFB[k] = SumFB[k] / 10.0;

 S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2));

 L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10);

 L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10);

 fprintf(fp, "%5.4lf; %5.4lf; %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k),

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]);

 }

}

/* Functions */

/* TYPE OF ALLOCATION : REPACKING */

/*===*/

/*~~

Function: HalfRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: HalvesAttempted, Halves, and HalvesLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) { 

 

    HalvesAttempted++;  /* Register the arrival/attempt */ 

    

    if (Halves + 2*Fulls < 16)  

           Halves++;     

    else 

      HalvesLost += 1;  /* There wasn't a single half-gap anywhere. Loss occurs.   */         

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateDeparture 



77 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  Halves is decremented. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) {

 Halves--; /* Nothing much else to do */

}

/*~~

Function: FullRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: FullsAttempted, Fulls, and FullsLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) { 

 

   FullsAttempted++;  /* Register the arrival/attempt */                                                    

   if (Halves + 2*Fulls < 15)  

      Fulls++;          

   else 

      FullsLost += 1;  /* There wasn't a single full-gap anywhere. Loss occurs.   */      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  Fulls is decremented. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) {

 Fulls--; /* Nothing much else to do */

}

/* One of two, three or four events may occurr depending on the state the system is in */

/* An event can either be the arrival of a Full OR Half rate call, or the departure */

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that */

/* when there are zero calls in the system, no departures can occurr, so we can only invoke */

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number */

/* limits [0,(l1[k]+l2[k])], and determine what has happened. */

/*~~

Function: simulate_empty

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) { 

 

    double   X; 

    X = Myrand.uniform(0,(l1[k]+l2[k])); 

    if (X<l1[k])  

       FullRateArrival(); 

    else 

       HalfRateArrival();      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_halves 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival  or   

  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) {

78

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 HalfRateDeparture();

}

/*~~

Function: simulate_fulls

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        FullRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_all 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  HalfRateArrival  or  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1))

 FullRateDeparture();

 else

 HalfRateDeparture();

}

79

9.1.5 RPR Scheme

/* Multirate Channel Allocation Simulation: Repacking with Perpetual Reservation Scheme_ 11/9/95 */

/* Note: This is the simulation, dealing with 8 Full Rate channel slots */

/* === */

/* Milosh V. Ivanovich , September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "rand_por.cc"

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

void HalfRateArrival(void); /* The jist of the program --> these perform all the tasks */

void HalfRateDeparture(void);

void FullRateArrival(void);

void FullRateDeparture(void);

void simulate_empty(void);

void simulate_halves(void);

void simulate_fulls(void);

void simulate_all(void);

/* Global Variables */

double l1[11],l2[11]; /* The arrival rates, which will be varied ... */

double HalfBlocked[10][11], FullBlocked[10][11]; /* Arrays for full and half rate call blocking probability */

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11];

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11];

/* Counter vars. for the offered and lost full and half rate calls */

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */

int k, Halves = 0, Fulls = 0;

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: Keeps track of system state and depending on current state, calls the appropriate

 "simulate_xxxx" functions for different l1[k] and l2[k] values, records blocking

 probability plus confidence interval statistics in output data file (pointed to by

 **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 



80 

void main(int argc, char **argv) { 

 

  unsigned long NumEvents, i;       /* Number of events that have occurred so far; i is a multi-purpose counter*/ 

           /* index           */ 

  int      seed, run;         /* Arbitrary seed for external RND NUM generator. The run var controls */ 

           /* the no. of times the simulation is performed for Conf. Int. purposes        */ 

  double   p1;          /* Proportion of full rate calls in traffic mix.      */ 

 

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

  /* check for output data file */ 

      if ((fp = fopen(argv[1], "w+t")) == NULL) { 

        fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

 exit(1); 

      } 

 

 /* printf("\n\n How many events to simulate ??  "); 

  scanf("%d", &NumEvents); */    NumEvents = 10000000; 

  

 /* printf("\n\n Seed? --> "); 

  scanf("%d",&seed);    */    seed = 101; 

  Myrand.seed(seed);  

 

  for(run=0;run < 10; run++) 

 

    for(k=0; k <= 10; k++) { 

     

      HalvesAttempted = FullsAttempted = HalvesLost = FullsLost         /* customary initilization */  

      = Halves = Fulls = 0; 

    

      p1 = k * 0.1;           /* proportion of FULL RATE traffic  */ 

      l1[k] = 0.45*8*m1 * (2*p1/(p1 + 1));     /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu  */        

      l2[k] = 2*(0.45*8*m1 - l1[k]);         /* is the average weighted arr. rate  */ 

 

printf("lambda1 = %g  ;  lambda2 = %g  ;  overall A.R. = l1[k]+0.5*l2[k] = %g\n", l1[k],l2[k],(l1[k]+0.5*l2[k])); 

               

    for(i=0; i<NumEvents; i++) { 

 

       if ((Halves==0) && (Fulls==0))               /* This code calls up the appropriate event    */ 

        simulate_empty();        /* dependent on the given state of the system  */ 

       else if ((Halves>0) && (Fulls==0)) 

        simulate_halves(); 

       else if ((Halves==0) && (Fulls>0)) 

        simulate_fulls(); 

       else if ((Halves>0) && (Fulls>0)) 

        simulate_all(); 

       else { 

        printf(" This shouldn't happen !!\n"); 

        exit(1);  

      } 

    } 

 

  HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted); 



81 

  SumHB[k] += HalfBlocked[run][k]; 

  SumHB2[k] += pow(HalfBlocked[run][k],2); 

 

  FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted); 

  SumFB[k] += FullBlocked[run][k]; 

  SumFB2[k] += pow(FullBlocked[run][k],2);  

 

 printf("\n\n The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

  printf("\n ---------------------------------------------------------------------"); 

  printf("\n\t\t\t\t     %lf             %lf           \n", FullBlocked[run][k], HalfBlocked[run][k]); 

  printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost, 

          FullsAttempted, FullsLost);  

 }  

 

  fprintf(fp, "REPACKING.   Events = %d.    Seed = %d.\n\n", NumEvents, seed); 

  fprintf(fp, "Lambda_tot  ;  Fulls Prop.  ;  HBlock  ;  Left_CI  ;  Right_CI  ;  FBlock  ;  Left_CI  ; "); 

  fprintf(fp, " Right_CI\n\n"); 

 

  /* Calculate Mean and 95% Confidence Intervals */ 

 

  for (k=0; k<=10; k++) { 

    MeanHB[k] = SumHB[k] / 10.0; 

    S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));  

    L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10); 

    L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10); 

 

    MeanFB[k] = SumFB[k] / 10.0;      

    S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2)); 

    L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10); 

    L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10); 

  

   fprintf(fp, "%5.4lf;  %5.4lf;  %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k), 

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]); 

   } 

 } 

    

/* Functions */ 

/* TYPE OF ALLOCATION : REPACKING WITH PERPETUAL (FULL-SLOT) RESERVATION              */ 

/*===========================================================================*/ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  HalvesAttempted, Halves, and HalvesLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) {

 HalvesAttempted++; /* Register the arrival/attempt */

 if (Halves + 2*Fulls < 14)

 Halves++;

 else

 HalvesLost += 1; /* There wasn't a single half-gap anywhere. Loss occurs. */

}

/*~~

Function: HalfRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Halves is decremented.

82

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) { 

 

     Halves--;    /* Nothing much else to do */ 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  FullsAttempted, Fulls, and FullsLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) {

 FullsAttempted++; /* Register the arrival/attempt */

 if (Halves + 2*Fulls < 15)

 Fulls++;

 else

 FullsLost += 1; /* There wasn't a single full-gap anywhere. Loss occurs. */

}

/*~~

Function: FullRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Fulls are decremented.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) { 

                 

      Fulls--;                    /* Nothing much else to do */ 

} 

 

/* One of two, three or four events may occurr depending on the state the system is in   */ 

/* An event can either be the arrival of a Full OR Half rate call, or the departure   */ 

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that  */ 

/* when there are zero calls in the system, no departures can occurr, so we can only invoke  */ 

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number           */ 

/* limits [0,(l1[k]+l2[k])], and determine what has happened.      */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_empty 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]));

 if (X<l1[k])

 FullRateArrival();

 else

 HalfRateArrival();

}

/*~~

Function: simulate_halves

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival or

 HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) { 

 



83 

     double   X; 

 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2)); 

     if (X<l1[k])  

        FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        HalfRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_fulls 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture or  

  HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 FullRateDeparture();

}

/*~~

Function: simulate_all

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 HalfRateArrival or HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1)) 

        FullRateDeparture(); 

     else  

        HalfRateDeparture(); 

} 



84 

9.1.6 RPHSR Scheme 

 
/* Multirate Channel Allocation Sim.: Repacking with Perpetual Half Slot Reservation Scheme 11/10/95      */ 

 

/* Note: This is the simulation,  dealing with 8 Full Rate channel slots                   */ 

/*  ========================================================================== */ 

 

/* Milosh V. Ivanovich , September 1995                   */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include "rand_por.cc"  

 

#define m1 0.333                      /* Avg. 3 min. holding time for both types of calls, as usual in telephony */ 

#define m2 0.333 

 

/* Prototypes */ 

 

void HalfRateArrival(void);  /* The jist of the program --> these perform all the tasks */ 

void HalfRateDeparture(void); 

void FullRateArrival(void); 

void FullRateDeparture(void); 

 

void simulate_empty(void);          

void simulate_halves(void); 

void simulate_fulls(void); 

void simulate_all(void); 

 

/* Global Variables */ 

 

double l1[11],l2[11];             /* Arrays of average arrival rate for full and half rate calls */ 

 

double HalfBlocked[10][11], FullBlocked[10][11]; /* Arrays for full and half rate call blocking probability */ 

 

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */ 

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11]; 

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11]; 

 

/* Counter vars. for the offered and lost full and half rate calls */ 

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;              

 

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */ 

int k, Halves = 0, Fulls = 0; 

FILE    *fp;           /* File pointer to output data file */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  main 

Input Parameters: int argc - Number of command line arguments. 

   char **argv - pointer to command line argument string (the datafile string). 

Output Parameters: none. 

Side-Effects:  Keeps track of system state and depending on current state, calls the appropriate  

  "simulate_xxxx"  functions for different l1[k] and l2[k] values, records blocking   

 probability plus confidence interval statistics in output data file (pointed to by    

 **argv). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 


85

void main(int argc, char **argv) {

 unsigned long NumEvents, i; /* Number of events that have occurred so far; i is a multi-purpose counter*/

 /* index */

 int seed, run; /* Arbitrary seed for external RND NUM generator. The run var controls */

 /* the no. of times the simulation is performed for Conf. Int. purposes */

 double p1; /* Proportion of full rate calls in traffic mix. */

 /* check command line arguments */

 if (argc != 2) {

 printf("Usage: %s data_file\n", argv[0]);

 exit(1);

 }

 /* check for output data file */

 if ((fp = fopen(argv[1], "w+t")) == NULL) {

 fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]);

 exit(1);

 }

 /* printf("\n\n How many events to simulate ?? ");

 scanf("%d", &NumEvents); */ NumEvents = 10000000;

 /* printf("\n\n Seed? --> ");

 scanf("%d",&seed); */ seed = 101;

 Myrand.seed(seed);

 for(run=0;run < 10; run++)

 for(k=0; k <= 10; k++) {

 HalvesAttempted = FullsAttempted = HalvesLost = FullsLost /* customary initilization */

 = Halves = Fulls = 0;

 p1 = k * 0.1; /* proportion of FULL RATE traffic */

 l1[k] = 0.40*8*m1 * (2*p1/(p1 + 1)); /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu */

 l2[k] = 2*(0.40*8*m1 - l1[k]); /* is the average weighted arr. rate */

printf("lambda1 = %g ; lambda2 = %g ; overall A.R. = l1[k]+0.5*l2[k] = %g\n", l1[k],l2[k],(l1[k]+0.5*l2[k]));

 for(i=0; i<NumEvents; i++) {

 if ((Halves==0) && (Fulls==0)) /* This code calls up the appropriate event */

 simulate_empty(); /* dependent on the given state of the system */

 else if ((Halves>0) && (Fulls==0))

 simulate_halves();

 else if ((Halves==0) && (Fulls>0))

 simulate_fulls();

 else if ((Halves>0) && (Fulls>0))

 simulate_all();

 else {

 printf(" This shouldn't happen !!\n");

 exit(1);

 }

 }

 HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted);

86

 SumHB[k] += HalfBlocked[run][k];

 SumHB2[k] += pow(HalfBlocked[run][k],2);

 FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted);

 SumFB[k] += FullBlocked[run][k];

 SumFB2[k] += pow(FullBlocked[run][k],2);

/* printf("\n\n The Probability of Blocking is: Full Rate Calls Half Rate Calls ");

 printf("\n ---");

 printf("\n\t\t\t\t %lf %lf \n", FullBlocked[run][k], HalfBlocked[run][k]);

 printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost,

 FullsAttempted, FullsLost); */

 }

 fprintf(fp, "REPACKING WITH PERP. HS. RESERVATION. Rho = 0.40 ; Events = %d. Seed = %d.\n\n",

NumEvents, seed);

 fprintf(fp, "Lambda_tot ; Fulls Prop. ; HBlock ; Left_CI ; Right_CI ; FBlock ; Left_CI ; ");

 fprintf(fp, " Right_CI\n\n");

 /* Calculate Mean and 95% Confidence Intervals */

 for (k=0; k<=10; k++) {

 MeanHB[k] = SumHB[k] / 10.0;

 S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));

 L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10);

 L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10);

 MeanFB[k] = SumFB[k] / 10.0;

 S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2));

 L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10);

 L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10);

 fprintf(fp, "%5.4lf; %5.4lf; %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k),

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]);

 }

 }

/* Functions */

/* TYPE OF ALLOCATION : REPACKING WITH PERPETUAL (HALF-SLOT) RESERVATION */

/*===*/

/*~~

Function: HalfRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: HalvesAttempted, Halves, and HalvesLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) { 

 

    HalvesAttempted++;  /* Register the arrival/attempt */ 

    

    if (Halves + 2*Fulls < 15)  

           Halves++; 

   else 

      HalvesLost += 1;  /* There wasn't a single half-gap anywhere. Loss occurs.   */         

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateDeparture 

Input Parameters: none.    Output Parameters: none. 



87 

Side-Effects:  Halves is decremented. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) {

 Halves--; /* Nothing much else to do */

}

/*~~

Function: FullRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: FullsAttempted, Fulls, and FullsLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) { 

 

   FullsAttempted++;  /* Register the arrival/attempt */                                                    

   if (Halves + 2*Fulls < 15)  

      Fulls++;          

   else 

      FullsLost += 1;  /* There wasn't a single full-gap anywhere. Loss occurs.   */      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  Fulls is decremented. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) {

 Fulls--; /* Nothing much else to do */

}

/* One of two, three or four events may occurr depending on the state the system is in */

/* An event can either be the arrival of a Full OR Half rate call, or the departure */

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that */

/* when there are zero calls in the system, no departures can occurr, so we can only invoke */

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number */

/* limits [0,(l1[k]+l2[k])], and determine what has happened. */

/*~~

Function: simulate_empty

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) { 

 

    double   X; 

    X = Myrand.uniform(0,(l1[k]+l2[k])); 

    if (X<l1[k])  

       FullRateArrival(); 

    else 

       HalfRateArrival();      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_halves 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival  or   

  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) {

88

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 HalfRateDeparture();

}

/*~~

Function: simulate_fulls

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture

 or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        FullRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_all 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  HalfRateArrival  or  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1))

 FullRateDeparture();

 else

 HalfRateDeparture();

}

89

9.1.7 RRR Scheme

/* Multirate Channel Allocation Simulation: Repacking with RANDOM Reservation Scheme____ 10/9/95 */

/* Note: This is the simulation dealing with 8 Full Rate timeslots */

/*=== */

/* Milosh V. Ivanovich , September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include "rand_por.cc"

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

void HalfRateArrival(void); /* The jist of the program --> these perform all the tasks */

void HalfRateDeparture(void);

void FullRateArrival(void);

void FullRateDeparture(void);

void simulate_empty(void);

void simulate_halves(void);

void simulate_fulls(void);

void simulate_all(void);

/* Global Variables */

double l1[11],l2[11]; /* Arrays of average arrival rate for full and half rate calls */

P = 0.6; /* The empirically determined optimal value of p1 = P = 0.6, */

 /* where p1 is the probability of allowing a half rate arrival when*/

 /* we only have one full timeslot empty. */

double HalfBlocked[10][11], FullBlocked[10][11]; /* Arrays for full and half rate call blocking probability */

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */

double SumHB[11] = {0}, SumFB[11] = {0}, MeanHB[11], S2HB[11], L1HB[11], L2HB[11];

double SumHB2[11] = {0}, SumFB2[11] = {0}, MeanFB[11], S2FB[11], L1FB[11], L2FB[11];

/* Counter vars. for the offered and lost full and half rate calls */

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0;

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */

int k, Halves = 0, Fulls = 0;

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: Keeps track of system state and depending on current state, calls the appropriate

 "simulate_xxxx" functions for different l1[k] and l2[k] values, records blocking

90

 probability plus confidence interval statistics in output data file (pointed to by

 **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

 

  unsigned long NumEvents, i;       /* Number of events that have occurred so far; i is a multi-purpose counter*/ 

           /* index           */ 

  int      seed, run;         /* Arbitrary seed for external RND NUM generator. The run var controls */ 

           /* the no. of times the simulation is performed for Conf. Int. purposes        */ 

  double   p1;          /* Proportion of full rate calls in traffic mix.      */ 

  

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

  /* check for output data file */ 

      if ((fp = fopen(argv[1], "w+t")) == NULL) { 

        fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

 exit(1); 

      } 

 

 /* printf("\n\n How many events to simulate ??  "); 

  scanf("%d", &NumEvents); */    NumEvents = 10000000; 

  

 /* printf("\n\n Seed? --> "); 

  scanf("%d",&seed);    */    seed = 101; 

  Myrand.seed(seed);  

 

  for(run=0; run<10; run++)   

 

    for(k=0; k <= 10; k++) {   

     

      HalvesAttempted = FullsAttempted = HalvesLost = FullsLost         /* customary initilization */  

      = Halves = Fulls = 0; 

    

      p1 = k * 0.1;                /* proportion of FULL RATE traffic  */ 

      l1[k] = 0.45*8*m1 * (2*p1/(p1 + 1));       /* arbitrary off. traffic per ch. of 0.45, hence 0.45*8*mu  */           

      l2[k] = 2*(0.45*8*m1 - l1[k]);              /* is the average weighted arr. rate             */ 

 

printf("lambda1 = %g  ;  lambda2 = %g  ;  overall A.R. = l1[k]+0.5*l2[k] = %g\n", l1[k],l2[k],(l1[k]+0.5*l2[k]));    

fprintf(fp,"lambda1 = %g  ;  lambda2 = %g  ;  check total A.R. = l1[k]+l2[k] = %g  P = %g\n\n", 

             l1[k],l2[k],(l1[k]+l2[k]), P);    

             

    for(i=0; i<NumEvents; i++) { 

 

       if ((Halves==0) && (Fulls==0))               /* This code calls up the appropriate event    */ 

        simulate_empty();        /* dependent on the given state of the system  */ 

       else if ((Halves>0) && (Fulls==0)) 

        simulate_halves(); 

       else if ((Halves==0) && (Fulls>0)) 

        simulate_fulls(); 

       else if ((Halves>0) && (Fulls>0)) 

        simulate_all(); 

       else { 

        printf(" This shouldn't happen !!\n"); 



91 

        exit(1);  

      } 

    } 

 

  HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted); 

  SumHB[k] += HalfBlocked[run][k]; 

  SumHB2[k] += pow(HalfBlocked[run][k],2);  

 

  FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted); 

  SumFB[k] += FullBlocked[run][k]; 

  SumFB2[k] += pow(FullBlocked[run][k],2); 

 

  /*  printf("\n\n The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

  printf("\n ---------------------------------------------------------------------"); 

  printf("\n\t\t\t\t     %lf             %lf           \n", FullBlocked[k], HalfBlocked[k]); 

  printf("HAtt = %d , HLost = %d ; FAtt = %d , FLost = %d ;\n\n", HalvesAttempted, HalvesLost, 

          FullsAttempted, FullsLost);  */ 

 } 

 

  fprintf(fp, "REPACKING WITH RANDOM RES. Events = %d.    Seed = %d.\n", NumEvents, seed); 

  fprintf(fp, "Lambda_tot  ;  Fulls Prop.  ;  HBlock  ;  Left_CI  ;  Right_CI  ;  FBlock  ;  Left_CI  ; "); 

  fprintf(fp, " Right_CI\n\n"); 

 

  /* Calculate Mean and 95% Confidence Intervals */ 

 

   for (k=0; k<=10; k++) { 

    MeanHB[k] = SumHB[k] / 10.0; 

    S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));  

    L1HB[k] = MeanHB[k] - 2.262*sqrt(S2HB[k])/sqrt(10); 

    L2HB[k] = MeanHB[k] + 2.262*sqrt(S2HB[k])/sqrt(10); 

 

    MeanFB[k] = SumFB[k] / 10.0;      

    S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2)); 

    L1FB[k] = MeanFB[k] - 2.262*sqrt(S2FB[k])/sqrt(10); 

    L2FB[k] = MeanFB[k] + 2.262*sqrt(S2FB[k])/sqrt(10);  

     

    fprintf(fp, "%5.4lf;  %5.4lf;  %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf;\t %5.4lf\n", (l1[k]+l2[k]), (0.1*k), 

MeanHB[k], L1HB[k], L2HB[k], MeanFB[k], L1FB[k], L2FB[k]); 

   } 

} 

/* Functions */ 

/* TYPE OF ALLOCATION : REPACKING WITH RANDOM RESERVATION  (RRR)                              */ 

/*===========================================================================*/ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  HalfRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  HalvesAttempted, Halves, and HalvesLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) {

 double Y; /* The DIE TOSSING variable */

 HalvesAttempted++; /* Register the arrival/attempt */

 if (Halves + 2*Fulls < 14)

 Halves++;

 else if (Halves + 2*Fulls == 14) {

 Y = Myrand.uniform(0,1.0);

92

 if (Y<P)

 Halves++;

 else HalvesLost += 1;

 }

 else if (Halves + 2*Fulls == 15)

 Halves++;

 else

 HalvesLost += 1; /* There wasn't a single half-gap anywhere. Loss occurs. */

}

/*~~

Function: HalfRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Halves is decremented.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) { 

 

     Halves--;    /* Nothing much else to do */ 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateArrival 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  FullsAttempted, Fulls, and FullsLost are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) {

 FullsAttempted++; /* Register the arrival/attempt */

 if (Halves + 2*Fulls < 15)

 Fulls++;

 else

 FullsLost += 1; /* There wasn't a single full-gap anywhere. Loss occurs. */

}

/*~~

Function: FullRateDeparture

Input Parameters: none. Output Parameters: none.

Side-Effects: Fulls is decremented.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) { 

                 

      Fulls--;                    /* Nothing much else to do */ 

} 

 

/* One of two, three or four events may occurr depending on the state the system is in   */ 

/* An event can either be the arrival of a Full OR Half rate call, or the departure   */ 

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that  */ 

/* when there are zero calls in the system, no departures can occurr, so we can only invoke  */ 

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number           */ 

/* limits [0,(l1[k]+l2[k])], and determine what has happened.      */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_empty 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]));

 if (X<l1[k])

93

 FullRateArrival();

 else

 HalfRateArrival();

}

/*~~

Function: simulate_halves

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival or

 HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2)); 

     if (X<l1[k])  

        FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        HalfRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_fulls 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture or  

  HalfRateArrival is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 FullRateDeparture();

}

/*~~

Function: simulate_all

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 HalfRateArrival or HalfRateDeparture is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1)) 

        FullRateDeparture(); 

     else  

        HalfRateDeparture(); 

} 



94 

9.1.8 Random Number Generating Program and Header File 

 
// Source     : rand_por.cc 

 

//Comments: This is the external Random Number Generator module, used in all of my simulation  

  programs. 

 

// Original Author     : Darren Platt  Modified by:  Milosh Ivanovich 

 

// Version    : 1.1 

// Date Begun : 10.5.91 

// Last Rev   : 9/9/1995 

// Id String  : @(#)rand.cc 1.1 

//  

// Modification log 

//----------------- 

// 0.0  tjp  Tom was here. 

// 1.0 daz  Expanded to use a class 

// 1.1 daz  Added uniformInt and put in SCCS 

// 1.2  mil              removed main() to link with my simulation sim.XX series. 

// 

// 

// Portable random number generator. 

// Modified lahmer, generates integers in range min_long to max_long 

// 1.6.91 Expanded to include a random number class. 

 

static char *WhatString = "@(#)rand.cc 1.1"; 

 

#include "rand.h" 

#include <assert.h> 

#include <math.h> 

#include <iostream.h> 

 

unsigned long  global_table[128]; 

unsigned long  *rand_table = global_table; 

unsigned long  lahmer_seed; 

long   taus_seed; 

unsigned long   seed; 

       double   L,U,mu,stdev;      /* Global Vars */ 

          int   nums, i;           /* Number of Generated RNs and Universal Counter */ 

     

void seed_lahmer(long seed) 

{ 

 lahmer_seed = seed; 

} 

unsigned long lahmer(void) 

{ 

 return lahmer_seed=(69069l*lahmer_seed+1); 

} 

void fill_table(void) 

{ 

 for(int i=0;i<128;i++) 

  rand_table[i] = lahmer(); 

} 

void seed_taus(long seed) 

{ 



95 

 taus_seed = seed; 

} 

long taus(void) 

{ 

 const long k_value = 123456; 

 if (taus_seed >=0) return (taus_seed = (taus_seed<<1)%1000003); 

 else return taus_seed = ((taus_seed<<1)^k_value)%1000003; 

} 

void seed_random(unsigned long seed) 

{ 

 seed_lahmer(seed); 

 seed_taus((long)seed); 

 fill_table(); 

} 

 

unsigned long my_rand(void) 

{ 

 int choice = taus()%128; 

 if (choice<0) choice = -choice; 

 unsigned long ret_value = rand_table[choice]; 

 rand_table[choice] = lahmer(); 

 return ret_value; 

} 

// 

// Method definitions for the randcl class 

// 

inline double randcl::quick_unit(void) 

{ 

 return (my_rand()+0.5)/(double)max_ulong; 

} 

inline void randcl::ungrab(void) 

{ 

 taus_seed = ::taus_seed; 

 lahmer_seed = ::lahmer_seed; 

 rand_table = ::rand_table; 

} 

inline void randcl::grab(void) 

{ 

 ::taus_seed = taus_seed; 

 ::lahmer_seed = lahmer_seed; 

 ::rand_table = rand_table; 

} 

 

void randcl::seed(unsigned long seed) 

{ 

 grab(); 

 seed_random(seed); 

 ungrab(); 

} 

randcl::randcl(void) 

{ 

 assert(rand_table = new unsigned long[128]); 

 seed(1); 

 phase = 0; 

} 

randcl::randcl(unsigned long seed) 

{ 



96 

 assert(rand_table = new unsigned long[128]); 

 randcl::seed(seed); 

 phase=0; 

} 

double randcl::neg_exp(double mean) 

{ 

 return -mean*log(unit()); 

} 

double randcl::normal(double mean,double sd) 

{ 

 if (phase) { // Already have one stored up. 

  phase = 0; 

  return (sqratio * q * sd)+mean; 

 } 

 double p,v; 

 grab(); 

 do { 

  p = quick_unit()*2-1; q = quick_unit()*2-1; 

  v = p*p + q*q; 

 } while(v > 1.0 || v <0.25); 

 sqratio = sqrt(-2*log(quick_unit()) / v); 

 ungrab(); 

 phase = 1; 

 return (sd * sqratio * p)+mean; 

} 

long randcl::uniformInt(long lower,long upper) 

{ 

 return (ulong()%(upper-lower+1))+lower; 

} 

 

double randcl::uniform(double lower,double upper) 

{ 

 return (upper-lower)*unit()+lower; 

} 

randcl::~randcl() 

{ 

 delete rand_table; 

} 

double randcl::unit(void) 

{ 

 grab(); 

 unsigned long ul = my_rand(); 

 ungrab(); 

 return (ul+0.5)/(double)max_ulong; 

} 

unsigned long randcl::ulong(void) 

{ 

 grab(); 

 unsigned long ul = my_rand(); 

 ungrab(); 

 return ul; 

} 

   

 

 

Header File 



97 

 
// Source     : rand.h 

 

// Comments: This is the header file for the portable Random Number Generator "rand_por.cc" which  

//  was used as an external modeule in every simulation program. 

 

// Original Author     : Darren Platt Modifiied : Milosh Ivanovich 

 

// Version    : 1.1 

// Date Begun : 10.5.91 

// Last Rev   : 9/9/1995 

 

// Id String  : @(#)rand.h 1.1 

//  

// Modification log 

//----------------- 

// 0.0  tjp  Tom was here. 

// 1.1 daz  Added to SCCS 

 

#ifndef _RANDOM_ 

#define _RANDOM_ 

void seed_random(unsigned long); 

unsigned long my_rand(void); 

 

const unsigned long max_ulong = 0xffffffff; 

 

// The random number generator class contains a number of methods for 

// generating random numbers with different distributions. It also has 

// its own seeds making it good for use in simulations. 

 

class randcl { 

  unsigned long  *rand_table; 

  unsigned long  lahmer_seed; 

  int   phase; 

  double   sqratio,q; 

  long    taus_seed; 

  inline void grab(void); 

  inline void ungrab(void); 

  inline double quick_unit(void); 

 public: 

     randcl(unsigned long); // seed 

     randcl(void); 

     ~randcl(); 

 unsigned long ulong(void); 

  void  seed(unsigned long); 

  double  unit(void); 

  double  neg_exp(double);  // mean 

  double  uniform(double,double); // lower,upper 

  long  uniformInt(long,long); // lower,upper 

  double  normal(double,double); // mean,sd 

}; 

#endif 



98 

9.1.9 Voice Quality Impact Simulation 

 
/* Multirate Channel Allocation : Voice Quality Impact Simulation: RRR Scheme __________ 3/9/95  */ 

 

/* Note: This is the simulation gauging QOS, dealing with the 7, 15 or 23 Full Rate timeslots   */ 

/* ========================================================================== */ 

 

/* Milosh V. Ivanovich , September 1995               */ 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <time.h> 

#include "rand_por.cc"  

 

#define m1 0.333                         /* Avg. 3 min. holding time for both types of calls, as usual in telephony */ 

#define m2 0.333 

 

/* Prototypes */ 

 

void HalfRateArrival(void);  /* The jist of the program --> these perform all the tasks */ 

void HalfRateDeparture(void); 

void FullRateArrival(void); 

void FullRateDeparture(void); 

 

void simulate_empty(void);          

void simulate_halves(void); 

void simulate_fulls(void); 

void simulate_all(void); 

 

/* Global Variables */ 

 

int  Slots;   /* Number of  slots available to the users (e.g. 7, 15 or 23) */ 

 

/* The arrival rates are specifically chosen to match the traffic conditions yielding peak throughput while 

satisfying the < 2% GOS criterium, for this, the RRR scheme.     */ 

 

double l1[9] = {0.208276, 0.364080, 0.479520, 0.578468, 0.657120, 0.719280, 0.789796, 0.828800,  

  0.832850 }; 

 

double l2[9] = {1.874484, 1.456320, 1.118880, 0.867702, 0.657120, 0.479520, 0.338484, 0.207200,  

  0.092539 };    

 

int State[24] = {0}; /* Array displaying the state of each channel    */ 

   /* 0 - No calls; 1 - One half rate call; 2 - Two half  rate calls; 3 - One full rate call  */ 

 

int AvailHalves[48] = {0};  /* Arrays containing pointers to full and half rate calls which are*/ 

int AvailFulls[24] = {0}, Eligible[24] = {0};       /* available to depart (at random) from their timeslot          */      

     /* locations, and an array of pointers to locations with half */ 

     /* rate calls eligible for repacking.    */ 

 

/* Arrays for full and half rate call blocking probability, and proportion of repacked half rate calls */ 

double HalfBlocked[10][9], FullBlocked[10][9], HRep[10][9];      

 

/* Vars. necessary for calculating the Mean and Confidence Interval size for half and full rate blocking */ 

double SumHB[9] = {0}, SumFB[9] = {0}, MeanHB[9], S2HB[9], Diam_HB[9]; 



99 

double SumHB2[9] = {0}, SumFB2[9] = {0}, MeanFB[9], S2FB[9], Diam_FB[9]; 

double SumHRep[9] = {0}, SumHRep2[9] = {0}, MeanHRep[9], VarHRep[9], Diam_HRep[9];  

 

/* Counter vars. for the offered and lost full and half rate calls, and the repacked half rate calls */ 

long HalvesAttempted = 0, FullsAttempted = 0, HalvesLost = 0, FullsLost = 0; 

long HalvesRepacked = 0;                    

 

/* Counter for the two types of calls presently in system - gives state. k varies proportion of full rate calls */ 

int  prop, k, Halves = 0, Fulls = 0;  

FILE    *fp;           /* File pointer to output data file */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  main 

Input Parameters: int argc - Number of command line arguments. 

   char **argv - pointer to command line argument string (the datafile string). 

Output Parameters: none. 

Side-Effects:  Keeps track of system state and depending on current state, calls the appropriate  

  "simulate_xxxx"  functions for different l1[k] and l2[k] values, records blocking   

 probability plus confidence interval statistics in output data file (pointed to by    

 **argv). Also records in data file the proportion of half rate calls repacked. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) {

 unsigned long NumEvents, i; /* Number of events that have occurred so far; i is a multi-purpose counter*/

 /* index */

 int seed, run; /* Arbitrary seed for external RND NUM generator. The run var controls */

 /* the no. of times the simulation is performed for Conf. Int. purposes */

 /* check command line arguments */

 if (argc != 2) {

 printf("Usage: %s data_file\n", argv[0]);

 exit(1);

 }

 /* check for output data file */

 if ((fp = fopen(argv[1], "w+t")) == NULL) {

 fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]);

 exit(1);

 }

 printf("\n\n How many slots available for user traffic ?? ");

 scanf("%d", &Slots);

 printf("\n\n How many events to simulate ?? ");

 scanf("%d", &NumEvents);

 /* printf("\n\n Seed? --> ");

 scanf("%d",&seed); */ seed = 101;

 Myrand.seed(seed);

 for(run=0; run < 10; run++)

 for(prop=1, k=0; k <= 8; k++, prop++) {

 HalvesAttempted = FullsAttempted = HalvesLost = FullsLost /* customary initilization */

 = Halves = Fulls = HalvesRepacked = 0;

 for(x=0; x < Slots; x++) {

100

 State[x] = 0;

 AvailFulls[x] = 0;

 AvailHalves[x] = 0; AvailHalves[(x + Slots)] = 0;

 Eligible[x] = 0;

 }

 printf("l1 = %lf ; l2 = %lf\n\n", l1[k], l2[k]);

 /* Arr. Rates must be the ones entered specifically at beginning */

 for(i=0; i<NumEvents; i++) {

 if (i%1000000 == 0) printf(".\n");

 if ((Halves==0) && (Fulls==0)) /* This code calls up the appropriate event */

 simulate_empty(); /* dependent on the given state of the system */

 else if ((Halves>0) && (Fulls==0))

 simulate_halves();

 else if ((Halves==0) && (Fulls>0))

 simulate_fulls();

 else if ((Halves>0) && (Fulls>0))

 simulate_all();

 else {

 printf(" This shouldn't happen !!\n");

 exit(1);

 }

 }

 for(i=0; i<Slots; i++)

 printf("%d ", State[i]);

 printf("\n");

 HalfBlocked[run][k] = ((double)HalvesLost / (double)HalvesAttempted);

 printf("\tHBlock = %lf",HalfBlocked[run][k]);

 SumHB[k] += HalfBlocked[run][k];

 SumHB2[k] += pow(HalfBlocked[run][k],2);

 FullBlocked[run][k] = ((double)FullsLost / (double)FullsAttempted);

 printf("\tFBlock = %lf",FullBlocked[run][k]);

 SumFB[k] += FullBlocked[run][k];

 SumFB2[k] += pow(FullBlocked[run][k],2);

 HRep[run][k] = ((double)HalvesRepacked / (double)(HalvesAttempted - HalvesLost));

 printf("\tHRep = %lf\n",HRep[run][k]);

 SumHRep[k] += HRep[run][k];

 SumHRep2[k] += pow(HRep[run][k],2);

 } /* End Of the Outer RUN,K LOOP STRUCTURE! */

 fprintf(fp, "REPACKING WITH RANDOM RESERVATION. Events = %d. Seed = %d.\n\n", NumEvents,

seed);

 fprintf(fp, "L_tot ; \%Fulls ; HBlock ; CI_diameter ; FBlock ; CI_diameter ; \%Repacked ; CI_diameter\n\n");

/* Calculate Mean and 95% Confidence Intervals */

 for (k=0,prop=1; k<=8; k++,prop++) {

 MeanHB[k] = SumHB[k] / 10.0;

 S2HB[k] = (10.0/9.0)*((SumHB2[k]/10.0)-pow(MeanHB[k],2));

 Diam_HB[k] = 2 * (2.262*sqrt(S2HB[k])/sqrt(10));

101

 MeanFB[k] = SumFB[k] / 10.0;

 S2FB[k] = (10.0/9.0)*((SumFB2[k]/10.0)-pow(MeanFB[k],2));

 Diam_FB[k] = 2 * (2.262*sqrt(S2FB[k])/sqrt(10));

 MeanHRep[k] = SumHRep[k] / 10.0;

 VarHRep[k] = (10.0/9.0)*((SumHRep2[k]/10.0)-pow(MeanHRep[k],2));

 Diam_HRep[k] = 2 * (2.262*sqrt(VarHRep[k])/sqrt(10));

 fprintf(fp, "%6.5lf; %6.5lf; %6.5lf;\t %6.5lf;\t %6.5lf;\t %6.5lf;\t %6.5lf;\t %6.5lf\n", (l1[k]+l2[k]), (0.1*prop),

MeanHB[k], Diam_HB[k], MeanFB[k], Diam_FB[k], MeanHRep[k], Diam_HRep[k]);

 }

}

/* Functions */

/* TYPE OF ALLOCATION : CONDITIONAL REPACKING WITH RAND. RES. */

/*===*/

/*~~

Function: HalfRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: State[i], HalvesAttempted, Halves, and HalvesLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateArrival(void) { 

 

    int i;                   /* counter and index variables */ 

    double RandNum, P1 = 0.6;    /* P1 = Prob. Of Accepting Half, when No. = 2*slots - 2 */ 

 

    HalvesAttempted++;   /* Register the arrival/attempt */ 

 

    if ((2*Fulls+Halves < 2*Slots - 2)||(2*Fulls+Halves == 2*Slots - 1)) {  

      for (i=0; i<Slots; i++) {  /* First, work out which slots are free */ 

        if (State[i] < 2) { 

          Halves++; 

          State[i] += 1; 

          break; 

        }          

      } 

    }        

    else if ( 2*Fulls+Halves == 2*Slots - 2 ) {    /* Half gets in with prob. P1 = 0.6 */   

      RandNum = Myrand.uniform(0,1.0);                                       

      if (RandNum <= 0.6) {   

        for (i=0;i<Slots; i++) {  /* First, work out which slots are free */ 

         if (State[i] < 2) { 

           Halves++; 

           State[i] += 1; 

           break; 

         }          

        } 

      } 

      else  

       HalvesLost++; 

    } 

    else if (2*Fulls+Halves == 2*Slots) 

     HalvesLost++;            /* There wasn't a single half-gap anywhere. Loss occurs.   */   

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



102 

Function:  HalfRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  State[i], and Halves are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void HalfRateDeparture(void) {

 int i,j,RandNum,Selected; /* counter and index variables */

 for(i=0,j=0; i<Slots; i++) { /* First, work out which slots are eligible for HR depart.. */

 if (State[i] == 2) {

 AvailHalves[j] = 2*i;

 j++;

 AvailHalves[j] = 2*i + 1;

 j++;

 }

 else if (State[i] == 1) {

 AvailHalves[j] = 2*i;

 j++;

 }

 }

 RandNum = (int)Myrand.uniformInt(0,(j-1)); /* Second, have a "lottery" from which one of the available */

 Selected = AvailHalves[RandNum]; /* half rate channels departs */

 State[(Selected/2)] -= 1;

 Halves--;

}

/*~~

Function: FullRateArrival

Input Parameters: none. Output Parameters: none.

Side-Effects: State[i], FullsAttempted, Fulls, and FullsLost are modified as required.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateArrival(void) { 

 

/* This is the procedure which had to be substantially modified from the FirstFit original one */ 

 

    int i,j, NoGap = 0;                        /* counter and index variables */ 

 

    FullsAttempted++;                 /* Register the arrival/attempt */ 

 

 /*   printf("\nFull Rate Arrival\n"); */ 

    for(i=0,j=0; i<Slots; i++) {       /* Place in leftmost free FULL slot */ 

 

       if (State[i] == 0) { 

 /*  printf("\nFull -> Totally Empty Slot, %d\n", i);*/ 

          Fulls++;           

          State[i] = 3; 

          break; 

       }  

       else if (State[i] == 1) { 

        /*  printf("Noted -> Candidate for Rep, %d\n",i);*/ 

          Eligible[j] = i; 

          j++; 

          NoGap++;                                             

       } 

       else {  

          NoGap++; /*printf("No Cigar!, State[%d] = %d\n", i, State[i]); */} 

    } 



103 

         

    if ( (NoGap == Slots)&&(j > 1) ) { /* There wasn't a single half-gap anywhere. Must Repack the  */ 

 

      Fulls++;    /* first two isolated halves (into the leftmost T/S)         */       

      State[Eligible[0]] = 2; 

      State[Eligible[1]] = 3; 

      HalvesRepacked++;   /* Perform the repack, increment global counter. */ 

      printf("Repacked: Source = %d, Dest = %d\n",Eligible[1], Eligible[0]); 

    }      

    else if ( (NoGap == Slots)&&(j <= 1) ) 

    printf("NoGap = %d, Full Rate Call BLOCKED!\n", NoGap); 

    FullsLost++;    /* Could not get in. Bzzzt! */        

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  FullRateDeparture 

Input Parameters: none.    Output Parameters: none. 

Side-Effects:  State[i] and Fulls are modified as required. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void FullRateDeparture(void) {

 int i,j,RandNum,Selected; /* counter and index variables */

 for(i=0,j=0; i<Slots; i++) /* First, work out which slots are eligible for FR departure ... */

 if (State[i] == 3) {

 AvailFulls[j] = i;

 j++;

 }

 RandNum = Myrand.uniformInt(0,(j-1)); /* Second, have a "lottery" from which one of the available */

 Selected = AvailFulls[RandNum]; /* full rate channels departs. */

 State[Selected] = 0;

 Fulls--;

}

/* One of two, three or four events may occurr depending on the state the system is in */

/* An event can either be the arrival of a Full OR Half rate call, or the departure */

/* of a Full OR Half rate call. For example, state dependence is illustrated by the fact that */

/* when there are zero calls in the system, no departures can occurr, so we can only invoke */

/* the "simulate_empty()" procedure. Each invocation of it calls the RN generator with Real Number */

/* limits [0,(l1[k]+l2[k])], and determine what has happened. */

/*~~

Function: simulate_empty

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_empty(void) { 

 

    double   X; 

    X = Myrand.uniform(0,(l1[k]+l2[k])); 

    if (X<l1[k])  

       FullRateArrival(); 

    else 

       HalfRateArrival();      

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_halves 



104 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, HalfRateArrival  or   

  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_halves(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else

 HalfRateDeparture();

}

/*~~

Function: simulate_fulls

Input Parameters: none. Output Parameters: none.

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,

 or HalfRateArrival is called.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_fulls(void) { 

 

     double   X; 

     X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1)); 

     if (X<l1[k])  

         FullRateArrival(); 

     else if ((X>=l1[k])&&(X<l1[k]+l2[k]))  

 HalfRateArrival();  

     else  

        FullRateDeparture(); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  simulate_all 

Input Parameters: none.    Output Parameters: none. 

Side-Effects: Depending on randomly obtained value of X, FullRateArrival, FullRateDeparture,  

  HalfRateArrival  or  HalfRateDeparture is called. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void simulate_all(void) {

 double X;

 X = Myrand.uniform(0,(l1[k]+l2[k]+Fulls*m1+Halves*m2));

 if (X<l1[k])

 FullRateArrival();

 else if ((X>=l1[k])&&(X<l1[k]+l2[k]))

 HalfRateArrival();

 else if ((X>=l1[k]+l2[k])&&(X<l1[k]+l2[k]+Fulls*m1))

 FullRateDeparture();

 else

 HalfRateDeparture(); }

105

9.2 Analytic Programs

9.2.1 Fixed Boundary Scheme

/* Multirate Channel Allocation: Fixed Boundary Scheme - ERLANG FORMULA Method 11/9/95 */

/* Note: This is the program., dealing with 8 Full Rate time slots */

/*===*/

/* Milosh V. Ivanovich , / September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

double E (double Ao, int Circuits); /* Prototype for recursive Erlang formula function */

/* Global Variables */

double l1,l2, AFull, AHalf; /* The arrival rates, which will be varied */

 /* Offered half and full rate traffic, in Erlangs, obtained */

 /* by multiplying arrival rate by holding time */

double HalfBlocked[11], FullBlocked[11]; /* Arrays for full and half rate call blocking probability */

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: By calling the E function for different l1[k] and l2[k] values, calculates and records

 blocking probability in output data file (pointed to by **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

 

  int      k;  /* k varies the proportion of full rate calls in the traffic mix.  */ 

  double   p1, O;  /* Proportion of full rate calls, p1; O is the Offered Traffic per Channel           */ 

   

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

   /* check for output data file */ 

 if ((fp = fopen(argv[1], "w+t")) == NULL) { 

   fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

   exit(1); 

 } 



106 

 

    printf("Offered Traffic per Channel =   ?"); 

    scanf("%lf",&O);    

 

    for(k=0; k <= 0; k++) {   

        

      p1 = k * 0.1;     /* proportion of FULL RATE traffic       */  

      l1 = O*8*m1 * (2*p1/(p1 + 1));            /*  given the offered traffic per channel, O,              */  

      l2 = 2*(O*8*m1 - l1);    /* hence O*8*mu is the average weighted arr. rate */   

           

     printf("\nlambda1 = %g  ;  lambda2 = %g  ;  overall A.R. = l1+0.5*l2 = %g\n\n", l1,l2,(l1+0.5*l2));    

               

      AFull = l1 / (m1);    /* Calculate the Offered Traffic in Erlangs */        

      AHalf = l2 / (m1);    /* NOTE: Arbitrary 50% / 50% FIXED BOUNDARY, so  

      /* that slots are split evenly between half/full rate */  

      /* channels    */  

 

      /* Blocking Probability Calculation */  

 

      HalfBlocked[k] = E(AHalf, 8);  /* 8 H/R Circuits are available */ 

      FullBlocked[k] = E(AFull, 4);  /* 4 F/R Circuits are available */ 

 

      printf(" The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

      printf("\n ---------------------------------------------------------------------"); 

      printf("\n\t\t\t\t     %lf             %lf           \n\n", FullBlocked[k], HalfBlocked[k]); 

         

      fprintf(fp, "%g\t\t\t %g\n", FullBlocked[k], HalfBlocked[k]); 

    } 

 }    

 

/* Functions */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  E 

Input Parameters: double Ao - Offered Traffic in Erlangs. 

   int Circuits - pointer to command line argument string (the datafile string). 

Output Parameters: double E - probability of congestion. 

Side-Effects:  Recursively works out Erlang loss formula and returns value to main. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

double E (double Ao, int Circuits) {

 double Etemp = 1.0;

 int i;

 for (i=1; i<=Circuits; i++)

 Etemp = (Ao*Etemp)/(i + Ao*Etemp);

 return Etemp;

}

107

9.2.2 Sliding Boundary Scheme

/* Multirate Channel Allocation: Sliding Boundary Scheme- ERLANG FORMULA Method _____ 11/9/95 */

/* Note: This is the prog. dealing with 8 Full Rate timeslots */

/*=== */

/* Milosh V. Ivanovich , September 1995 */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

/* Prototypes */

double E (double Ao, int Circuits); /* Prototype for recursive Erlang formula function */

/* Global Variables */

double l1,l2, AFull, AHalf; /* The arrival rates, which will be varied ... */

 /* Offered half and full rate traffic, in Erlangs, obtained */

 /* by multiplying arrival rate by holding time */

double HalfBlocked[11], FullBlocked[11]; /* Arrays for full and half rate call blocking probability */

FILE *fp; /* File pointer to output data file */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: By calling the E function for different l1[k] and l2[k] values, calculates and records

 blocking probability in output data file (pointed to by **argv).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

 

  int      k, FullCircuits; /* k varies the proportion of fulls in traffic mix. FullCircuits gives the size of */ 

   /* reserved space for full rate circuits             */ 

  double   p1, O;  /* Proportion of full rate calls, p1; O is the Offered Traffic per Channel       */ 

   

  /* check command line arguments */ 

 if (argc != 2) { 

   printf("Usage: %s data_file\n", argv[0]); 

   exit(1); 

 } 

 

   /* check for output data file */ 

 if ((fp = fopen(argv[1], "w+t")) == NULL) { 

   fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

   exit(1); 

 } 

      

    /*  printf("Offered Traffic per Channel = "); 



108 

    scanf("%lf",&O);   */ 

 

    for(k=0; k <= 0; k++) {   

        

      p1 = k * 0.1;     /* proportion of FULL RATE traffic       */  

      l1 = O*8*m1 * (2*p1/(p1 + 1));            /*  given the offered traffic per channel, O,              */  

      l2 = 2*(O*8*m1 - l1);    /* hence O*8*mu is the average weighted arr. rate */         

 

     printf("\nlambda1 = %g  ;  lambda2 = %g  ;  overall A.R. = l1+0.5*l2 = %g\n\n", l1,l2,(l1+0.5*l2));    

               

      AFull = l1 / (m1);   /* Calculate the Offered Traffic in Erlangs */        

      AHalf = l2 / (m1);   /* NOTE: SLIDING BOUNDARY employed now */ 

           /* slots are reserved unevenly for half and full rate channels */ 

 

      /* Blocking Probability Calculation */  

 

      printf("Full Circuits Allocated Dynamically = %d\n", FullCircuits = int(8*p1)); 

  

      HalfBlocked[k] = E(AHalf, 2*(8-FullCircuits)); /* (8-FullCircuits) are available for H/R only */ 

      FullBlocked[k] = E(AFull, FullCircuits); /* FullCircuits are available for F/R only       */ 

 

      printf(" The Probability of Blocking is:  Full Rate Calls       Half Rate Calls "); 

      printf("\n ---------------------------------------------------------------------"); 

      printf("\n\t\t\t\t     %lf             %lf           \n\n", FullBlocked[k], HalfBlocked[k]); 

         

      fprintf(fp, "%g\t\t\t %g\n", FullBlocked[k], HalfBlocked[k]); 

    } 

 }    

 

/* Functions */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  E 

Input Parameters: double Ao - Offered Traffic in Erlangs. 

   int Circuits - pointer to command line argument string (the datafile string). 

Output Parameters: double E - probability of congestion. 

Side-Effects:  Recursively works out Erlang loss formula and returns value to main. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

double E (double Ao, int Circuits) {

 double Etemp = 1.0;

 int i;

 for (i=1; i<=Circuits; i++)

 Etemp = (Ao*Etemp)/(i + Ao*Etemp);

 return Etemp;

}

109

9.2.3 Analytic Optimisation Problem Solver Program

/* The "SOLV_##.C" Series: */

/* An Automated State-Space Formulation and Solution Program */

/* Version 2: Optimisation Problem - Solution Framework */

/* Milosh V. Ivanovich, October 1995. */

/* NOTES: */

/* ---------- */

/* This program, in its original version obtained three inputs from the user, namely, */

/* (a) Frame Size in Number of Slots; (b) Packing Scheme; and (c) Arrival and */

/* Departure Rates. */

/* In this version, the program has been augmented in order to facilitate the solving */

/* of an optimisation problem. User now only specifies the (a) Packing Scheme, and the */

/* (b) Frame Size in Number of Slots. The program then obtains Maximum Permitted */

/* Total Customer Arrival rate, constrained by a 2% blocking probability for both types */

/* of user. */

/* It automatically sets up the Q-Matrix in ordinary form, then manipula- */

/* tes it into Q', where it is in the form p = p . Q' and finally solves */

/* it using the method of Successive Relaxation. */

/* Normalises the p[n]s ONLY after all iterations (preferable) */

/* Assumption: Rigid walls between Full Rate channels */

/* p[n] ==> The probability of being in state n */

/* Ultimately we are after p[n] for all possible values of n. */

/* Q[n1][n2] ==> The (n1, n2)-th element of the State Coefficient Matrix */

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Prototypes */

void body(void);

void q_rnd(void);

void q_bestfit(void);

void q_repacking(void);

void q_rpck_perp_reservation(void);

void q_rpck_rnd_reservation(void);

void q_rpck_perp_hs_reservation(void);

void manipulate(void);

void record_q(void);

void record_results(void);

/* Global defines */

#define m1 0.333 /* Avg. 3 min. holding time for both types of calls, as usual in telephony */

#define m2 0.333

#define TRUE 1

#define FALSE 0

#define E 1E-5

110

#define K 3000 /* IMPORTANT: PC Version cannot support more than a 100 x 100 */

 /* P matrix of "floats" due to memory constraints */

 /* Hence, program relies on Unix SunSparc platform testbed. */

#define p1 0.6 /* Only applicable for RRR Algorithm. */

#define p2 1.0 /* p1, p2: The probabilities that a half rate call is accepted */

 /* when we have [2*Slots-2] or [2*Slots-1] occupied places, respectively. */

/* Global data structures */

float *p ; /* P(state occupancy) array */

float *pold ; /* Previous iteration of p[n] */

float Q[K][K] ; /* The Generated Q Matrix */

int HalfBlocked[K] ; /* Arrays keeping track of which states */

int HalfBlk_p1[K], HalfBlk_p2[K] ; /* Semi-Blocked State Trackers */

int FullBlocked[K] ; /* are blocking for the two types of calls */

int halfcount=0, fullcount=0 ; /* Global counters for this purpose */

int Halves, Fulls, IsolHalves ; /* System counter for given types of packing */

 /* - effectively defines state */

int *ChkArr ; /* Array of True/False values, to */

 /* signify whether the difference */

 /* between the old and current */

 /* iterations is less than E */

int Stop = 0 ; /* Stop is only set to 1, */

 /* when all ChkArr booleans are */

 /* set to 1. */

int Xmax, Ymax ; /* Q Matrix Size Markers */

int x = -1, y = -1 ; /* Q Matrix Global indices */

int Slots ; /* User Sets this. State Limited on */

 /* most computers. Must not exceed 8 */

float l1[11],l2[11], RowSum ; /* The arrival rates, which will be */

 /* given by the user ... */

float HRBlocking, FRBlocking ; /* Global variables for blocking probabilities */

FILE *fp ; /* Global File Pointer */

int method, I=0, z=0 ; /* Which packing method, user response. */

 /* I is a counter var. z varies the prop. of full rate calls */

float R,rho, prop1, TempSum, BigSum=0 ; /* Temporary Sum variables TempSum and BigSum */

 /* prop1 is the proportion of full rate callers */

 /* R and rho are the starting point and increment in the */

 /* optimisation algortihm */

/*~~

Function: main

Input Parameters: int argc - Number of command line arguments.

 char **argv - pointer to command line argument string (the datafile string).

Output Parameters: none.

Side-Effects: User-specified function from the suite of "qgen_xxxx" functions is called to generate

 the relevant Q matrix for desired scheme. Optimisation is then carried by means of

 three separate sets of double loops within main() itself out to find the maximum

 allowable number of user arrivals, under the Grade of Service constraint. The

 equations resulting from the Q matrix are solved by Gauss-Seidel iteration, when the

 body() function is called within these double-loops.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void main(int argc, char **argv) { 

   



111 

 /* check command line arguments */ 

      if (argc != 2) { 

       printf("Usage: %s data_file\n", argv[0]); 

       exit(1); 

      } 

 

 /* check for output data file */ 

      if ((fp = fopen(argv[1], "w+t")) == NULL) { 

       fprintf(stderr, "%s: Can't open %s\n", argv[0], argv[1]); 

       exit(1); 

      } 

 

 printf(" WELCOME TO THE AUTOMATED STATE-SPACE FORMULATION/SOLUTION 

PROGRAM.\n"); 

 printf("=======================================================\n\n"); 

 printf("(A) Number Of Slots Per Frame? > "); 

 scanf("%d", &Slots); 

 printf("\n"); 

 

 printf("(B) Choose Packing Discipline:\n"); 

 printf("------------------------------\n\n"); 

 printf("1. Random   2. Best Fit\n\n"); 

 printf("3. Repacking  4. Repacking with Perpetual Reservation (RPR)\n\n"); 

 printf("5. Repacking with Random Reservation (RRR)\n\n "); 

 printf("6. Repacking with Forced Blocking Equalisation (RPHSR)\n\n> "); 

 scanf("%d",&method); 

 

 fprintf(fp,"Number of Slots in Frame = %d\n", Slots); 

 

  if (method==1) fprintf(fp, "Packing: Random\n"); 

  else if (method==2) fprintf(fp, "Packing: Best Fit\n"); 

  else if (method==3) fprintf(fp, "Packing: Repacking\n"); 

  else if (method==4) fprintf(fp, "Packing: Repacking with Perpetual Reservation\n"); 

  else if (method==5) fprintf(fp, "Packing: Repacking with Random Reservation\n"); 

  else if (method==6) fprintf(fp, "Packing: Repacking with Perpetual Half Slot Reservation\n"); 

 

 

  fprintf(fp, "\nWhat follows is a list of Maximized Lambda_Total values (i.e. Max. Capacity)\n"); 

  fprintf(fp, "at varying traffic mixes, subject to the constraint that neither P(Block.) exceeds 2%\n"); 

  fprintf(fp, "\nFull Rate Prop. ; Lambda Tot ; H.R. Blocking Prob. ; F.R. Blocking Prob. ; Rho\n"); 

   

  z = prop1 = 0; 

  for(rho = 0.74; (HRBlocking <0.0180); rho+=0.01)    /* OPTIMIZE loop, conditioned by prob. */ 

   body();  

   

  printf("Domah!\n"); 

  fprintf(fp, "%6.6f\t\t %6.6f\t\t", prop1, (l1[z]+l2[z])); 

  fprintf(fp, "  %6.6f\t    %6.6f\t   ; at rho = %4.3f\n", HRBlocking, FRBlocking,  ((l1[z]+0.5*l2[z])/(Slots*m1)));   

 

 for(z = 1, R = 0.65; z<=9; z++) {      /* Varying the traffic mix. */ 

   

  prop1 = z * 0.1;      /* proportion of FULL RATE traffic */ 

  if (z%2 == 0) R-=0.02;       /* incremental factor */   

  HRBlocking = FRBlocking = 0; 

  for(rho = R; (HRBlocking <0.0195)&&(FRBlocking < 0.0195); rho+=0.002) { /* OPTIMIZE loop,  

         conditioned by prob. */ 

   body(); 



112 

   printf("%6.6f\t\t %6.6f\t\t", prop1, (l1[z]+l2[z])); 

   printf("  %6.6f\t    %6.6f\t   ; at rho = %4.3f\n", HRBlocking, FRBlocking, ((l1[z]+0.5*l2[z])/(Slots*m1))); 

  }   

  printf("Domah!\n"); 

  fprintf(fp, "%6.6f\t\t %6.6f\t\t", prop1, (l1[z]+l2[z])); 

  fprintf(fp, "  %6.6f\t    %6.6f\t   ; at rho = %4.3f\n", HRBlocking, FRBlocking, ((l1[z]+0.5*l2[z])/(Slots*m1)));  

 } 

 

  z = 10;  

  prop1 = 1; 

  HRBlocking = FRBlocking = 0; 

 

  for(rho = 0.58; (FRBlocking <0.0195); rho+=0.002)   /* OPTIMIZE loop, conditioned by prob. */ 

   body();     

  printf("Domah!\n"); 

  fprintf(fp, "%6.6f\t\t %6.6f\t\t", prop1, (l1[z]+l2[z])); 

  fprintf(fp, "  %6.6f\t    %6.6f\t   ; at rho = %4.3f\n", HRBlocking, FRBlocking, ((l1[z]+0.5*l2[z])/(Slots*m1))); 

 

 fclose(fp); 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

/* Functions */ 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  q_rnd 

Input Parameters: none. 

Output Parameters: none. 

Side-Effects:  Generates the Q matrix, storing elements into the global Q[x][y] variable, using the 

   Random channel allocation scheme. Prompts user to record matrix elements by  

   calling record_q().   

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_rnd(void) {

 long int i,j,k; /* Various Indices */

 int InitOuter, InitInner; /* Odd/Even Flags */

 for(Fulls = 0; Fulls<=Slots; Fulls++) /* Going Down the Rows */

 for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) {

 if (Halves%2==0) InitOuter = 0; else InitOuter = 1;

 for(IsolHalves = InitOuter; (IsolHalves <= Halves) &&

 (IsolHalves + Halves + 2*Fulls <= 2*Slots); IsolHalves+=2) {

 /* Notes: (i) Halves counter cannot exceed the limit imposed by the number */

 /* of available minus number of occupied "half slots" */

 /* (ii) InitOuter starts at zero when we have an EVEN no. of Halves */

 /* (iii) IsolHalves, intuitively, must be constrained by three things */

 /* the number of halves, whether there ARE halves at all, and */

 /* the TOTAL FREE half slots in the frame */

 x++;

 RowSum = 0; /* "Zero" both the Col. counter AND Row-Sum */

 y = -1;

 /* Now, determine the BLOCKING STATES ! */

 if ((Slots - Fulls - IsolHalves - 0.5*(Halves-IsolHalves)) < 1) {

 FullBlocked[fullcount] = x;

 fullcount++;

113

 }

 if ((2*Fulls + Halves) == (2*Slots)) {

 HalfBlocked[halfcount] = x;

 halfcount++;

 }

 for(i = 0; i<=Slots; i++) /* Going across the Columns */

 for(j = 0; j <= 2*(Slots - i); j++) {

 if (j%2==0) InitInner = 0; else InitInner = 1;

 for(k = InitInner; (k <= j)&&(k <= 2*(Slots-i) - j);k+=2) {

 y++;

 if (x!=y) { /* Diagonal must be done last */

 if ((i-Fulls==1)&&(j==Halves)&&(k==IsolHalves)) { /* Full ARRIVAL */

 RowSum += Q[x][y] = l1[z];

 }

 else if ((i-Fulls==-1)&&(j==Halves)&&(k==IsolHalves)) { /* Full DEPARTURE */

 RowSum += Q[x][y] = Fulls*m1;

 }

 else if ((i==Fulls)&&(j-Halves==1)&&(k-IsolHalves==1)) { /* Half Rate ARRIVAL Type 1a/b */

 if (IsolHalves == 0) /* These arrivals CREATE gaps! */

 RowSum += Q[x][y] = l2[z];

 else

 RowSum += Q[x][y] =

 l2[z]*(float)(2*Slots-2*Fulls-Halves-IsolHalves)/(float)(2*Slots-2*Fulls-Halves);

 }

 else if ((i==Fulls)&&(j-Halves==1)&&(k-IsolHalves==-1)) { /* Half Rate ARRIVAL Type 2a/2b/*

 if (2*Slots-2*Fulls-Halves == IsolHalves) /* These arrivals FILL IN gaps! */

 RowSum += Q[x][y] = l2[z];

 else

 RowSum += Q[x][y] =

 l2[z]*(float)(IsolHalves)/(float)(2*Slots-2*Fulls-Halves);

 }

 else if ((i==Fulls)&&(j-Halves==-1)&&(k-IsolHalves==1)) { /* Half Rate DEPARTURE Type

 1a/b*/

 if (IsolHalves == 0) /* These departures CREATE gaps! */

 RowSum += Q[x][y] = Halves*m2;

 else

 RowSum += Q[x][y] =

 Halves*m2*(float)(Halves-IsolHalves)/(float)(Halves);

 }

 else if ((i==Fulls)&&(j-Halves==-1)&&(k-IsolHalves==-1)) { /* Half Rate DEPARTURE Type

 2a/2b */

 if (IsolHalves == Halves) /* These departures FILL IN gaps! */

 RowSum += Q[x][y] = Halves*m2;

 else

 RowSum += Q[x][y] =

 Halves*m2*(float)(IsolHalves)/(float)(Halves);

 }

 else Q[x][y] = 0;

 }

 }

 }

 Q[x][x] = - RowSum;

 }

 }

114

 printf("\nMatrix Size Check (Dimensions x by y): x =");

 printf(" %d, y = %d \n\n", Xmax = x, Ymax = y);

 record_q(); /* If user wishes, record Q-Matrix to file. */

}

/*~~

Function: q_bestfit

Input Parameters: none.

Output Parameters: none.

Side-Effects: Generates the Q matrix, storing elements into the global Q[x][y] variable, using the

 Best Fit channel allocation scheme. Prompts user to record matrix elements by

 calling record_q().

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_bestfit(void) { 

 

 long int     i,j,k;                    /* Various Indices  */ 

 int        InitOuter, InitInner;       /* Odd/Even Flags   */ 

 

      for(Fulls = 0; Fulls<=Slots; Fulls++)    /* Going Down the Rows */ 

       for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) { 

 if ( Halves%2==0 ) InitOuter = 0; else InitOuter = 1; 

 for(IsolHalves = InitOuter; (IsolHalves <= Halves) && 

     (IsolHalves + Halves + 2*Fulls <= 2*Slots); IsolHalves+=2) { 

 

 x++; 

 RowSum = 0;    /* "Zero" both the Col. counter AND Row-Sum */ 

 y = -1; 

 

        /* Now, determine the BLOCKING STATES !      */ 

 

 if ((Slots - Fulls - IsolHalves - 0.5*(Halves-IsolHalves)) < 1) { 

  FullBlocked[fullcount] = x; 

  fullcount++; 

 } 

 

 if ((2*Fulls + Halves) == (2*Slots)) { 

  HalfBlocked[halfcount] = x; 

  halfcount++; 

 } 

 

  for(i = 0; i<=Slots; i++)             /* Going across the Columns */ 

   for(j = 0; j <= 2*(Slots - i); j++) { 

    if ( j%2==0 ) InitInner = 0; else InitInner = 1; 

    for(k = InitInner; (k <= j)&&(k <= 2*(Slots-i) - j);k+=2) { 

     y++; 

     if (x!=y) {       /* Diagonal must be done last */ 

 

      if ((i-Fulls==1)&&(j==Halves)&&(k==IsolHalves)) {          /* Full ARRIVAL */ 

        RowSum += Q[x][y] = l1[z]; 

      } 

      else if ((i-Fulls==-1)&&(j==Halves)&&(k==IsolHalves)) {     /* Full DEPARTURE */ 

        RowSum += Q[x][y] = Fulls*m1; 

      } 

      else if ((i==Fulls)&&(j-Halves==1)&&(k-IsolHalves==1)&& 

   (IsolHalves==0)) {            /* Half Rate ARRIVAL Type 1a/1b */ 

        RowSum += Q[x][y] = l2[z];         /* These arrivals CREATE gaps! */ 

      } 



115 

      else if ( (i==Fulls)&&(j-Halves==1)&&(k-IsolHalves==-1)&& 

         (IsolHalves>0) ) {         /* Half Rate ARRIVAL Type 2a/2b */ 

    RowSum += Q[x][y] = l2[z];        /* These arrivals FILL IN gaps! */ 

      } 

      else if ((i==Fulls)&&(j-Halves==-1)&&(k-IsolHalves==1)) {    /* Half Rate DEPARTURE Type 

        1a/b */ 

  if (IsolHalves == 0)                                      /* These departures CREATE gaps!  */ 

   RowSum += Q[x][y] = Halves*m2; 

  else 

   RowSum += Q[x][y] = 

    Halves*m2*(float)(Halves-IsolHalves)/(float)(Halves); 

      } 

      else if ((i==Fulls)&&(j-Halves==-1)&&(k-IsolHalves==-1)) {    /* Half Rate DEPARTURE Type 

        2a/2b */ 

  if (IsolHalves == Halves)                                  /* These departures FILL IN gaps! */ 

   RowSum += Q[x][y] = Halves*m2; 

  else 

   RowSum += Q[x][y] = 

    Halves*m2*(float)(IsolHalves)/(float)(Halves); 

      } 

      else Q[x][y] = 0; 

     } 

    } 

   } 

   Q[x][x] = - RowSum; 

 } 

       } 

     printf("\nMatrix Size Check (Dimensions x by y): x ="); 

     printf(" %d, y = %d \n\n", Xmax = x, Ymax = y); 

      

     record_q();   /* If user wishes, record Q-Matrix to file. */ 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  q_repacking 

Input Parameters: none. 

Output Parameters: none. 

Side-Effects:  Generates the Q matrix, storing elements into the global Q[x][y] variable, using the 

   Repacking channel allocation scheme. Prompts user to record matrix elements by 

   calling  record_q()  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_repacking(void) {

 long int i,j; /* Various Indices */

 for(Fulls = 0; Fulls<=Slots; Fulls++) /* Going Down the Rows */

 for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) {

 x++;

 RowSum = 0; /* "Zero" both the Col. counter AND Row-Sum */

 y = -1;

 /* Now, determine the BLOCKING STATES ! */

 if ((2*Fulls + Halves) > 2*(Slots-1)) {

 FullBlocked[fullcount] = x;

 fullcount++;

 }

116

 if ((2*Fulls + Halves) > (2*Slots - 1)) {

 HalfBlocked[halfcount] = x;

 halfcount++;

 }

 for(i = 0; i<=Slots; i++) /* Going across the Columns */

 for(j = 0; j <= 2*(Slots - i); j++) {

 y++;

 if (x!=y) { /* Diagonal must be done last */

 if ((i-Fulls==1)&&(j==Halves)) { /* Full ARRIVAL */

 RowSum += Q[x][y] = l1[z];

 }

 else if ((i-Fulls==-1)&&(j==Halves)) { /* Full DEPARTURE */

 RowSum += Q[x][y] = Fulls*m1;

 }

 else if ((i==Fulls)&&(j-Halves==1)) { /* Half Rate ARRIVAL */

 RowSum += Q[x][y] = l2[z];

 }

 else if ((i==Fulls)&&(j-Halves==-1)) { /* Half Rate DEPARTURE */

 RowSum += Q[x][y] = Halves*m2;

 }

 else Q[x][y] = 0;

 }

 }

 Q[x][x] = - RowSum;

 }

 printf("\nMatrix Size Check (Dimensions x by y): x =");

 printf(" %d, y = %d \n\n", Xmax = x, Ymax = y);

 record_q(); /* If user wishes, record Q-Matrix to file. */

}

/*~~

Function: q_rpck_perp_reservation

Input Parameters: none.

Output Parameters: none.

Side-Effects: Generates the Q matrix, storing elements into the global Q[x][y] variable, using the

 RPR Fit channel allocation scheme. Prompts user to record matrix elements by

 calling record_q()

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_rpck_perp_reservation(void) { 

 

 long int     i,j;                  /* Various Indices  */ 

 

      for(Fulls = 0; Fulls<=Slots; Fulls++)    /* Going Down the Rows */ 

       for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) { 

 

 x++; 

 RowSum = 0;    /* "Zero" both the Col. counter AND Row-Sum */ 

 y = -1; 

 

        /* Now, determine the BLOCKING STATES !      */ 

 

 if ((2*Fulls + Halves) > 2*(Slots-1)) {    



117 

  FullBlocked[fullcount] = x; 

  fullcount++; 

 } 

 

        if ((2*Fulls + Halves) >= 2*(Slots-1)) {    

  HalfBlocked[halfcount] = x; 

  halfcount++; 

 } 

 

 for(i = 0; i<=Slots; i++)         /* Going across the Columns */ 

  for(j = 0; j <= 2*(Slots - i); j++) { 

 

    y++; 

    if (x!=y) {          /* Diagonal must be done last */ 

 

     if ((i-Fulls==1)&&(j==Halves)) {       /* Full ARRIVAL */ 

       RowSum += Q[x][y] = l1[z]; 

     } 

     else if ((i-Fulls==-1)&&(j==Halves)) {   /* Full DEPARTURE */ 

       RowSum += Q[x][y] = Fulls*m1; 

     } 

     else if ( (i==Fulls)&&(j-Halves==1)&& 

        (2*Fulls+Halves < (2*Slots - 2)) ) { /* Half Rate ARRIVAL */ 

       RowSum += Q[x][y] = l2[z]; 

     } 

     else if ((i==Fulls)&&(j-Halves==-1)) {    /* Half Rate DEPARTURE */ 

      RowSum += Q[x][y] = Halves*m2; 

     } 

     else Q[x][y] = 0; 

    } 

  } 

 Q[x][x] = - RowSum; 

       } 

 

     printf("\nMatrix Size Check (Dimensions x by y): x ="); 

     printf(" %d, y = %d \n\n", Xmax = x, Ymax = y); 

 

    record_q();   /* If user wishes, record Q-Matrix to file. */ 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  q_rpck_rnd_reservation 

Input Parameters: none. 

Output Parameters: none. 

Side-Effects:  Generates the Q matrix, storing elements into the global Q[x][y] variable, using the 

   RRR Fit channel allocation scheme. Prompts user to record matrix elements by  

   calling  record_q()  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_rpck_rnd_reservation(void) {

 long int i,j; /* Various Indices */

 for(Fulls = 0; Fulls<=Slots; Fulls++) /* Going Down the Rows */

 for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) {

 x++;

 RowSum = 0; /* "Zero" both the Col. counter AND Row-Sum */

 y = -1;

118

 /* Now, determine the BLOCKING STATES ! */

 if ((2*Fulls + Halves) > 2*(Slots-1)) { /* Full Rate Calls */

 FullBlocked[fullcount] = x;

 fullcount++;

 }

 if ((2*Fulls + Halves) == 2*(Slots-1)) { /* Half Rate Calls */

 HalfBlocked[halfcount] = x; /* Blocked with Pr. = 1-p1 */

 HalfBlk_p1[halfcount] = x;

 halfcount++;

 }

 else if ((2*Fulls + Halves) == (2*Slots-1)) { /* Half Rate Calls */

 HalfBlocked[halfcount] = x; /* Blocked with Pr. = 1-p2 */

 HalfBlk_p2[halfcount] = x;

 halfcount++;

 }

 else if ((2*Fulls + Halves) == 2*Slots) { /* Half Rate Calls */

 HalfBlocked[halfcount] = x; /* With 100% prob. */

 HalfBlk_p1[halfcount] = HalfBlk_p2[halfcount] = -1; /* Marker */

 halfcount++;

 }

 for(i = 0; i<=Slots; i++) /* Going across the Columns */

 for(j = 0; j <= 2*(Slots - i); j++) {

 y++;

 if (x!=y) { /* Diagonal must be done last */

 if ((i-Fulls==1)&&(j==Halves)) { /* Full ARRIVAL */

 RowSum += Q[x][y] = l1[z];

 }

 else if ((i-Fulls==-1)&&(j==Halves)) { /* Full DEPARTURE */

 RowSum += Q[x][y] = Fulls*m1;

 }

 else if ((i==Fulls)&&(j-Halves==1)) { /* Half Rate ARRIVAL */

 if (2*Fulls+Halves < 2*(Slots - 1)) /* Not needing the reserved slot. */

 RowSum += Q[x][y] = l2[z];

 else if (2*Fulls+Halves == 2*(Slots - 1))

 RowSum += Q[x][y] = l2[z]*p1; /* Weighted by prob. of transition. */

 else if (2*Fulls+Halves == (2*Slots - 1))

 RowSum += Q[x][y] = l2[z]*p2; /* Weighted by prob. of transition. */

 }

 else if ((i==Fulls)&&(j-Halves==-1)) { /* Half Rate DEPARTURE */

 RowSum += Q[x][y] = Halves*m2;

 }

 else Q[x][y] = 0;

 }

 }

 Q[x][x] = - RowSum;

 }

 printf("\nMatrix Size Check (Dimensions x by y): x =");

 printf(" %d, y = %d \n\n", Xmax = x, Ymax = y);

 record_q(); /* If user wishes, record Q-Matrix to file. */

119

}

/*~~

Function: q_rpck_perp_hs_reservation

Input Parameters: none.

Output Parameters: none.

Side-Effects: Generates the Q matrix, storing elements into the global Q[x][y] variable, using the

 RPHSR Fit channel allocation scheme. Prompts user to record matrix elements by

 calling record_q()

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void q_rpck_perp_hs_reservation(void) { 

 

 long int     i,j;                  /* Various Indices  */ 

 

      for(Fulls = 0; Fulls<=Slots; Fulls++)    /* Going Down the Rows */ 

       for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) { 

 

 x++; 

 RowSum = 0;    /* "Zero" both the Col. counter AND Row-Sum */ 

 y = -1; 

 

        /* Now, determine the BLOCKING STATES !      */ 

 

 if ((2*Fulls + Halves) > 2*(Slots-1)) {    

  FullBlocked[fullcount] = x; 

  fullcount++; 

 } 

 

        if ((2*Fulls + Halves) > 2*(Slots-1)) {    

  HalfBlocked[halfcount] = x; 

  halfcount++; 

 } 

 

 for(i = 0; i<=Slots; i++)         /* Going across the Columns */ 

  for(j = 0; j <= 2*(Slots - i); j++) { 

 

    y++; 

    if (x!=y) {          /* Diagonal must be done last */ 

 

     if ((i-Fulls==1)&&(j==Halves)) {       /* Full ARRIVAL */ 

       RowSum += Q[x][y] = l1[z]; 

     } 

     else if ((i-Fulls==-1)&&(j==Halves)) {   /* Full DEPARTURE */ 

       RowSum += Q[x][y] = Fulls*m1; 

     } 

     else if ( (i==Fulls)&&(j-Halves==1)&& 

        (2*Fulls+Halves < (2*Slots - 1)) ) { /* Half Rate ARRIVAL */ 

       RowSum += Q[x][y] = l2[z]; 

     } 

     else if ((i==Fulls)&&(j-Halves==-1)) {    /* Half Rate DEPARTURE */ 

      RowSum += Q[x][y] = Halves*m2; 

     } 

     else Q[x][y] = 0; 

    } 

  } 

 Q[x][x] = - RowSum; 

       } 

 



120 

     printf("\nMatrix Size Check (Dimensions x by y): x ="); 

     printf(" %d, y = %d \n\n", Xmax = x, Ymax = y); 

 

     record_q();   /* If user wishes, record Q-Matrix to file. */ 

} 

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  manipulate 

Input Parameters: none. 

Output Parameters: none. 

Side-Effects:  Re-arranges elements of  global Q[x][y] array (matrix) into Q' thereby obtaining the 

   form of p = p.Q' which is solveable. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void manipulate(void) {

 int i,j;

 static float temp[K][K];

 for(j=0; j<=Xmax; j++) {

 for(i=0; i<=Ymax; i++)

 temp[i][j] = Q[i][j] / (-Q[j][j]);

 temp[j][j] = 0;

 }

 for(i=0; i<=Xmax; i++)

 for(j=0; j<=Ymax; j++)

 Q[i][j] = temp[i][j];

}

/*~~

Function: record_q

Input Parameters: none.

Output Parameters: none.

Side-Effects: If the user wishes, this procedure records elements of the global Q[x][y] array

 (matrix) into a file, the name of which is supplied by user.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void record_q(void) { 

 

 FILE   *fptr;  /*  File pointer */ 

 char    filename[20];    /* String with Filename information */ 

 int   done = 0; 

 char    answer[5]; /* Record Q or Not? */ 

  

 while ( !done ) { 

       

      printf("\n(D) Record the contents of the Q-Matrix? (y/n) > "); 

      scanf("%s", answer); 

      done = 1; 

      if ((answer[0] == 'n') || (answer[0] == 'N')) { 

       return; 

      } 

      else if ((answer[0] != 'y') && (answer[0] != 'Y')) { 

       done = 0; 

      } 

 } 

 

 printf("\nQ-Matrix Output Filename > "); 

 scanf("%s",filename); 

 

 fptr = fopen(filename,"w+t"); 



121 

 for(x = 0; x <= Xmax; x++) { 

  for(y = 0; y <= Ymax; y++) 

  fprintf(fptr, "%3.4f ", Q[x][y]); 

   fprintf(fptr,"\n"); 

  } 

 

 fprintf(fptr,"\n\n");    /* As a check, this prints out the valid state space */ 

 for(Fulls = 0; Fulls<=Slots; Fulls++) 

  for(Halves = 0; Halves <= 2*(Slots - Fulls); Halves++) 

   fprintf(fptr,"%d, %d\n", Fulls, Halves); 

 fclose(fptr); 

}  

/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Function:  record_results 

Input Parameters: none. 

Output Parameters: none. 

Side-Effects:  Prints to a file pointed to by the **argv character string of the main(),  a tabulated 

   form of results, with the Total No. of Arrivals, Proportion of Fulls, and the Half and 

   Full rate Blocking Probabilities. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void record_results(void) {

 int i; /* Counter Variable */

 float TempSum = 0; /* Temporary Sum variable */

 for(i=0; i<halfcount; i++) {

 if (method != 5) {

 TempSum += p[HalfBlocked[i]];

 }

 else if (HalfBlocked[i] == HalfBlk_p1[i]) {

 TempSum += p[HalfBlocked[i]] * (1-p1);

 }

 else if (HalfBlocked[i] == HalfBlk_p2[i]) {

 TempSum += p[HalfBlocked[i]] * (1-p2);

 }

 else {

 TempSum += p[HalfBlocked[i]];

 }

 }

 HRBlocking = TempSum; /* Prints H.R. Blocking Prob. on the line */

 TempSum = 0; /* Reset, for next task. */

 for(i=0; i<fullcount; i++) {

 TempSum += p[FullBlocked[i]];

 }

 FRBlocking = TempSum; /* Prints F.R. Blocking Prob. on same line */

}

/*~~

Function: body

Input Parameters: none.

Output Parameters: none.

Side-Effects: Depending on user input, (i.e. value of global method variable), this function calls

 the appropriate Q-matrix generator function (e.g. q_rnd() or q_rpck()). Then calls

 the manipulate() function, after which Gauss-Seidel iteration is used to repeatedly

 modify global probability of state vars. p[x] and pold[x], until convergence is

 reached and all probabilities of state are solved..

122

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ 

void body(void) { 

 

   int i,j;    

 

   l1[z] = rho*Slots*m1 * (2*prop1/(prop1 + 1));    /* given the average total util of 0.45, hence 0.45*8*mu */ 

   l2[z] = 2*(rho*Slots*m1 - l1[z]);  /* is the average arr. rate, we work out l1[z]           */ 

 

   Halves = Fulls = IsolHalves = 0;         /* Zero State-Counters */ 

   fullcount = halfcount = 0; 

   x = y = -1;    

    

 if (method == 1) {        /* Invoke the Q-Matrix Generator Function */ 

  q_rnd(); 

 } 

 else if (method == 2) { 

  q_bestfit(); 

 } 

 else if (method == 3) { 

  q_repacking(); 

 } 

 else if (method == 4) { 

  q_rpck_perp_reservation(); 

 } 

 else if (method == 5) { 

  q_rpck_rnd_reservation(); 

 } 

 else if (method==6)  

  q_rpck_perp_hs_reservation(); 

 

   /*printf("Obtained Q Successfully");*/ 

   manipulate();        /* Arrange the equations into p . Q' = p form */ 

 

   p = new float [Xmax+1];     /* Dynamic Memory Allocation */ 

   pold = new float [Xmax+1]; 

   ChkArr = new int [Xmax+1]; 

 

   BigSum = TempSum = 0; 

   Stop = I = 0; 

 

   for(i=0; i <= Xmax; i++) { 

    p[i] = pold[i] = 1;        /* Begin Successive Relaxation Solution */ 

   } 

 

  while ( !Stop ) { 

 

    I++;                                          /* Next Iteration */ 

    if (I%10000 == 0) printf(".");  

 

    for(i=0; i <= Xmax; i++) { 

       pold[i] = p[i];   /* Remember previous iteration value   */ 

       TempSum = 0;   /* and reset temporary sum var */ 

       for(j=0; j<=Xmax ; j++) { 

    TempSum += Q[j][i] * p[j]; /* Multiplying the matrices, p[i] modified */ 

       } 

       p[i] = TempSum; 

    /* printf("I = %d ; p[%d] = %f\n", I, i, p[i]);   Debug */ 



123 

    } 

 

    /* We do the testing ONLY at end of iterations */ 

 

    BigSum = 0;                /* UpDating BigSum after EACH new Iteration, I */ 

    for(i=0; i <=Xmax; i++) 

      BigSum += p[i]; 

 

    for(i=0; i<=Xmax; i++) { 

     if ( ((p[i] - pold[i])/BigSum < E) && ((p[i] - pold[i])/BigSum > -E) ) { 

   ChkArr[i] = TRUE; 

     } 

     else ChkArr[i] = FALSE; 

    } 

 

   Stop = ChkArr[0]; 

   for(i=0; i<=Xmax; i++)     /* If all old and current p's very close, finish */ 

    Stop = Stop * ChkArr[i]; 

  } 

 

   for(i=0; i<=Xmax; i++) { 

    p[i] = p[i]/BigSum;   

    /*printf("Final p[%d] = %f\n", i, p[i]);*/ 

   }   

   record_results();           /* write values to data file */  

 } 



124 

10. BIBLIOGRAPHY 

 

[BECK88] R. Beck and H. Panzer, "Strategies for Handover and Dynamic Channel Allocation 

in Microcellular Mobile Radio Systems", Proceedings 38th IEEE Vehicular Technology 

Conference, pp. 178-184, June, 1988. 
 

[CALL95] F. Callegati et al., "Call Admission Control for PRMA-based Multiservice Cellular 

Networks", Proceedings of Australian Telecommunication Networks and Applications 

Conference, pp. 485-489, Sydney, December 1995. 

 

[COFF85] E. G. Coffman, T. T. Kadota and L. A. Shepp "A Stochastic Model of 

Fragmentation in Dynamic Storage Allocation", SIAM J. Comput., vol. 14, no. 2, May 

1985. 

 

[COOP81] R. B. Cooper, Introduction to Queueing Theory, Second Edition, North Holland, 

New York, 1981. 

 

[COX73] D. C. Cox and D. O. Reudink, "Increasing Channel Occupancy in Large Scale 

Mobile Radio Systems: Dynamic Channel REassignment", IEEE Trans. Vehic. Tech., 

vol.VT-22, pp. 218-222, 1973. 

 

[ETSI92] ETSI GSM Specifications, Series 01-12. 

 

[GUER91] R. Guerin, H. Ahmady, M. Naghshineh, "Equivalent Capacity and its Application 

to Bandwidth Allocation in High Speed Networks", IEEE J.S.A.C., vol. 9, pp. 969-981, 

1991. 

 

[HODG90] M. R. L. Hodges, "The GSM Radio Interface", Br. Telecom Tech. J., vol. 8, pp. 

31-43, January 1990. 

 

[HUEB93] F. Huebner and M. Ritter, "Call and Burst Blocking in Multi-Service Broadband 

Systems with CBR and VBR Input Traffic", Proceedings of MMB '93, Aachen, Germany, 

pp.212-225, 1993. 

 

[HUI89] J. Hui, "Resource Allocation for Broadband Networks", IEEE J.S.A.C., vol. 6, pp. 

1598-1608, 1989. 

 



125 

[KAUF81] J. S. Kaufman, "Blocking in a Shared Resource Environment", IEEE Transactions 

on Communications, vol. 29, no. 10,  pp. 1474-1481, 1981. 

 

[KELL91] F. P. Kelly, "Effective Bandwidth at Multi Class Queues", Queuing Systems, vol. 

9, pp. 5-16, 1991. 

 

[KLEI75] L. Kleinrock, Queueing Systems Volume I: Theory, John Wiley & Sons, New York, 

1975. 

 

[KNUT73] D.E. Knuth, The Art of Computer Programming, Volume 2: Computer Algorithms,   

Addison Wesley, New York, 1973. 

 

[KONH86] A. G. Konheim and M. Reiser, "The moveable boundary multiplexor stability and 

decomposability," in Teletraffic Analysis and Computer Performance Evaluation. North 

Holland, New York, 1986. 

 

[KWON95] D. Kwon and K. W. Sarkies, "System Performance Enhancement Combining 

Handover Rejection Scheme with Channel Reservation Scheme", Proceedings of 

Australian Telecommunication Networks and Applications Conference, pp. 497-502, 

Sydney, December 1995. 

 

[LARS69] H. J. Larson, Introduction to Probability Theory and Statistical Inference, Wiley, 

New York, 1969. 

 

[MONT95] R. Montagna, "TCH-HS Activities for the GSM Channel Standardisation", 

Proceedings of ICC '95, San Francisco, February 1995.  

 

[MOUL92] M. Mouly and M. Pautet, The GSM System for Mobile Communications, Michel 

Mouly and Marie-Bernadette Pautet, France, 1992. 

 

[PADG95] J. E. Padgett, C. G. Guenther, T. Hattori, "Overview of Wireless Personal 

Communications", IEEE Communications Magazine, vol. 33, no. 1, January 1995. 

 

[RITT94] M. Ritter and P. Tran-Gia, Multi-Rate models for Dimensioning and Performance 

Evaluation of ATM Networks, Interim Report, COST 242 Project, Institute of Computer 

Science, University of Wuerzburg, 1994. 

 



126 

[ROBE81] J. W. Roberts, "A Service System with Heterogenous User Requirements - 

Application to Multi-Service Telecommunications Systems", Proceedings of Performance 

of Data Communication Systems and their Applications, G. Pujolle (ed.), North Holland, 

pp. 423-431, 1981. 

 

[SIVA90] K. N. Sivarajan, R. J. McEliece and J. W. Ketchum, "Dynamic Channel 

Assignment in Cellular Radio", Proceedings 40th IEEE Vehicular Technology 

Conference, pp. 631-637, June, 1990. 

 

[TELE78] Telecom Australia, A Course in Teletraffic Engineering, Prepared by the Staff of 

Traffic Engineering Section, Planning Services Branch, Headquarters, Melbourne, 1978. 

 

[TRAN93] Tran-Gia P. and Huebner F., "An Analysis of Trunk Reservation and Grade of 

Service Balancing Mechanisms in Multiservice Broadband Networks", IFIP Workshop 

TC6, La Martinique, January 1993.  

 

[USAI95] P. Usai, G. Cosier, D. Pascal, J. Sotscheck and M. Kappelan, "Subjective 

Performance Evaluation of the GSM Half-Rate Coding Algorithm (With Voice Signals)", 

Proceedings of ICC '95, San Francisco, February 1995. 

 

[ZUKE88] M. Zukerman, "Circuit allocation and overload control in a hybrid switching 

system," Comput. Networks ISDN Syst., vol. 16, pp. 281-298, 1988/1989. 

 

[ZUKE89] M. Zukerman, "Bandwidth Allocation for Bursty Isochronous Traffic in a Hybrid 

Switching System", IEEE Trans. on Communications, vol. 37, no. 12, December 1989. 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 



 

 




