Efficiency and Resilience of Resource

Allocation for Next-Generation

Data Centers

Ph.D. Candidate: Chao GUO

Supervisor: Moshe ZUKERMAN

Other collaborators: Gangxiang Shen (Soochow University, China), Sanjay K. Bose (Plaksha University, India),

Xinyu Wang (CityU), Tianjiao Wang (CityU), Jiahe Xu (CityU)

Department of Electrical Engineering 香港城市大學 City University of Hong Kong

Background

- Data center (DC), data center virtualization, resource disaggregation
- Study 1: <u>Resource allocation</u> for VDCs considering hot spots issues
- Study 2: Reliable resource allocation for DDCs
- Study 3: Reliable resource allocation for DDCs with network effects

Conclusion

Data Center (DC): Center of Data

IT infrastructure & Power & Cooling

Credit: https://www.istockphoto.com/hk/%E5%9C%96%E7%89%87/datacenter

Data Center Virtualization

Virtual Data Center (VDC)

Azure Virtual Datacenter

Article • 03/01/2023 • 2 minutes to read • 4 contributors

∠ Feedback

A more robust platform architecture and implementation have been created to build on the prior Azure Virtual Datacenter (VDC) approach. Enterprise-scale landing zones in the Microsoft Cloud Adoption Framework for Azure are now the recommended approach for larger cloud-adoption efforts.

VDC Embedding

- VM mapping
- Virtual link mapping

Department of Electrical Engineering 香港城市大學

City University of Hong Kong

Resource Disaggregation: For Resource Pooling and Composability

(a) Server-based data center (SDC)

(b) Disaggregated data center (DDC)

Study 1: Temperature-Aware VDC Embedding

Thermal Fluid Cycle

Rack-Level Inlet Temperature Model

$$T_k^{in} = T_k^{sup} + \sum_{l \in \Phi} d_{kl} \cdot P_l^{rack}$$

- T_k^{in} inlet temperature of rack k
- T_k^{sup} cooling temperature supplied to k
- P_l^{rack} total power of rack l
- d_{kl} heat transfer matrix: increase rate of rack k's inlet temperature caused by P_l^{rack}

Temperature-Aware VDC Embedding Problem

- Given: Physical DCN, T_k^{sup} , d_{kl} ; VDC requests
- Objective

Minimize:
$$T_{max}^{in} + \alpha \cdot \sum_{n \in N \cup S} P_n$$
Maximum rack inlet $v \in N \cup S$ temperature of all rackstotal power of all IT equipment

Solution 1: Mixed integer linear programming (Chapter 3.4)

Heuristic Method (Chapter 3.5)

- 1. Place more workloads to colder racks while less to hotter racks
 - >Inlet temperature can be well balanced
 - >Failure risk can be mitigated, and cooling energy can be well saved
- 2. Consolidate workloads in each rack to fewest devices
 - Energy consumption of IT equipment keeps in low level

Maximum Rack Inlet Temperature

Total Power Consumption of IT Equipment

Study 2: Exploring the Benefits of Resource Disaggregation in Service Reliability

Reliability Benefits of Disaggregation

- High flexibility
 - Expand optimization regions
- New failure pattern
 - Different modules fail more independently

Reliability-Aware Resource Allocation for DDCs

 Input: Hardware (Capacity and reliability) and requests (resource demand, reliability requirement)

Constraint: Each request is provisioned with at most one backup
Solution 1: ILP (Chapter 4.3)

Heuristic Method (Chapter 4.4)

- Heuristic method (Detailed in <u>Chapter 4.4</u>)
 - First try to satisfy the reliability requirement without backup
 - Try to satisfy the reliability requirement with backup if without backup cannot meet the requirement
 - Try to allocate modules to each request that is least reliable but can satisfy the requirement.

Number of accepted requests vs. reliability requirements

City University of Hong Kong

Proportion of Accepted Requests Provisioned with Backup Resources

It is more efficient to meet reliability requirement with no redundancy.

Therefore, the lower the proportion, the more efficient it is.

Study 3: Reliable Resource Allocation for DDCs Considering <u>Network Effects</u>

Network Challenge & Disaggregation Scale

Disaggregation & pooling being constrained by network capability

(b) Rack-scale disaggregated DC architecture

Reliability Challenges of Resource Pooling

Shared network – shared failures

(b) Resource blades (DDC)

Study Problem

Given

- G(V, E)
- Each blade with multiple resource modules
- Hardware parameters: 1) capacity, 2) reliability, 3) bandwidth, delay
- Requests: resource demand, bandwidth and latency requirements

Objective

• Max: 1) Acceptance ratio; 2) Minimum request reliability.

MILP (Chapter 5.3)

• Weighted sum approach

Heuristic Method

- Rack Selection
 - Single rack for rack-scale DDC
- Blade Selection
 - [R] blades, one for each resource type
- Module Selection
 - Use multiple modules to allocate one type of resource

Heuristic Method

 Blade/Rack Selection: Select a blade/rack with high blade/rack index (η):

$$\eta = \varepsilon \cdot \eta^{rel} + (1 - \varepsilon) \cdot \eta^{eff}$$

 η^{eff} : efficiency index, defined as the (average) utilization of the blade/rack η^{rel} : reliability index, defined as the product of the probability that the used hardware does not fail during the service time of a request ε : weighting coefficient, $\varepsilon \in [0,1]$

Approximate Pareto Fronts Comparison

Not resilient network

Not resilient network with not sufficiently low latency

Applying Backup

Migration-Based Restoration

Principle:

• Migrate interrupted requests from failed hardware elsewhere, to restore the service.

Simulation

- Request arrival (Poisson)
- Request departure (Service time: Exponential)
- Hardware failure (Weibull)
- Hardware repair (Exponential)

CONCLUSION

- We design a temperature-aware VDC embedding scheme which can not only proactively balance the inlet temperatures and avoid hot spots but also achieve high energy-efficiency.
- We design a reliability-aware resource allocation method for a DDC which can achieve a high number of acceptances with guaranteed reliability requirement.
- We design a resource allocation method for a DDC considering network effects and different disaggregation scales, where we find the reliability benefit is possible to be offset by an imperfect network. We propose a migration scheme to overcome such issue.

