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Abstract

Optimization Problems in Wireless Sensor and Passive Optical Networks

by Ji Li

In this thesis, we optimize network design and planning for the contemporary and fu-

ture generation networks. In particular, we are interested in optimal resource placement,

which is critical for cost-effective network deployment and performance improvement.

The thesis investigates three problems.

The first problem focuses on the virtual backbone in a randomly deployed Wireless

Sensor Network (WSN). We aim to find a minimum size virtual backbone, which plays an

important role in efficient broadcasting and energy-conserving routing. It is equivalent

to the NP-hard problem of finding the minimum connected dominating set (MCDS), in a

graph corresponding to the network topology. We numerically evaluate the distribution

of the virtual backbone cardinality, and its mean, for a dense single-dimensional sensor

network. For a two-dimensional scenario, we develop an efficient distributed algorithm,

called Incremental Coverage Algorithm (INCOA), to determine the virtual backbone in

dense sensor networks. INCOA is scalable to large dense sensor networks due to its low

time complexity. We also numerically estimate the expectation of the virtual backbone

cardinality, which can serve as a benchmark to evaluate the routing algorithms for wire-

less networks, in terms of the minimum number of relays.

Secondly, as WSNs are required to be connected, and minimum consumption of re-

sources is a common consideration for practical design, we evaluate the minimum num-

ber of sensors required to maintain the network connectivity with a certain probability.

We specifically consider a network with sensors deployed targeting at predetermined po-

sitions but with random perturbation. We conduct extensive simulations, and use curve

fitting as a tool to obtain empirical formulae based on the simulation results. We also con-

sider the dual problem, evaluating the probability of connectivity in a given network with

a certain number of nodes. The tolerable perturbation on the node positions to ensure a

given probability of connectivity is also estimated.
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In the last part of the thesis, we look into the optimal deployment of greenfield Pas-

sive Optical Network (PON). We minimize the total deployment cost, which is important

to network operators. As the optimization problem was shown to be NP-hard, we de-

velop an efficient heuristic, Recursive Association and Relocation Algorithm (RARA), to

solve the problem. The study also exploits the concept of cable conduit sharing to further

reduce the deployment cost. Finally, for a large PON deployment scenario with hun-

dreds or even thousands of users, we also propose a disintegration scheme to solve the

cost minimization problem. By dividing a large planning scenario into several small sce-

narios, and then solving the small ones independently, we can significantly improve the

computational efficiency without degrading the planning performance much.
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Chapter 1

Introduction

This thesis investigates optimization problems for design and planning of Wireless Sen-

sor Networks (WSNs) and Passive Optical Networks (PONs). The objective is to save

overall deployment and operation costs, and to improve system performance. Three

specific problems are studied. These problems focus on finding optimal positions for

resource placement and arrangement in a geometric plane.

The first research problem is to find a minimum relay set in a random Wireless Sensor

Network, which is equivalent to finding a Minimum Connected Dominating Set (MCDS)

in a graph corresponding to the network topology. This problem is of interest since MCDS

plays an important role in achieving efficient broadcasting, and energy-conserving rout-

ing. The second problem focuses on computing the minimum number of sensors to

achieve a certain level of connectivity in a random WSN. This problem is called the

connectivity problem, which is also important as full connectivity is critical for a WSN

to successfully operate. We aim to provide connectivity with minimum resources, i.e.,

minimum number of nodes. In addition, we evaluate the probability of sensor network

connectivity with a given number of sensor nodes, and estimate the tolerable node posi-

tion perturbation to maintain a required level of connectivity. The last problem, optimal

Passive Optical Network planning for greenfield network deployment, concentrates on

minimizing the total deployment cost of PON systems, subject to a variety of PON sys-

tem constraints, such as maximal transmission distance, maximal differential distance,

and maximal split ratio. This problem is of importance for network operators and service

providers when widely deploying PON systems as the next generation broadband access

networks.

We study these three problems through a variety of methodologies including proba-

bility modelling, asymptotic analysis, graph theory, computer simulation, and optimiza-

tion techniques.

The rest of this chapter is organized as follows. Section 1.1 gives a brief introduction

1
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to WSNs and PONs, and addresses the motivations for this research. Next, the structure

and the main contributions of the thesis are described in Section 1.2.

1.1 Overview and Motivation

1.1.1 Wireless Sensor Networks

Sensor networks have a long history, which can be initially traced back as far as the 1950’s.

It is recognized that the first obvious sensor network is the Sound Surveillance System

(SOSUS) [52] [218]. The SOSUS was made up of an array of acoustic sensors that were

interconnected by wired cables and were deployed by the US in deep ocean basin during

the Cold War to detect and track Soviet submarines. Another conventional example of

sensor networks is a networked air defence radars system. In its early stage, development

of sensor networks was mainly driven by military usage, in which sensor nodes were

wired together to provide battlefield surveillance.

Evolution of technologies has driven sensor networks away from its original appear-

ance. With the emergence of integrated sensors embedded with wireless capability, most

of current sensor networks compose a collection of wirelessly-interconnected sensors,

of which each is embedded with sensing, computing and communication components.

These sensors can observe and respond to phenomena in the physical environment [7].

This type of sensor networks are referred to as wireless sensor networks. Because of low

power consumption and low cost of these wireless sensors, large scale and self-organized

sensor networks are possible. They provide flexibility in deployment and maintenance,

exploit the ability of wireless networks to be deployed in highly dynamic environments

and hence enable sensor networks to be potentially used in various military and civil-

ian applications. These applications include, but are not limited to, security surveillance

(e.g., alert to terrorist threats [213]), environment monitoring [156], habitat monitoring

[152], hazard and disaster monitoring and relief operations, health fields applications

[200], and home applications (e.g., smart environment) [7]. The wireless communication

techniques in WSNs can be either ad hoc (multi-hop), or single-hop wireless transmission

[207]. Though the latter is popular in short-range applications, such as smart homes, the

former, ad hoc technique, attracts more interests due to its high flexibility and capability

of supporting long-range, large scale, and highly distributed applications. In particular,

in this thesis, we only focus on wireless sensor networks adopting ad hoc transmission.
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WSNs posses many advantages, such as high reliability, event driven operations, flex-

ibility of deployment, self-adjustment and ease of maintenance [213]. Typical tasks of

WSNs include information gathering, processing and dissemination, which require sen-

sors to be embedded with four components, including sensing, processing, power supply

units, and transceiver [7]. These components enable sensor networks to gather informa-

tion from environments, to perform data processing and to transmit processed data to

information collection nodes via wireless ad hoc communications.

In design and implementation of WSNs, many system parameters need to be opti-

mized. Firstly, a WSN is expected to have a long life span. However, as a WSN may be

deployed in an inaccessible terrain, and contains a tremendous number of sensor nodes,

it is often difficult to replace or recharge their batteries, if it is not impossible. Thus, en-

ergy conservation is critical for WSNs, both for each sensor node and the entire network

level operations. Various approaches were proposed to save energy consumption for

sensor networks. For example, for the network level operations such as routing, if only

a small fraction of sensors are involved in the routing process, the rest of the sensors can

be turned off to save energy. This scheme is supported by the hardware and software

advances that leverage the capability of temporarily shutting down those sensors that

are not involved in any network operations. For instance, Rockwell’s WINS sensor nodes

can achieve a factor of ten power reduction when shutting down the radio transceiver,

compared to those active nodes (with transceivers on) in idle state [185]. However, a

prerequisite for this type of energy saving scheme is that the WSNs must still provide

all the required functions even with those nodes turned off. Thus, there raises an impor-

tant research problem, what is the maximum number of sensors that can be turned off,

while the whole WSN is still functional. This problem is equivalent to minimizing the

total number of active nodes, subject to ordinary operations of the system. In this thesis,

we consider to find such a minimum set of active sensors and their positions, such that

proper routing operations can still be facilitated. The selected sensors will function as

backbone relay nodes to data communications within the whole sensor network.

Secondly, in a WSN, after collecting information from the environment, sensors need

to transmit aggregated data to gateways or information collection nodes. It is important

to ensure that every sensor can communicate with the gateways. Due to the ad hoc com-

munication features of WSNs, a sufficient condition for reliable information transmission

is the full connectivity of the network, which is defined as the fact that every pair of nodes
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can communicate with each other, either directly or via intermediate relay nodes. Due to

the large number of sensors in a WSN, the total cost could be high for the whole net-

work, though the cost of each individual sensor is low. Thus in addition to minimizing

the number of active nodes, finding the minimum number of required nodes in a WSN

so as to achieve network connectivity is another important problem. We investigate this

problem for a special type of networks, in which all the sensors are deployed randomly

around some targeting nodes.

A commonly used model for wireless network is the unit disk graph [54] model. A

unit disk graph is defined as a graph such that there exists an edge between any two

vertices with distance no more than one unit length. If the radio transmission range

is set to be one unit length, we can develop the corresponding unit disk graph for a

wireless network, in which each node in the network is represented by a vertex in the

corresponding unit disk graph, and an edge connects any two nodes if their distance is

no more than the radio range.

The usage of unit disk graph to model a wireless network is based on the following

two assumptions

• All the sensors are equipped with omnidirectional antennas, and the propagation

model is the free space propagation.

• The radio transmission range is isotropic for each sensor, and all the sensors have

an identical radio range.

The second assumption is a direct result of the first assumption. With these assumptions,

the radio transmission range of all the sensors can be abstracted as circles with identical

radius centered at the sensors. Though in practice, the transmission area of each sensor,

the so called footprint, is amorphous due to the random fluctuation of the wireless chan-

nel, the systematic approaches of system design and the scalability planning for future

service provisioning do require to represent the radio coverage by a regular shape, and

circle is a nature choice [186]. Moreover, recent study [30] in percolation theory also re-

veals that circular discs are the hardest shape to connect together, which states that more

irregular radiation patterns require lower nodal density to form an unbounded connected

network. Thus the results obtained by using circular radiation pattern are generally ap-

plicable to practical situations if more irregular shapes are used.



1.2. THESIS OUTLINE AND CONTRIBUTIONS 5

Throughout this thesis, unless otherwise specified, we adopt unit disk graph to model

WSNs. Also, the terms sensor, node, and vertex are used interchangeably.

1.1.2 Passive Optical Networks

Passive Optical Networks (PONs) [69] [136] are growing to be a popular technology for

the future generation access networks. Its advantages are potentially low cost, high band-

width, scalability and ease of upgrade. It can cater to the requriement of the emerging

bandwidth-intensive applications such as IPTV, Video-on-Demand (VoD), and 3D online

gaming. Current major PON technologies can be classified into Ethernet Passive Opti-

cal Networks (EPON) [115] [136] and Gigabit-capable Passive Optical Networks (GPON)

[120] [121]. The former is based on Ethernet technology, which can provide up to 1 Gb/s

capacity in both upstream and downstream directions, and cover up to 20 km transmis-

sion distance, while GPON, evolving from ATM PON (APON) technology, can carry up

to 2.5 Gb/s capacity and cover up to 60 km transmission distance.

Because of the point-to-multipoint architecture, it is important to optimally design

and plan for PON system deployment. As the costs of land trenching and laying fibres

are high, which generally dominate the overall cost of the whole deployment, minimiz-

ing the total trenching distance for laying fibres is often considered as a key optimization

objective for cost minimization PON deployment. With this motivation, one of our re-

search problems in this thesis focuses on optimally finding the total number of PON and

the geometric positions of PON splitters, and ONU-splitter association patterns, to serve

a given set of ONUs, such that the total cost is minimal.

1.2 Thesis Outline and Contributions

The rest of the thesis is organized as follows.

Chapter 2: Background and Literature Review. This chapter surveys wireless sensor

network technologies, and reviews the related work for the connectivity problem and the

MCDS problem in WSNs.

Chapter 3: Minimum Connected Dominating Sets in 1-D Dense Wireless Sensor Net-

works. This chapter models the set of active nodes (the relay set) in WSNs by a connected
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dominating set, and tries to minimize its cardinality to obtain a minimum-sized backbone

in one-dimensional dense networks. We propose approaches to compute the statistics of

the cardinality of the relay set numerically, by using a “modified transmission range” ap-

proach.

Chapter 4: Minimum Connected Dominating Sets in 2-D Dense Wireless Sensor Net-

works. This chapter considers the minimum-sized backbone in a more practical two-

dimensional scenario. Based on the asymptotic results given by existing literature, we

develop an efficient algorithm to approximate the MCDS in two-dimensional dense net-

works. We also develop an approach to estimate the expected value of the cardinality of

the MCDS in 2-D dense networks without computing the MCDS explicitly.

Chapter 5: Connectivity in a Class of Wireless Networks. This chapter provides a sensor

deployment model, which is different from existing models. Similar to that in Chapter

4, we also assume that relays are randomly distributed around targeted locations in this

chapter. However, this chapter considers a 1-D network. The positions of all the sen-

sor nodes are assumed to follow non-identical Gaussian or Laplace distributions, with

identical variances, in one-dimensional space. Curve fitting is the major tool to apply

in this chapter. By using curve fitting and surface fitting, we obtain empirical formulae

to compute the minimum number of nodes required to achieve a certain probability of

connectivity. We also evaluate the connectivity probability for a network with a given

number of nodes, and estimate the tolerable variance of node positions such that the net-

work is still connected with a required probability.

Chapter 6: Background for Passive Optical Networks. This chapter gives background

information for the PON technologies, and discusses existing research work for optimal

deployment of PON systems.

Chapter 7: Cost Minimization Planning for Greenfield Passive Optical Networks. This

chapter looks into the cost minimization problem for PON system deployment. We take

into account several PON system parameters, such as maximal transmission distance,

maximal differential distance and maximal split ratio, and develop an efficient algorithm,

called Recursive Association and Relocation Algorithm (RARA) to solve this problem.
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We also evaluate the benefits of cable conduit sharing, and demonstrate how a disinte-

gration scheme can help to improve the computation efficiency of the optimization.

Chapter 8: Concluding Remarks. This chapter summarizes the main results in this the-

sis, and describes the potential directions for the future research.

There are four main contributions in this thesis. First, we develop new approaches to

evaluate the cardinality of the MCDS in 1-D dense random WSNs probabilistically. The

approaches not only evaluate the expectation of the cardinality of the MCDS but also

approximate its distribution numerically. The results provide an evaluation scheme for

routing algorithms, in terms of the number of relays needed.

Secondly, for 2-D random WSNs, by applying probability modelling, we develop an

efficient algorithm, the Incremental Coverage Algorithm (INCOA), to compute the dom-

inating set that is, with high probability, a good connected dominating set, in dense net-

works. We also propose an approximation to evaluate the expectation of the cardinality

of the MCDS in dense networks.

Thirdly, we introduce a network model in 1-D space, in which nodes are not purely

randomly deployed but have intended positions to be placed, nonetheless with random

perturbation. We use curve fitting and surface fitting approaches to obtain empirical for-

mulae, which can compute the number of nodes required to achieve a certain probability

of connectivity. Different distributions for node deployment are compared.

Finally, for the optimal PON deployment, we develop an efficient recursive algorithm,

called RARA, to minimize the total deployment cost. The algorithm further exploits the

Minimum Spanning Tree (MST) concept to share the cable conduit, in order to further

reduce the cost. To improve computation efficiency, we also propose a disintegration

scheme to efficiently solve large scale PON deployment problem.

All the contributions of this thesis have been fully or partially presented in the follow-

ing papers.

Journal Paper

1. J. Li, L. L. H. Andrew, C. H. Foh, M. Zukerman, and M. F. Neuts, “Meeting Connec-

tivity Requirements in a Wireless Multihop Network”, IEEE COMMUNICATIONS

LETTERS, Vol. 10, No. 1, Jan, 2006.
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2. J. Li, G. Shen, “Cost Minimization Planning for Greenfield Passive Optical Net-

works”, accepted to be published in IEEE/OSA Journal of Optical Communications

and Networking.

3. J. Li, L. L. H. Andrew, C. H. Foh, M. Zukerman, and Hsiao-Hwa Chen, ”Connec-

tivity, Coverage and Placement in Wireless Sensor Networks”, accepted to be pub-

lished in WIRELESS SENSOR TECHNOLOGIES AND APPLICATIONS (Special Is-

sue).

4. J. Li, L. L. H. Andrew, C. H. Foh, and M. Zukerman, “Minimum Connected Domi-

nating Sets in Two-Dimensional Dense Wireless Networks”, In preparation to sub-

mit.

Conference Paper

1. J. Li, C. H. Foh, L. L. H. Andrew, and M. Zukerman, “Sizes of Minimum Connected

Dominating Sets of a Class of Wireless Sensor Networks”, In Proceedings of IEEE

International Conference on Communications 2008 (ICC08), May, 2008, Beijing, China.

2. J. Li, G. Shen, “Cost Minimization Planning for Passive Optical Networks”, In Pro-

ceedings of the OFC/NFOEC, Feb, 2008, San Diego, California.



Chapter 2

Background and Literature Review

The first part of the thesis is concerned with connectivity, either of the sensors themselves

or a small relay set.

This chapter provides an overview of wireless sensor networks (WSNs), and discusses

existing work that focused on the connectivity issues in WSNs. In particular, we are

interested in maintaining connected WSNs and their connectivity related characteristics,

as well as the construction of a small connected relay set in WSNs. We aim to review

the extensive existing results related to these topics, in order to identify our contributions

presented in this thesis.

Section 2.1 gives a general introduction to WSNs and discusses their fundamental

aspects, and hence provides the background of the areas covered in the first part of the

thesis. The existing work on network connectivity is reviewed in Section 2.2. It first

reviews the prior results for connectivity studies in wireless ad hoc networks and WSNs

(Subsection 2.2.1). That provides backgrounds for our contribution described in Chapter

3 to 5. Then it considers the construction of a small connected relay set, such that the

packet delivery can be achieved by forwarding packets using only sensors in the relay

set (Subsection 2.2.2). Chapter 3 and 4 in the thesis focus on the problem of small relay

set construction, and the evaluation of statistics of that relay set. After that, Subsection

2.2.3 covers the optimal placement of sensor nodes, which has a fundamental impact

on the connectivity and other operational requirements of WSNs. Finally, we discuss

some other connectivity related issues, including percolation theory, imperfect wireless

channels, and mobility of nodes, in Subsection 2.2.4. Section 2.3 summarizes this chapter.

2.1 Wireless Sensor Networks

Sensor networks are useful for observing the physical world [70], hence they provide a

bridge between environments and the digital data world. A sensor network is a collec-

9
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tion of networked sensors that can collect information from the environments they are

embedded in, perform information processing, and transmit processed data [8].

Although sensor networks were wired in the early stages, recent technology advances

enabled the integration of sensor devices and wireless communication equipment. This

integration drives the sensor networks to wireless sensor networks, in which sensor

nodes can communicate wirelessly in an ad hoc fashion, without the support of fixed

infrastructure [165]. This evolution motivates the research on both technologies and ap-

plications of sensor networks, which may potentially revolutionize our lives in the future.

(See Chong and Kumar [52] for a detailed discussion of the history and evolution of sen-

sor networks.)

Potential applications of WSNs include, but are not limited to, health applications

[11], agricultural monitoring [35], environment monitoring [39], habitat monitoring [41]

[152], smart home applications [226], and structure health monitoring [227]. For a more

comprehensive list of WSN applications, see Sohraby [207]. Inspired by the wide range

of applications, it was predicted in 2004 that more than 500 million sensor nodes will

be deployed for WSN applications, which will create an over $7 billion market by 2010

[104]. In this section, we review some introductory and survey work, and provide a

general background for WSNs.

Both Pottie and Kaiser [181], and Akyildiz et al. [8] gave detailed introductions to

WSNs. Pottie and Kaiser [181] mainly discussed the hardware aspects and physical prin-

ciples of WSNs through an example of security applications. Sensing propagation law,

communication constraints, hardware energy consumption, signal processing architec-

ture, WSN network architectures, and sensor node architectures were also described in

[181]. The authors claimed that distributed arrangement of sensors is essential for accu-

rately sensing multiple targets. This result is one of the major driving forces of WSNs.

It was also shown that for ad hoc communications, radios consume similar amount of

power for transmitting and receiving, which take much more power than data process-

ing. These facts indicate that the radio transceivers should be turned off as much of the

time as possible. Moreover, in terms of data transmission, processed and aggregated

data are preferred rather than transmission of raw data in order to reduce the volume

of transmitted information, as communications dominate the energy consumption com-

pared with processing.

In contrast, Akyildiz et al. [8] focused on the layering architecture of WSNs, based on
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the TCP/IP protocol stack. WSNs were studied from the application areas to the system

architectures. Research efforts and unsolved problems for each specific layer were also

highlighted. It was identified that the main factors influencing sensor networks include

(1) fault tolerance and reliability, (2) scalability, (3) costs of production, (4) hardware,

(5) topology, (6) transmission, and (7) energy management. Sensor nodes are prone to

failure as they are often deployed in harsh environments. Hence reliability is important

for sensor networks to provide continuous services in the presence of individual sensor

failure. Scalability is another important issue for the WSN design, as sensor networks

may contain a large number of densely deployed sensors, and protocols need to be well-

scaled. The dense sensor deployment that leads to the mass production of sensors also

require the cost for each sensor to be cheap. Nowadays, an individual sensor is desirable

to cost less than $1. With these low-cost sensors, several constraints on the hardware

design are imposed, such as physical volume, energy consumption, radio transmission,

data processing, sensing, and so on. Therefore, the hardware design is forced to provide

high capability while meeting all the constraints. In addition to that, sensor networks

should be able to adapt to topology changes, and be self-manageable, in order to save

maintenance costs, as sensors are not reliable and sensor networks are often deployed in

inaccessible terrains. The harsh environments in which WSNs are deployed also prevent

sensor batteries from being replaced, or it is very expensive to do so. Thus WSNs should

operate in an energy efficient manner to reduce the power consumption and enable the

networks to have long life span.

Tubaishat et al. [213] also gave an overview of WSNs. The authors discussed the

potential applications and main challenges of WSNs. These challenges included frequent

topology changes, limited sensor capabilities (power, computation, communications, and

memory), failure-prone sensors, lack of global ID’s for each individual sensor, scalability

in network layer and data link layer, efficient deployment schemes, and dynamic environ-

ment constraints. (Also see Haenggi [94] for a comprehensive discussion of open research

issues for WSNs.) Tubaishat et al. also compared the data-centric and address-centric

querying schemes. With the former, the data collection centres send queries to specific

regions, and wait for answers from sensors with required data, while in the address-

centric scheme, each sensor owns a unique ID, and data queries are sent to specific nodes

identified by their IDs. It is clear that data-centric is preferred as assigning unique ID

to a massive number of sensors is costly. The authors also pointed out that the overall



2.1. WIRELESS SENSOR NETWORKS 12

communication architecture prefers clustering structure. However, in terms of the end-

to-end communication, it is achieved via ad hoc communications. Therefore, WSNs can

be considered as an application of mobile ad hoc networks (MANETs).

WSNs and MANETs share some common features. The most important feature is that

they both involve in wireless multi-hop communications, i.e., each terminal can function

as a router for data forwarding. In spite of the similarity, WSNs have some unique char-

acteristics compared to MANETs. For instance, sensors in WSNs have much more strict

energy consumption constraints while terminals in general MANETs often have contin-

uous power supply. Moreover, WSNs contain many more nodes (possibly by several

orders of magnitude) than that of MANETs. However, at the end-to-end communication

level, we do not distinguish these two types of networks, as they both exploit wireless

multi-hop communications.

A typical wireless-enabled sensor node may contain four components, they are sens-

ing unit, processing unit, wireless transceiver, and power supply unit [8]. The logical

architecture of a wireless sensor node is shown in Fig. 2.1. A sensor node contains one

or more sensing units, which are necessary for information collection. Multiple sensing

units are needed if we are interested in various information. The sensing units pass the

collected information to the data processing unit, in which some simple signal process-

ing, such as data aggregation, is performed. The processing unit also controls the sensor,

and coordinates the functions of different units. The sensor transmits processed data to

other sensors or data sinks via its wireless transceiver. Note that application-specific sen-

sors may also contain additional components, such as actuators or mobilizers. They are

in general, however, not considered as parts of sensors because they are not common

components of a typical sensor. All these components rely on the energy supplied by the

power supply unit.

As in most cases sensor nodes are generally batteries powered, they have limited en-

ergy resources, which leads to short radio transmission ranges. On the other hand, sensor

nodes which collect information from embedded environments are required to report the

occurrence of events to data collection centres. Therefore, the communications in a WSN

are often conducted in an ad hoc fashion, which leverage the connectivity of the network

as an intrinsic requirement. In addition to the considerations of network connectivity,

WSNs also need to perform efficient routing as multi-hop communications are involved.

Since MANETs and WSNs often have very limited, or even no fixed infrastructures, the
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Figure 2.1: The logical architecture of a sensor node.

routing process in such networks is often complicated, and generates a large amount of

overheads, due to the broadcasting nature of the wireless communications. Thus it is

helpful to find a small set of sensor nodes, and the routing is restricted to perform in

these nodes. Furthermore, this node set can help to resolve the broadcast storm problem

[169], which is often caused by the blind flooding [107]. To successfully accomplish these

tasks, it is essential to ensure that nodes in the selected set are connected to each other,

either directly or in an ad hoc fashion via other nodes in the set. As this node set forms a

virtual infrastructure for the network, it is often called a virtual backbone.

In the next section, we discuss the connectivity issues. We first review the existing

studies of connectivity for MANETs and WSNs. Related terminologies are explained in

this section. We discuss algorithms that create a virtual backbone by connecting nodes in

a special set. Also, we provide a taxonomy for a type of schemes exploiting graph theo-

retical concepts for virtual backbone construction, and survey algorithms falling in each

categories. A section discussing the node placement problem which affects the network

connectivity is followed. Finally, we discuss some other issues, including the percola-

tion theory, the impacts of the imperfection of wireless channels and node mobility, on

the connectivity of networks. We aim to provide backgrounds to and position our work

presented in Chapter 3- 5.

2.2 Network Connectivity

Connectivity is critical for WSNs, as information collected needs to be sent to data collec-

tion or processing centres. This transmission is conducted through ad hoc communica-



2.2. NETWORK CONNECTIVITY 14

tions, which require network connectivity as a mandated criterion. The connectivity of a

WSN is usually defined based on a graph associated with that WSN.

A WSN or a wireless ad hoc network is often represented by a graph, in which ver-

tices correspond to the communication nodes in the wireless network, and an undirected

edge between a pair of vertices indicates that the corresponding nodes can communicate

directly. Edges of the graph are undirected because all the nodes in the WSN are assumed

to have homogeneous transmission range. With this graph representation, a network is

called connected if its associated graph is connected. A graph G is connected if and only if

there exists a path between any pair of its vertices [62]. A connected network implies that

any pair of nodes can communicate with each other, possibly through multiple hops by

using relay nodes. More strict definitions of connectivity exist, such as 2-connectivity and

3-connectivity, which have similar meanings as in the graph theory, i.e., there exist two

or three disjoint paths between any pair of nodes, for 2-connectivity or 3-connectivity,

respectively. Though the two and three connectivity provide better fault-tolerance, we

do not emphasize them. Our studies focus on the single connectivity as we would like to

analyse the necessary conditions for the communication between arbitrary pair of nodes.

It is clear that the connectivity of a WSN is related to the positions of nodes, and those

positions are heavily affected by the sensor deployment. In general, there are two types

of approaches to deploy sensors in a WSN, the deterministic deployment, i.e., sensors are

placed exactly on pre-engineered positions, and the random deployment, i.e., nodes are

deployed on random positions. For the deterministic deployment, networks are carefully

planned, and nodes are placed on desired positions. Therefore, it is not difficult to achieve

network connectivity, if specifications of nodes are known. Although the deterministic

deployment has such an advantage, in order to reduce installation costs, there are also

requirements for applying random deployment to deploy large WSNs which contains

very large numbers of nodes. Nodes may be dispersed by a moving vehicle or artillery

shell [8]. Therefore, sensors often have nondeterministic positions, and the analysis of

connectivity of such a type of networks involves proper modelling of random networks.

Communication networks are often modelled as random graphs. Mathematically, a

random graph is a graph that is generated by some stochastic process [29]. The theory of

random graphs began with Erdős and Rényi’s pioneer work [71] [72] in the late 1950s and

early 1960s. It was originally derived as a tool of proof in the combinatorial mathematics.

However, it is now widely accepted as a modelling method in communications [14] [68]
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[83], social studies [117] [167], biology [199], and so on. Almost at the same time, Gilbert

[80], Austin et al. [15], and Ford and Uhlenbeck [77] also studied the statistical aspects of

graphs independently. However, unlike Erdős and Rényi, they used enumeration meth-

ods, which are essentially deterministic, to estimate exact values of graph properties,

while Erdős and Rényi studied the distributions of graph properties. Thereby, Erdős and

Rényi are often credited with the foundation of the theory of random graphs.

One type of the most extensively studied random graphs are Erdős-Rényi graphs. An

Erdős-Rényi graph G(n, p) is a graph with n vertices, and each of the C2
n possible edges

exists independently with a probability p. As Erdős-Rényi graphs assign randomness to

edges, i.e., there is a link between each pair of nodes with certain probability, it is not

an ideal model to describe real networks with geometric properties, in which distance

between nodes is an important parameter to affect the existence of communication links.

For example, if the distance between two nodes is too long such that setup a direct link is

too expensive, or impossible, no direct communication exists between these two nodes.

Hence there are no edges between those nodes. Moreover, as discussed by Chlamtac

and Faraó [51], Erdős-Rényi graphs do not consider correlations between different links.

Therefore, we need new methods to model networks with randomness.

A spontaneous candidate for random network modelling is the so called Random Geo-

metric Graphs [177]. With node set V, a geometric graph G = (V, r) is equivalent to a graph

G1 = (V, E), in which V is the vertices set, and E = {(u, v)|∀u, v ∈ V, ‖u− v‖ ≤ r}. If

the nodes in V are uniformly independent and identically distributed (i.i.d.) in the metric

space, G is called a random geometric graph. Hence random geometric graphs are useful

to model wireless ad hoc networks if all the nodes are i.i.d. and uniformly distributed.

For a WSN with sensors randomly deployed according to arbitrary probability dis-

tributions in the Euclidean space, the associated unit disk graph is a graph that abstracts

each sensor as a vertex, and an edge exists for two vertices with the Euclidean distance

between them less than the unit distance r, i.e., transmission range r. As the position of

each node is random, the distance between an arbitrary pair of nodes is also random.

Therefore, this type of unit disk graph can be considered as a random graph. A random

unit disk graph boils down to a random geometric graph if all the sensors are i.i.d. and

uniformly distributed.
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2.2.1 Connectivity in Wireless Ad Hoc and Sensor Networks

It is recognized that Erdős-Rényi random graphs are not suitable to model wireless multi-

hop networks, mainly due to their incapability of describing the distance-dependent

characteristics. To resolve this problem, Gilbert [81] proposed a model called Random

Plane Networks, and indicated its usage in the connectivity studies of packet radio net-

works. This model virtually abstracts a network as a graph by taking the same idea as

unit disk graph model. Gilbert used this model to analyse networks deployed in an in-

finite plane, on which stations are distributed according to a Poisson point process with

density λ. This type of models were also used to study the spread of contagious disease

[81].

Literature on connectivity of random WSNs in general falls into two types. On the

one hand, given a random WSN with n nodes, the minimum transmission range for each

node so as to ensure a certain level of connectivity probability is of interest. On the other

hand, for n random nodes each with an assigned radio transmission range, the probabil-

ity of connectivity is an important metric to evaluate the performance of WSNs.

Santi et al. [197] studied the minimum transmission range rmin that can maintain the

connectivity in a homogeneous wireless network, in which all the nodes have an iden-

tical transmission range. It was shown that in a 1-dimensional network with n nodes

uniformly distributed in an interval [0, d], the network is connected if and only if the

product of r and d is on the order of at least d log d. A particular transmission range

assignment scheme was thereby proposed to provide asymptotic almost sure connectiv-

ity. Related to this problem, topology control is another important problem. It is the

coordination of the decisions about the transmission ranges of all the nodes so as to gen-

erate a network with some desired properties, such as network connectivity [194]. The

topology control problem arises because an ad hoc network contains many nodes geo-

metrically distributed without fixed infrastructures, and all these nodes share common

wireless medium. The lack of central infrastructures indicates that ad hoc networks do

not have a fixed topology. However, such a fix topology is desirable to implement routing

protocols. On the other hand, in a wireless network, in order to maintain connectivity, it

is expected to have long transmission range for each node so that they can communicate

with other nodes. Nonetheless, a long transmission range results in a high nodal degree,

which in turn causes high interferences and reduces the network throughput. Much work

has been conducted to explore the tradeoff by finding the optimal nodal degree for ad hoc
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networks.

The study of the optimal nodal degree problem can be traced back to the classic work

[133] presented in 1978 by Kleinrock and Silvester. By maximizing one hop progress of

packet transmission in the direction from a source to a destination, Kleinrock and Sil-

vester [133] showed that in a packet radio network with Poisson distributed terminals

and slotted ALOHA [187] MAC scheme, the optimal homogeneous transmission range

that maximizes the network throughput leads to an average of six neighbors for each

node. Takagi and Kleinrock revised the result, and gave a new optimal nodal degree

eight [210]. Other nodal degrees were also obtained under different transmission proto-

cols and inhomogeneous transmission ranges [97] [109] [210]. However, the connectivity

of networks was implicitly assumed in the previously mentioned work, and this assump-

tion is only valid for small size networks. Philips et al. [179] proved that with a constant

average nodal degree, a sufficiently large network is almost surely disconnected. Ni and

Chandler [168] showed the similar results based on simulations. As nodes in an ad hoc

network may have homogeneous or inhomogeneous transmission ranges, research on

the connectivity problem focused on two directions.

For networks in which all nodes have a homogeneous transmission range, Philips et

al. [179] conjectured that the transmission range should grow logarithmically in order to

maintain the asymptotic network connectivity. Piret [180] studied the same problem for

one-dimensional networks, in which the conjecture in [179] does not hold. Therefore, it

was postulated that the conjecture does not hold for two-dimensional networks as well.

However, in contrast to Piret’s postulation, Gupta and Kumar [91] showed that for n

nodes uniformly i.i.d. in a disk of area A, with the particular radio transmission range

r(n) =
√

(A(log n + γn))/(πn), the network is asymptotically connected if and only if

γn → +∞, such a finding is similar to the conjecture claimed by Philips et al. [179]. Pen-

rose [176] showed that if all nodes have homogeneous transmission range, the minimum

radio range for achieving k-connectivity is asymptotically equivalent to the minimum ra-

dio range for achieving k nodal degree as n goes to infinity. Analytically, Bettstetter [21]

applied Penrose’s result to obtain a suitable radio range r, which ensures that a network

with a given node density λ is asymptotically almost surely k-connected.

If each node adjusts its transmission power independently, there have inhomoge-

neous transmission ranges. Much research has been conducted for this situation. Xue and

Kumar [228] showed that if inhomogeneous range assignment is allowed, each node in a
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random network with n uniformly distributed nodes should connect to Θ(log n) nearest

neighbors so as to maintain the asymptotic connectivity. They further showed that the

constant in the asymptotic relationship is greater than 0.074 and less than 5.1774, i.e., the

network is almost surely disconnected if the asymptotic nodal degree k < 0.074 log(n),

and the network is almost surely connected if k > 5.1774 log(n). The value of the critical

constant still remains an open problem. However, in [228] it was conjectured the value

may be close to one. By applying Xue and Kumar’s results [228], Blough et al. [27] de-

veloped a topology control mechanism that generates a network topology by connecting

each node to its k-nearest neighbors. The value of k that can provide high probability of

connectivity was estimated. Other work that finds the radio transmission ranges can be

found in [20], [191], [193], [196], and [214].

In the design and planning of a WSN, given the radio transmission range of each

node, it is important to know that what is the necessary number of nodes required to

ensure the a required probability of connectivity. Given r, Santi and Blough [195] studied

the minimum number of nodes that ensures a 1-D network connected with a high prob-

ability. In [21], Bettstetter found the necessary number of nodes required to maintain a

k-connected network for a particular transmission range r.

Estimating the probability of network connectivity for given network parameters,

such as transmission range r and number of nodes n, is essential to network performance

evaluation. Foh and Lee [75] enhanced the results in [195] by providing a closed form

formula to compute the probability that two nodes with distance d is connected through

n additional random nodes in a 1-D WSN. In [60], [85], and [86], a different setting is

considered. They studied the probability that n nodes are connected in a 1-D interval,

without two additional nodes on the borders of the interval. Bettstetter [21] studied the

relationship between the probability of connectivity and the probability that there are no

isolated nodes in a network with homogeneous transmission range. As no isolated nodes

is a necessary (but not sufficient) condition for the network to be connected, its probabil-

ity forms an upper bound for the probability of connectivity, while the corresponding

critical transmission range when there are no isolated nodes forms a lower bound for

that of a connected network. With similar rationale, it was shown that the probability

that the network has a minimum nodal degree k is a tight upper bound for the proba-

bility that the network is k-connected. The author of [21] also discussed how to avoid

border effects. See [24] and [25] for detailed discussions on border effects.
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Simply maintaining the connectivity of a WSN is not sufficient for data dissemination.

Routing issue should also be considered. Due to the large amount of sensors in WSNs,

designing scalable and energy-efficient routing protocols is one of the major challenges

for WSNs. One available solution is to perform routing through a set of nodes, so called

a virtual backbone. A good virtual backbone can simplify the routing process and reduce

the overall network energy consumption. The argument that virtual backbone routing

can save energy is supported by two reasons. First, as only nodes in the virtual backbone

forward packets, the network can turn off as many non-backbone nodes as possible to

reduce power consumption. Second, sensor nodes support in-network processing and

data aggregation. Performing these types of operations within virtual backbone nodes

can eliminate redundant data and relax the packet transmission burden, which leads to

energy saving.

For a given WSN, we always wish to find a minimum number of nodes as a virtual

backbone. This number is an important performance metric to evaluate routing algo-

rithms, in terms of the minimum number of relays required to achieve successful packet

delivery through the network. The successful packet delivery requires the connectivity

among the nodes in the virtual backbone.

In the next subsection we first introduces cluster-based routing, which groups nodes

according to their geometric positions, and selects a head node for each group (i.e., clus-

ter). All the cluster heads form a virtual backbone. We also discuss a graph theoretical

concept, Minimum Connected Dominating Sets (MCDS), which can effectively model a

small connected relay set. We also cover the state-of-the-arts algorithms for MCDS con-

struction, which can be used to facilitate the utilization of infrastructure-based or virtual

backbone based routing algorithms.

2.2.2 Virtual Backbone and Minimum Connected Dominating Set

Routing is challenging for WSNs. This is because wireless ad hoc communications suffer

limited bandwidth, stringent energy constraints, and multi-hop communications. Special

characteristics of WSNs such as multicasting transmission, a large amount of sensors, and

so forth, also introduce difficulties into routing. Conventional routing schemes in wired

networks, such as distance vector routing [105] or link state routing [164] that periodically

perform routing information updates require all the nodes to participate in. They are not

effective for wireless ad hoc networks due to the high computational complexity and the
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large amount of control overhead.

It is commonly believed that clustering is an effective way to achieve efficient routing

for WSNs [207] [213]. It can reduce the communication overhead, and simplify routing

and management operations in densely deployed WSNs. Under clustering routing, the

whole WSN is partitioned into several clusters of which each contains nodes in proxim-

ity. In each cluster, there is a cluster head. Inter-cluster communications can only occur

between cluster heads, hence nodes in different clusters must connect to their cluster

heads first if they need to communicate with each other. Examples of cluster-based rout-

ing schemes include, but are not limited to, LEACH [106], HCR [111], CBRP [126], and

CEDAR [205]. CEDAR and CBRP are general cluster-based routing algorithms for wire-

less ad hoc networks, while LEACH is specialized for WSNs, and HCR is an extension

of LEACH. Other cluster-based routing algorithms for WSNs include TEEN [153] and

APTEEN [154].

The usage of cluster-based routing in WSNs is also motivated by the intrinsic require-

ments of in-network processing and data aggregation to reduce energy consumption, as

such operations can be spontaneously performed at cluster head nodes. It should be

noted that once the clusters are formed in a WSN, traditional proactive routing schemes

such as distance vector routing and link state routing, as well as reactive routing ap-

proaches such as DSR [127] and AODV [178] can be used among those cluster head nodes,

either for routing information update or for data delivery.

Indeed, cluster-based routing is a special example of backbone-based routing [58], if

nodes in a backbone are considered as cluster heads. Since a backbone is not a fixed in-

frastructure in the context of WSNs, it is called a “virtual” backbone. A virtual backbone

in a WSN is a set of nodes that are connected together, and routing operations are re-

stricted to those nodes in the backbone. Therefore, to ensure its communications to other

nodes, each sensor should connect to at least one node in the virtual backbone in a sin-

gle hop, while virtual backbone nodes can communicate with each other via multi-hop

paths. It is clear that the nodes in the virtual backbone need to maintain the connectivity

among each others. A virtual backbone also has other functions, such as route mainte-

nance, transmission scheduling, and broadcasting [216].

A virtual backbone of a WSN can be modelled by a Connected Dominating Set (CDS)

in a graph representing the WSN, such as a geometric graph and unit disk graph as men-

tioned in Section 2.2. For a graph G = (V, E), in which V is the set of vertices with
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Figure 2.2: An example of Minimum Connected Dominating Set

cardinality n, and E is the set of edges, a dominating set (DS) is defined as a subset of V,

such that any vertex in V is either an element of the DS or has at least one neighbour in

the DS. If G is connected and such a dominating set is connected, i.e., any arbitrary pair

of vertices in the DS are connected with each other, it is called a connected dominating set

(CDS). A graph can have multiple DS and CDS. The CDS that has the smallest cardinality

is named a Minimum Connected Dominating Set (MCDS). Just like CDS, MCDS may not

be unique. We call the cardinality of the MCDS domination number throughout this thesis.

Fig. 2.2 illustrates the concept of MCDS by a simple example. A network is modelled as a

connected graph G = (V, E), in which V = {a, b, c, d, e, f } is the set of vertices, represent-

ing all the nodes in the network, while an edge between two vertices in the graph stands

for the existence of a direct connection between the corresponding sensor nodes, and the

edges set E = {(a, f ), (b, f ), (b, c), (c, d), (c, e), (d, e), (b, e)(e, f )} is the collection of all the

connections. According to the previous definition, the MCDS of G in Fig. 2.2 is a subset

U of vertices set V, which comprises vertices e and f , i.e., U = {e, f }. The domination

number of U is two. Since we model WSNs by graph models, connected dominating set

in the corresponding graphs can form the virtual backbone for the WSNs. Also, if we can

find the MCDS in the graphs, we can construct a virtual backbone with the least number

of nodes.

Unfortunately, finding a MCDS in a given connected graph is not always as easy

as the previous example in practical situations. This problem is known to be NP-hard

[78]. The research activities on MCDS problem mainly focus on providing approxima-
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tion algorithms, which achieve near MCDS construction. Existing algorithms construct-

ing MCDS can be classified into three categories, including constructive, pruning-based

and multipoint-relay-based algorithms. Constructive algorithms approximate the MCDS

in a graph by gradually adding nodes to a candidate set. In contrast, pruning-based algo-

rithms begin with taking a large candidate set, then detect and remove redundant nodes

to eventually obtain a small CDS. The last type, multipoint-relay-based algorithms, al-

lows each node to determine its smallest one-hop message relay set, and all nodes se-

lected as relay nodes for a particular message relaying form a CDS.

For all these three types of algorithms, the connectivity among the relay nodes need

to be considered. A common approach used by constructive algorithms is to select a

Maximal Independent Set (MIS) first, and then by using some additional nodes to pro-

vide connectivity among nodes in the MIS. Algorithms in this class are generally differ-

entiated according to the approaches to produce the MIS and find the additional nodes.

An independent set (IS) of a graph G = (V, E) is defined as a subset V ⊆ V, such that

there is no edge between any two vertices in V, i.e., ∀ u, v ∈ V, (u, v) /∈ E. An inde-

pendent set that is not a proper subset of any other independent set is called a maximal

independent set. Note the difference between maximal independent set and maximum

independent set. The latter is defined as the independent set with the largest cardinal-

ity. While construction of a maximal independent set can be solved in polynomial time

by greedy algorithms, finding the maximum independent sets is NP-complete [78]. In

contrast to constructive algorithms, pruning-based algorithms generate a large CDS first,

and then remove redundant nodes while keeping the connectivity among the remaining

nodes in the CDS. In terms of the multipoint-relay-based algorithms, the connectivity of

the constructed dominating set is guaranteed in the selection of multipoint relay nodes.

Our algorithm described in Chapter 4 can be classified as a constructive algorithm with-

out using MIS.

These three types of algorithms are described in more detail in the following subsec-

tion. Typical examples of each type are also discussed, hence this subsection provides the

motivations of our research problems and anchor the work in Chapter 3 and Chapter 4.

Constructive Algorithms

In Guha and Khuller’s seminal paper [89], they first showed that a β algorithm to approx-

imate MCDS corresponds to a 2β approximation for another NP-hard problem, travelling
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tourist problem, and then proposed two polynomial time heuristics for the MCDS prob-

lem. These two algorithms have approximation factors of 2(H(∆) + 1) and H(∆) + 2,

respectively, in which ∆ is the maximum nodal degree and H is the harmonic function

[87].

The first algorithm approximates the MCDS by creating a tree T incrementally by

greedy criteria. All the non-leaf nodes of T form the approximate MCDS, which is indeed

a CDS. Nodes have three states, which are black, grey and white. Black nodes are nodes

in the final CDS, so called dominators. Grey nodes are candidates of dominators, and

white nodes are those nodes not yet in T. Initially, all the nodes are white nodes, and the

algorithm finds out the node with maximum degree of white neighbors, marks it black,

and marks all its white neighbors grey. The algorithm then iteratively marks the grey

node or the pair of connected grey nodes that have maximum white neighbors to black,

and update those white neighbors to grey state. The set of black nodes in the final result

is the CDS.

To develop the second algorithm, Guha and Khuller introduced a new concept called

piece, which is defined as either a connected black component, or a white node. The

second algorithm selects nodes with maximum degree of pieces as dominators until there

are no white nodes. It then connects all the dominators by constructing a Steiner tree.

Both of the algorithms are not localized as they need global information to select the

nodes with maximum degree of white neighbors or pieces. Das and Bharghavan [58]

proposed to construct a virtual backbone in a wireless ad hoc network by using its MCDS,

and developed a distributed implementation of Guha and Khuller’s algorithm. Das and

Bharghavan’s distributed algorithm is also non-localized, as it is based on a centralized

algorithm. A distributed algorithm is called localized if each node decides on its own

behavior based on only the information from nodes within a limited hop distance, e.g.,

one or two hops. With localized algorithms, topology changes in part of the network

can be isolated, and may not affect the rest of the network. In contrast, a non-localized

algorithm requires nodes to know global knowledge of the network to perform correct

operations [40].

Alzoubi and Wan [9] developed a distributed heuristic to compute the MCDS for a

wireless ad hoc network. The algorithm is non-localized as it involves the construction

of a spanning tree. Indeed, this algorithm follows the same idea as the second algorithm

of Guha and Khuller. It selects a dominating set first, and then connects nodes in the
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dominating set by choosing some additional nodes as connectors. The selection of the

dominating set is based on the construction of a maximal independent set (MIS), and

the connection step is completed by selecting some additional nodes to form a spanning

tree. The authors provided performance bounds by applying the property that a node

in a unit disk graph cannot have more than five independent neighbors [155]. If n is the

number of vertices for the whole network, the algorithm has time complexity of O(n),

and message complexity of O(n log(n)), while providing a constant approximation fac-

tor. This algorithm is non-localized as it needs a leader node to generate a rooted tree.

To overcome this drawback, Alzoubi et al. [10] proposed another algorithm, which gen-

erates MIS based on multiple leaders, and hence it is localized. The algorithm obtains a

CDS with cardinality at most 192 · |OPT| + 48, in which |OPT| is for the cardinality of

the MCDS. The main drawback of this algorithm is the low efficiency of the connector

selection procedure. Other work based on computing and connecting a MIS include [36],

[38], [172], and references therein.

Pruning-Based Algorithms

Besides constructive algorithms, there also exist other algorithms which are based on

pruning procedures to approximate MCDS. As indicated by its name, a pruning-based

algorithm gradually reduces a candidate CDS according to some greedy criteria, and the

left-over set after the reduction is the approximated MCDS.

Wu and Li [223] proposed a localized algorithm to construct a CDS in a network. This

algorithm consists of two steps. In the first step, each node in the network gets infor-

mation of its two-hop neighbors via the exchange of beacons. Every node that has two

neighbors that are not within the radio range r of each other marks itself as a dominator.

The second step is a pruning process, which takes out some redundant nodes from the

dominator set generated in the first step. There exist two rules to reduce the size of the

CDS generated in the first step. A node u can be removed from the CDS if its closed neigh-

borhood is a subset of that of another node v in the CDS, or the open neighborhood of u is

a subset of the union of the open neighborhood of another two nodes v and w, which are

in the CDS. The open neighborhood of a node u is defined as the set of all the nodes that

direct link to u. The closed neighborhood of u is the union of its open neighborhood and

u. Wu et al. [222] also extended this algorithm to take energy property of all the nodes

into account to make the algorithm energy aware. For an arbitrary node u, an attribute
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el(u), which indicates the remaining energy level of u, is considered when the pruning

process is performed. Nodes with lower energy level are preferred to be removed.

Another algorithm that uses pruning process is by Butenko et al. [37]. This algorithm

takes the entire set of nodes V as the initial candidate CDS, and then iteratively removes

nodes greedily. In order to determine whether a node can be removed from the current

CDS, the connectivity of the remaining nodes is tested. The node can be removed only if

the remaining candidate CDS is still connected. This algorithm has high message com-

plexity due to the operations of connectivity tests, especially for large dense networks.

However, simulation results show that the performance in terms of the domination num-

ber is comparative to existing algorithms. Sanchis [192] also discusses similar approach

in the construction of dominating sets.

Multipoint Relaying (MPR) in CDS Construction

Multipoint relaying is a technique that is widely used for flooding in wireless ad hoc

networks. In multipoint relaying, each node u in the network selects a subset of its first-

hop neighbors, named multipoint relay set (MRS), which are responsible for forwarding

packets from node u to u’s two hop neighbors. Only nodes in the MRS of u can forward

packets sent by u. Qayyum et al. [183] showed that finding a minimum size MRS in

a network is NP-Complete. The MRS of a node u forms a local dominating set, which

dominates nodes within two hops distance from u. Although MRS do not directly gener-

ate a global CDS, they can be extended to do so.

Note that in [183], node u and its MRS only form local CDS. However, some algo-

rithms approximate MCDS for the whole network based on MRS. Adjih et al. [6] devel-

oped a source-independent MPR algorithm, called MPR-CDS algorithm, to construct a

global CDS based on the MPR approach. The algorithm assumes that each node in a con-

nected network has a unique ID. The global CDS is constructed based on the ID of nodes,

according to the following criteria. A node u is added into the CDS if it has the smallest

ID among all its first-hop neighbors, or it is a member of the MRS of its neighbor with the

smallest ID. The time complexity is shown to be O(∆2), while the message complexity is

O(n). However, as pointed out by Wu [221], the CDS generated by MPR-CDS can be in-

efficient as the nodes selected by the first criterion may not be necessary. This is because

the first criterion only select CDS nodes based on their IDs. Hence for certain network

topologies, nodes chosen by the first criterion are redundant. Therefore, Wu [221] devel-
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oped enhanced MPR (EMPR) algorithm by enhancing the MPR-CDS in both smallest ID

nodes selection and original MPR selection. However, due to these two enhancements,

the EMPR suffers potentially high computation complexity. Other MPR-based CDS con-

struction heuristics include Chen et al. [48], Wu et al. [220], [224], and others. For a com-

prehensive survey about multipoint-relay-based broadcast schemes, see Ou et al. [171],

which includes, but are not limited to, multipoint-relay-based CDS construction. Note

that all the discussions of MCDS are based on the fact that the network is connected.

When dealing with a disconnected network, we can only find CDSs of each connected

part of the network.

2.2.3 Placement of Nodes

The placement of nodes largely influences the operations and performance of WSNs,

as sensor nodes deployed need to observe events that are interested in, and transmit

the information to data collection centres. Moreover, sensor placement also affects the

resource management in WSNs [61]. According to the roles that the deployed nodes

play, node placement can be classified into placement of ordinary nodes, and placement

of relay nodes, respectively. The former focus on the deployment of normal sensors, while

the latter places a special type of nodes, which are responsible for forwarding packets. We

survey these two types of placement next.

Placement of Ordinary Nodes

The foremost step needs to be done for a WSN to perform its designed functions is de-

ploying all the sensor nodes to form a WSN. To ensure that the WSN can operate prop-

erly, sensor placement scheme needs to be carefully determined. There are two types of

sensor deployment methodologies, random deployment and deterministic deployment,

e.g., sensors are thrown in mass on random positions and placed exactly on carefully

engineered positions [8]. For instance, to apply the random placement, we can drop

all the sensors from a vehicle in batch, thereby reducing the labour cost of the deploy-

ment. However, this approach brings randomness in the positions of sensors, and the

randomness may degrade the network performance. The other option is to cautiously

plan sensor deployment, for which sensor nodes are dropped exactly on predetermined

positions, either manually or by machines. The usage of deterministic deployment may

be constrained by harsh environments that the WSNs embedded in and the large amount
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of sensor nodes.

Most of existing literature in the field focuses on determining the “optimal” determin-

istic placement pattern. The optimality is defined on different context according to the

applications and goals of the WSNs.

A natural objective for the optimal sensor placement is to minimize the number of

required sensors needed, subject to the constraint that the whole sensing field is moni-

tored by the deployed sensors. It is equivalent to finding the minimum number of nodes,

such that every position in the sensing field is within the sensing coverage by at least one

node. One method to solve this problem is to model it as the art gallery problem [170],

which aims to find the minimum set of locations for security guards inside a polygonal

art gallery, such that the boundary of the entire gallery is visible by at least one of the se-

curity guards. Gonzólez-Banos [84] proposes a randomized algorithm to solve art gallery

problem to find locations for sensor nodes. However, in art gallery problem, all security

guards are assumed to have infinite vision, if there is no obstacles. This assumption does

not hold for WSNs since sensor nodes have limited sensing range. Zhang and Hou [230]

proved that arranging sensors at the centres of regular hexagons is optimal for a WSN

with a large sensor field, given that all the sensor nodes have identical limited sensing

range. Indeed, this problem was well-studied in mathematics community, see Kershner

[130].

The above work on the node placement only considers the coverage constraints that

the WSN needs to be able to observe any positions within the sensor field. They did not

include the discussion about the connectivity, or they implicitly assumed that the WSN

formed by the obtained pattern was connected, regardless the transmission range. Nev-

ertheless, this assumption may not be true. To find the optimal node placement pattern

subject to the coverage and the connectivity constraints, Biagioni and Sasaki [26] mod-

elled the problem as an optimization problem that minimizes the number of required

sensor nodes, under the constraints that any position of the sensor field is under surveil-

lance of at least one node and all nodes are connected. However, the authors did not

solve the problem optimally. They only studied a wide range of regular sensor network

deployment patterns. These patterns include circular, and star topologies, as well as grid

topologies, such as triangular, square and hexagonal grids. Iyengar et al. [125] proved

that a strip-based pattern is nearly optimal for large networks in two-dimensional space.

Bai et al. [16] extended the work in [125] by proving that this strip-based pattern is the
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asymptotic optimal pattern for an infinite network. A slight modification of the asymp-

totic optimal strip-based pattern, which is optimal to achieve coverage and 2-connectivity

was also proposed in [16]. Very recently, Bai et al. [17] published new results, which pro-

posed optimal sensor placement patterns to achieve coverage and k-connectivity (k ≤ 6).

Note that k- connectivity can provide fault tolerance. Above work assumed that the WSN

was deployed in an open area, without obstacles such as buildings or stationary. In con-

trast, Wang et al. [217] developed a general sensors deployment scheme, which can effi-

ciently determine sensor positions for arbitrary sensing field, probably with obstacles.

In addition to minimize the total number of sensor nodes, there also exist other ob-

jectives when considering the optimal sensor placement. Khan [131] studied the node

placement problem in a grid sensor field. The problem was formulated as an optimiza-

tion problem aiming to minimize the distance between sensors, subject to the constraints

that all the n sensors (n is given) have to be placed on grid points, and all the grid points

have to be sensed by some sensors. Other work adopting grid-based deployment include

Chakrabarty et al. [43], and Lin et al. [147]. Chakrabarty et al. [43] tried to find the node

placement scheme that minimizes the cost of sensors to meet the complete coverage con-

straints. Lin et al. [147] developed an algorithm to solve the sensor placement problem

on a grid field. Each grid point was coded according to the coverage relationship to sen-

sors. The algorithm aimed to find the set of grid points that can minimize the maximum

coding distance between any pair of grid points, subject to the cost limitation.

Above mentioned work were based on deterministic sensor placement. However,

for a large scale WSN, random placement strategy is perhaps a more attractive option.

Therefore, it is necessary to establish proper models to describe the random deployment.

Ishizuka and Adia [118] proposed three types of random placement models. They are

Simple Diffusion, Constant Placement, and R-random Placement. Simple diffusion assumes

that node positions follow identical Gaussian distribution, while Constant Placement con-

siders each node uniformly distributed in the sensor field. The last model, R-random

Placement assumes that sensors are uniformly distributed in terms of the network radius

and angular direction from the sensor field centre, which could represent a data collec-

tion point. The authors studied the fault-tolerance and sensing coverage through simu-

lations, and suggested that the R-random Placement to be the best candidate for random

node placement. See Leoncini et al. [144] for a different setting of random placement.

Although there exist different types of models to formulate different random deploy-
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ment strategies, the most widely-used model for the positions of sensors in a randomly

deployed WSN is the uniform distribution model (i.e., Constant Placement). However,

the validity of the assumption that nodes are randomly and uniformly distributed is dif-

ficult to be verified, and is left as an open research problem, though some partial results

exist in literature. Blough et al. [28] studied the spatial distribution of nodes in a wireless

ad hoc network. Given the initial distribution of nodes is uniform distribution, and all the

nodes move according to the random waypoint model, it is shown by simulations that

the common assumption that nodes are distributed according to a uniform distribution

holds if all the nodes move for a large number of steps of Brownian-like motion, which

represents unintentional movement. Even though the results gave some insights into the

spatial distribution of nodes locations, they did not investigate other initial distributions.

Moreover, they did not justify the selection of the initial distribution. On the other hand,

Miller [161] showed that as long as all the nodes have identical distribution, the choice of

the initial distribution is not critical. This result holds at least for uniform and Gaussian

distribution.

Placement of Relay Nodes

In a WSN, if a small set of special nodes, whose main function is packet forwarding,

are deployed, the management and network operations in the WSN can be potentially

simplified drastically. These nodes are called relay nodes, and have attracted flourishing

interests [49] [102] [173] [212] [231]. A fundamental problem arises when establish such

a network is how to efficiently deploy those relay nodes to achieve required grade of

service, while meeting the system constraints. This subsection covers this general topic.

Relay node placement problem can be categorized into either single-tiered or two-

tiered, according to the data forwarding schemes the WSNs adopted. If both of relay

nodes and ordinary sensor nodes can forward packets, this is single-tiered relay node

placement. In contrast, in a WSN with two-tiered relay node placement, only relay nodes

participate in the packet forwarding. We survey the prior work related to these two types

of relay placement. In the following discussion, the transmission ranges for relays and

ordinary sensors are denoted R and r, respectively.

Cheng et al. [49] developed algorithms to place minimum number of relay nodes and

maintain the connectivity of a WSN, under the assumption that R = r, i.e., all relays

and ordinary sensors have identical transmission range. Single-tiered situation was con-
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sidered. The problem was modelled by the Steiner Minimum Tree with Minimum Number

of Steiner Points and Bounded Edge Length (SMT-MSP) problem, which was arisen in the

study of amplifier deployment in optical networks, and was proved to be NP-hard [148].

To resolve the SMT-MST problem, Lin and Xue’s [148] developed a 5-approximation min-

imum spanning tree based algorithm, while Cheng et al. [49] proposed a 3-approximation

algorithm and a randomized 2.5-approximation algorithm based on Lin and Xue’s algo-

rithm. Chen et al. [47] also proposed a 3-approximation algorithm, and they further prove

that Lin and Xue’s algorithm has an approximation ratio 4. In order to provide fault-

tolerance, Kashyap et al. [129] studied how to place minimum number of relays such

that the resulted WSN is 2-connected, when relay nodes and ordinary sensor nodes have

identical transmission range, i.e., R = r. Recently, Zhang et al. [231] improved Kashyap

et al. [129]’s results by developing algorithms to compute the optimal node placement

for networks to achieve 2-connectivity, under the more general condition that R is no less

than r. These algorithms aimed to minimize the number of relay nodes while providing

fault-tolerance.

In contrast to previously mentioned work, Pan et al. [173] focused on the two-tiered

situation, in which only relay nodes can perform the packet forwarding. [102] and [212]

also studied the optimal two-tiered relay placement, but for a i.i.d. uniformly distributed

sensor network when there exists certain relationship between the transmission range

of relay nodes and ordinary nodes, i.e., R ≥ 4r. Lloyd and Xue [149] improved [49] and

[102] by developing algorithms to find optimal placement of relay nodes for more general

relationship between R and r (R ≥ r), under single-tiered and two-tiered infrastructure,

respectively.

All the above work assume that relay nodes can be placed on anywhere, this is called

unconstrained relay node placement. However, practical considerations such as interfer-

ences or forbidden regions prevent relay nodes from being placed on certain positions.

This is known as constrained relay node placement problem. A recently published work

[163] discusses this problem and proposed approximate algorithms to resolve it. Srinivas

and Modiano [208] considered a different model, which place a fixed number of relays to

optimize the network throughput.

It should be noted that for two-tiered relay node placement, the deployed relays form

a connected dominating set of the resulting WSN (i.e., including both the relays and or-

dinary sensor).
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2.2.4 Other Connectivity Related Work

Percolation Theory and Partial Connectivity

Percolation theory plays an important role in the investigation for connectivity of wireless

ad hoc networks, and provides insights to understand their intrinsic characteristics. As

such, it can be a complementary approach to the empirical method taken in Chapter 5.

This section gives an introduction to percolation theory, and reviews some existing work

related to the network connectivity studies. We aim to provide background information

and to put Chapter 5 in context.

The notion of percolation was developed by Broadbent [32], Broadbent and Ham-

mersley [33], and Hammersley [101] to mathematically model the phenomena of fluid

flowing through random porous materials, e.g., water soaking a sponge. In the percola-

tion model, the randomness of the porous materials lies in the fact that the paths fluid

can get through are random. An important characteristic of percolation models is that

there exists a phase transition. For the parameters related to the system, there is a critical

value that enables a phase transition, e.g., if the density of holes in the sponge exceeds

that value, water may get through, otherwise the sponge only gets wet in the surface.

Mathematically, percolation theory studies infinite random graphs, which contain a

set of infinite number of vertices V spreading over an infinite plane. Correspondingly,

percolation theory in wireless ad hoc networking areas focuses on the connectivity of in-

finite networks, which contain infinite number of nodes that are distributed on an infinite

plane. In particular, we are concerning the formation of an infinite connected component.

Therefore, it is the partial connectivity rather than the full connectivity that we are inter-

ested in. An infinite connected component is a collection of vertices, which is an infinite

subset V1 of V, and there is at least one path between an arbitrary pair of nodes in V1. An

infinite connected component corresponds to a communication network of infinite nodes

spread over a large geographic plane. Therefore, the existence of an infinite connected

component implies the capability of long distance communication via multi-hop links.

There are three types of percolation, namely, bond, site and continuum percolation.

The first two types, bond and site percolation, are lattice based discrete percolation mod-

els. The last model, continuum percolation, studies the percolation phenomenon in a con-

tinuous space. A lattice is essentially a graph, in which vertices are arranged according to

some regular grid patterns, and there are edges between adjacent vertices. For example,
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in a rectangle lattice, vertices are aligned with rectangle grid patterns, in which vertices in

the same row have identical vertical coordinates, and nodes in the same column have the

same horizontal coordinates, if the lattice is equipped with rectangle coordinate system.

There exists an edge between each pair of adjacent vertices for a lattice. A bond percola-

tion model is defined for an infinite lattice. Each node sits on a corner of the lattice, and

each edge (so called a bond in the context of lattice percolation) is randomly remained

with probability p, or be removed with probability (1− p) [88]. We call a remained bond

an open edge, and a removed bond a closed edge. An open edge indicates that the two

end nodes of the edge can communicate directly, while a closed edge blocks the com-

munication. It is shown that there is a critical value of p, p0, such that an unbounded

connected component is formed, if each bond is kept with identical probability that is

more than p0. Site percolation takes the similar idea with the bond percolation, except

that each node has probability p to be opened, and (1− p) to be closed, while all edges

are open with probability one.

In contrast, continuum percolation, which was firstly studied by Gilbert [81], assumes

that nodes are distributed following a homogeneous Poisson point process of intensity λ,

rather than be placed at lattice points. Note that nodes in continuum percolation can

distribute according to more general stationary and ergodic point processes other than

Poisson processes. However, continuum percolation with Poisson process is more inten-

sively studied due to its tractability. If a link exists between any two nodes with distance

less than a constant r, this model is named a boolean model, in the context of percolation

theory. It is essentially unit disk model. There also exist other models in continuum

percolation, such as random connection model [158]. In a random connection model, the

probability that there exists a link between two nodes a and b is determined by a certain

function of the distance between a and b. Continuum percolation is widely applied in the

study of network connectivity (e.g., [64] [65] [66] [67]) as it imposes less constraints on

the positions of nodes, compared to bond and site percolation models.

Gilbert [81] was the first to introduce the concept of continuum percolation. He in-

dicated its usage in multi-hop communications in his seminal work [81]. It investigated

P(n), the probability that there exists a connected component containing n nodes, in par-

ticular, as n goes to infinity, which is the probability to form an infinite connected com-

ponent. It was expressed as a function of average nodal degree E, i.e., E = λπr2. It was

shown that there is a critical value Ec of E, such that an infinite connected component is
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only possible when E > Ec. Although the exact value of Ec was not known, [81] showed

that 1.75 ≤ Ec ≤ 17.4. Philips et al. [179] improved the results by providing a tighter

bound of Ec as 2.195 < Ec < 10.526. Besides the analytical approaches to evaluate Ec,

numerical methods [184] were also used to obtain the bounds for Ec. These results gave

us some necessary conditions to construct a connected network in a large plane. As per-

colation theory focuses on the infinite networks and studies the existence probability of

an infinite connected component, the connectivity it emphasized is indeed partial con-

nectivity rather than full connectivity. However, it is shown that the partial connectivity

converges to the full connectivity as the network intensity increases.

Gilbert’s work only gave necessary conditions for connectivity of large scale net-

works, it does not reveal how the number of nodes in the connected component, n, affects

the probability of connectivity. Philips et al. [179] applied the Poisson boolean model to

a wireless packet radio network within a finite area A and extended Gilbert’s results

by studying the relationship between A and the average nodal degree E to ensure the

network connectivity. It is proved that for any ε > 0, with transmission range r given

by r =
√

(1− ε) log A/πλ, the limiting property of network limA→∞ P(connected) = 0.

It is also conjectured that given r =
√

(1 + ε) log A/πλ, ε > 0, the network is almost

surely connected. This conjecture suggests that to obtain almost surely connectivity, the

expected number of nodes within transmission range of an arbitrary node should grow

logarithmically with network area. Piret [180] proves that this conjecture does not hold

for one-dimensional networks. Nevertheless, the conjecture coincides with the results in

[228], except that [228] states that ε cannot be an arbitrary number.

The above discussion assumed the boolean model (i.e., unit disk model). This model

results in a circular radio transmission range for each node. However, the wireless prop-

agation in the practical situation yields irregular shapes other than circle. Interestingly,

it was shown by Booth et al. [30] that this irregularity enables the network to percolate

in a lower density if the footprint of each node is convex, which indicates that sufficient

conditions for connectivity obtained by boolean models hold in general for unreliable

and non-rotational symmetric wireless channels. However, for networks that each node

produces arbitrary footprint, the connectivity is still an open problem.

One of the main drawbacks of boolean model is that it does not consider the interfer-

ences, though dense networks produce strong interferences. To take the interferences into

account, Dousse et al. [64] used another model named signal-to-interference-plus-noise-
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ratio (SINR) model, in which two nodes are connected if SINR between the transmitter

and receiver exceeds a certain threshold. As signal strength is considered in this model,

the connectivity of the network depends on the selection of the attenuation function. It

was proved that percolation occurs for SINR model in a similar way as in the boolean

model. It was also shown that the commonly used power law attenuation function results

in symmetry properties, and attenuation functions with finite support can also achieve

percolation. The authors showed that an efficient CDMA system with small orthogonal-

ity factors can improve the connectivity. However, due to the difficulty to design efficient

CDMA codes to achieve a small orthogonality factor, a simple TDMA scheme was pro-

posed, which also percolate.

Network capacity or throughput is an important constraint when considering the con-

nectivity of ad hoc networks. In a wireless ad hoc network, the increase of the transmis-

sion power could increase the transmission distance of each node, which leads to the

increased probability of network connectivity. However, the large power results in se-

vere interferences within the network, which reduces the network capacity and degrades

the performance of decoding at receivers. On the other hand, short transmission range,

which comes from small transmission power, can limit the interferences, but the con-

nectivity cannot be guaranteed. Therefore, it is worthy to analyse the trade-off between

connectivity and network capacity. Motivated by this counteracting effect, there exists

a third model, which studies the connectivity from information theoretic point of view

[65], in addition to the boolean and SINR models.

In this model, it is declared that two nodes connect to each other if and only if they can

communicate with a predefined minimum data rate. Thus this model gives more flexi-

bility about the transmission schemes as it does not assume any particular relay scheme.

Note that this model boils down to SINR model if all signals are Gaussian. It was shown

in [65] that as the number of nodes goes to infinity, if partial connectivity is allowed, an

arbitrary pair of nodes in the connected component formed by the percolation phenom-

ena can communicate with each other with a certain rate if all other nodes are potential

relays. It was also shown that if we want to impose a required data rate for possible trans-

mission as the number of nodes goes to infinity, a fraction of nodes, which is a function

of the required data rate, are automatically disconnected. Note the coincidence between

this result and the results shown by Gupta and Kumar [92], which stated that under the

constraint of the full connectivity, the throughput of each node eventually vanishes as
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the number of nodes goes to infinity. Therefore, the network capacity does not scale up

linearly with the number of nodes, hence this implies that base stations are required. To

investigate the relationship between connectivity and capacity, Dousse and Thiran [66]

proved that the attenuation function is one of the major factors affecting the properties

of dense ad hoc networks. Under the assumption of power law attenuation, the network

connectivity probability becomes higher as the increase of nodes density, even though

the interference also increases. The increase of network total capacity is bounded by
√

n.

However, the total network capacity keeps constant with bounded attenuation functions,

and the network maintains connectivity at the expense of capacity. See Xin and Srikant

[225] for another treatment of connectivity via information theoretic viewpoint, without

using percolation theory.

The above work is based on the pure ad hoc networks. In addition to that, hybrid

networks also attract research efforts, due to the existence of infrastructures of base sta-

tions, and the requirements to improve network capacity, as implied in [92]. A hybrid

network contains not only peer terminals, but also some base stations, which can com-

municate to terminals via single or multi hops. Percolation in a hybrid network was also

studied. Booth et al. [31] studied algorithms to place base stations to cover Poisson dis-

tributed nodes. Dousse et al. [67] studied the impact of base stations on the connectivity

in two-dimensional sparse networks. It was shown that base stations help increasing

the network connectivity significantly, when the node density in one dimension is much

higher than the density in the other dimension. The authors explained the phenomenon

by percolation theory. More theoretical analysis about percolation can be found in [100]

and [160].

Impact of Imperfect Channels

Interferences, which are mainly consisting of adjacent channel interference and co-channel

interference, in wireless environments are considered as one of the major factors that af-

fect performance of wireless networks [186]. Adjacent channel interference refers to un-

wanted signals from other frequency channels which are nearby to the frequency that is

being used, while co-channel interference is defined as the unwanted signals generated

by other transmission system which is using the same frequency bands [206]. Note that

ideally, the adjacent channel interferences are eliminated in a CDMA system. It is clear

that interferences largely affect the decoding performance at the receiver side. Therefore,
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it is important to deal with interferences when considering the connectivity of WSNs.

However, not much work have been done in this area. An example of such work is

Dousse et al. [64], which studied the connectivity of ad hoc networks suffering interfer-

ences, as discussed in the subsection on the percolation theory.

Besides interferences, shadowing effect is another major factor to affect the transmis-

sion in wireless environments. The widely accepted model to describe shadowing effect

is the log-normal shadowing, which applies the log-normal distribution to model the

signal level for an arbitrary value of transmitter-receiver distance [186]. In [234], it was

shown that the optimal transmission range should be selected such that the average num-

ber of nodes closer to the transmitter than the receiver to be φ(G/b)2/ζ , where φ is a con-

stant depending on the physical systems, G represents the spread spectrum processing

gain, b is the threshold for the outage SNR and ζ accounts for the power loss factor.

Bettstetter and Hartmann [23] studied the probability that a single node is isolated

under log-normal shadow fading environment with Poisson distributed nodes. A tight

bound for the Poisson density to achieve a highly connected subnetwork is derived. It

was shown that the fading would influence the connectivity significantly. Because the

shadowing effect introduces randomness into the signal attenuation, the transmission

range of each node would vary and some links may exist to farther nodes, while there

may be no links to closer nodes, hence homogeneous transmission range assignment does

not work here.

Networks with Mobile Nodes

Aforementioned results are all based on stationary networks, in which all the nodes are

static, i.e., once sensors are deployed, they no longer move. However, there exists another

important practical scenario that sensors do not stay at the positions they are initially

placed, and they move as time evolves. For example, sensors deployed to monitor ani-

mal habitats may move around as target animals wander, or sensors equipped in human

bodies to monitor the health parameters of patients in hospital may be mobile, as the pa-

tients move around. Some direct communication links may be lost while some other new

links become available during the movements of nodes, i.e., node mobility may affect the

connectivity of a network. Under those situations, it is important to study the impacts

of node mobility to ensure that a WSN with mobile nodes can function properly. Many

research efforts have been devoted into this area.



2.3. SUMMARY 37

Bettstetter [22] derived a formula to obtain the minimum transmission range rmin so

that a 2-D ad hoc network with n mobile nodes, which are doing random waypoint move-

ment, has high probability to be connected, i.e., connected with probability greater than

99 percent. Average nodal degree during the movement was computed, as well as the dis-

tribution of the distance between nodes. Random waypoint scheme is generally used to

model intentional movements, as it is defined as every node moves to randomly selected

position in the geographical space with some velocity (either constant or random). Once

a node reaches the destination position, it stays there for a pre-defined period of time

tp, and then repeat the above procedure. Similar to [22], Foh et al. [76] studied the con-

nectivity of ad hoc network with random waypoint movement, but for one-dimensional

networks. Santi and Blough [195] also investigated random waypoint scheme for 2-D

networks, however, via the simulation studies. In addition to random waypoint scheme,

drunkard-like movement is also widely applied to model motion of nodes as it can de-

scribe non-intentional movements.

It was shown in [195] that if the number of static nodes in a network is around half

or more of the total number of nodes, the network can be considered stationary from the

connectivity viewpoint. Therefore, a certain number of fixed nodes can largely improve

the probability of connectivity in a sparse ad hoc network. Note that this result agrees

to that in [67], which stated that base stations in planar network significantly improve

the connectivity if the network has unbalanced nodes densities, i.e., there is much more

nodes in one dimension than in the other dimension.

For a detailed taxonomy of mobility models of nodes for sensor networks, see Zheng

et al. [233], in which mobility models were divided into three categories, Trace Based

Model, Constrained Topology Based Model, and Statistical Model, respectively, according to

the degree of randomness.

2.3 Summary

Wireless Sensor Networks have potential to revolutionize our everyday life, as they pro-

vide a flexible approach for us to observe the surrounding environments, and response

to the occurred events. Battery-powered tiny sensor nodes, embedded with sensing, pro-

cessing, and communication capabilities, which are wirelessly networked together via

multi-hop communication, leverage the opportunities for WSNs to find applications in
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wide areas. Along with the opportunities, there are also challenges and requirements for

the successful deployment and operations of WSNs.

Connectivity is one of the stringent requirements for a WSN to function properly, be-

cause sensors need to transmit data to information collecting points. Most of the previous

work about wireless network connectivity is based on a simple assumption that all the

nodes follow i.i.d uniform distribution. This model is widely accepted as it is analytically

tractable. Others (see [161] for an example) assume that all nodes follow identical Gaus-

sian distribution. The uniform distributed sensors assumption stands for the situation

that all sensors are deployed in a purely random manner, while the identical Gaussian

distributed nodes represent the circumstance that all the nodes are targeting to a single

position. These assumptions may not hold in practice. Hence new models need to be

introduced to reflect more practical situations.

As we aim to provide high performance, we would like to impose some control

schemes into the pure random deployment, or to consider some randomness in the de-

terministic placement. Thereby, in Chapter 5, we consider a different situation that all the

nodes follow non-identical distributions, such that nodes are targeted at some expected

positions but with i.i.d. random errors. Connectivity study for this network is more com-

plex than that of the previous models, since nodes follows non-identical distributions.

In addition to the connectivity of ordinary sensors in WSNs, we also consider to per-

form routing and data forwarding within a small set of connected relay nodes. Obtaining

such a set can be modelled as finding an Minimum Connected Dominating Set in a graph

corresponding to the network. An Minimum Connected Dominating Set can effectively

function as a virtual backbone in a WSN, and the virtual backbone would simplify the

routing process and reduce the communication overheads, hence it can help to reduce the

total network energy consumption. Moreover, if we can identify an MCDS in a WSN, the

cardinality of the MCDS works as a performance metric to evaluate existing routing algo-

rithms. However, as finding an MCDS is an NP-complete problem, only approximations

and heuristics exist to approximate the solution. Current algorithms are too computa-

tionally costly to be used in large scale sensor networks. Hence new approaches that are

simple and efficient are desirable.

In Chapter 3 of this thesis, we evaluate the domination number for a class of random

WSNs probabilistically, without explicitly obtaining an MCDS. In Chapter 4, we propose

a simple algorithm, which can approximate an MCDS for dense networks efficiently.



Chapter 3

Minimum Connected Dominating Sets in 1-D Dense Wireless

Sensor Networks

As mentioned in the last chapter, a small relay set in WSNs can improve the efficiency of

network operations such as flooding, network management, and routing. It can also help

to reduce network energy consumption. Having some knowledge about the cardinality

of the minimum relay set is important to evaluate algorithms to construct such a set. In

this chapter, we evaluate the cardinality of the minimum relay set probabilistically for a

single-dimensional random network.

3.1 Introduction

To prolong network lifetime, energy conservation is a major concern for wireless sen-

sor networks due to the difficulty of battery replacement [7]. It is generally believed

that sending data through many short hops is more energy-efficient than using a smaller

number of longer hops in wireless environment [188], mainly because of the power law

attenuation in received power as the single hop transmission distance increases.

However, this assumption may not hold as the local oscillators and bias circuitry dom-

inate the energy consumption in practical power amplifier [93]. Moreover, for short dis-

tance transmission, the power consumption of the receiver can often exceeds that of the

transmitter [185]. Hence only taking transmission power into account and assuming the

reduction of transmission energy leads to a proportional reduction of total energy con-

sumption may not be appropriate. This argument is supported by experiment results

[95]. More importantly, considering a sensor network in which all sensor nodes operate

in two modes, Active and Sleep, those sensor nodes that are not involved in any activi-

ties can be turned off. Many small hops result in more active nodes hence consuming

more energy. The fewer nodes participate in routing, the fewer nodes need to be active

thus saving energy and prolonging the overall network lifetime. Therefore, keeping the

39



3.1. INTRODUCTION 40

number of nodes involved in routing small is important to achieve energy conservation.

Recent research such as Haenggi and Puccinelli [95] also reveals that using a small num-

ber of long hop is a competitive alternative to adopting many short hops in routing, if

network capacity, end-to-end delay, energy consumption and efficiency are all consid-

ered.

In order to ensure that the sensor network operates properly, the active nodes need to

be connected to perform the data dissemination, and information collected by any node

should be able to be sent to at least one active node. Therefore, to minimize the num-

ber of active nodes subject to the above constraints, it is equivalent to minimizing the

Connected Dominating Set in the associated graph of the sensor network. This problem

is known as Minimum Connected Dominating Set (MCDS) problem. The concepts of

Dominating Set (DS), Connected Dominating Set (CDS), and Minimum Connected Dom-

inating Set (MCDS) are given in Chapter 2. Finding the Minimum Connected Dominating

Set (MCDS) in a connected graph is known to be NP-hard [78].

Existing work related to the utilization of connected dominating set in ad hoc net-

work routing include [58], [132], [222] and references therein, just to name some. Das and

Bharghavan [58] imposed the first effect to construct a minimum size virtual backbone in

wireless ad hoc networks to disseminate routing information by proposing a distributed

algorithm to compute the MCDS in ad hoc networks. The algorithm first selects some

nodes based on their nodal degrees, and then uses a minimum spanning tree algorithm

to select the necessary connecting nodes to ensure the dominating set computed is con-

nected. Unlike [58], which restricted the CDS to routing information exchange only, Wu

et al. [222] proposed algorithm to approximate the MCDS, which not only involved in

routing information relay, but is also responsible for data forwarding. Therefore, nodes

in the obtained MCDS also called gateways. Kim et al. [132] proposed two protocols to

construct small CDS. The construction procedure not only considers the topology of the

network but also takes the energy level at each node into account. Therefore, the proto-

cols can dynamically adapt to the network energy level. In contrast with previous work,

we do not aim to provide algorithms to obtain the sub-optimal CDS for a given network

instance. Instead of computing the MCDS explicitly, we derive statistics of the cardinality

of the MCDS. We consider a single-dimensional stochastic network in this chapter.

It should be noted that one-dimensional (1-D) sensor networks are practically impor-

tant in reality. For example, there have been proposals for networking cars on main roads
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[110] [166] for purposes such as reporting traffic disruptions. Drivers can learn informa-

tion about congestion and traffic accidents via wireless sensors equipped on their cars.

In particular, such information can be acquired by drivers that are far away from the

problem sites by repeated relaying through sensors on other cars. Thus drivers can se-

lect alternative routes in advance in order to avoid further congesting the road. Another

example is the sensors networks monitoring rivers, or deployed along a mountain ridge,

which can also be approximated as 1-D networks. Indeed, as shown by Fig. 3.1, if the

magnitude of one dimension is much less than that of the other dimension, and it is also

much less than the transmission range, a two-dimensional network can be approximated

by an one-dimensional network. More importantly, recent research shows that the opti-

mal node placement pattern to achieve both coverage and connectivity in 2-D networks

is a strip-based pattern [16], which implies that single dimension results are useful when

considering the MCDS asymptotically in 2-D networks.

Figure 3.1: Approximation of one-dimensional networks.

To explain why we are interested in a random network, there are several underlying

arguments to support it. Indeed, wireless sensor networks are often deployed in inac-

cessible terrain with a large number of sensor nodes, which prevent them from being

placed deterministically. In addition to that, assuming random nodes also models the

compulsory randomness in the precise deployment where the available mounting points

to deploy (e.g., suitable trees, accessible buildings) sensors are often random. Therefore,

random deployment is a widely accepted sensor network implementation scheme and

results in the deployed network to pose stochastic characteristics.

Our main contributions are new approaches to computing the distribution and the

mean of cardinality of the MCDS, which is not only applicable for 1-D network, but also

can be generalized to more practical 2-D cases, as shown in Chapter 4. These results are

important because they can be adopted to evaluate the performance of sensor network

routing protocols in terms of the least number of nodes involved in routing. Therefore,
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they also allude the critical performance measure, network lifetime, in sensor networks.

The rest of this chapter is organized as follow. In Section 3.2, we define our problem

and notation first, and then introduce a 1-D network model. We provide simple ap-

proaches to obtain the mean of the MCDS cardinality in Section 3.3. A numerical method

for the distribution of that cardinality is proposed in Section 3.4. Simulation and numer-

ical results in Section 3.5 show the validity of our assumptions and the effectiveness of

our evaluation approaches. Conclusion is drawn in Section 3.6.

3.2 Problem Statement and Network Model

We assume that sensor nodes are randomly and uniformly distributed within an interval

in one-dimensional space. A uniform random distribution of sensor nodes is a widely

applied assumption, mainly because of its tractability. In fact, there is no unified node

distribution pattern due to the variety of sensor network applications and different de-

ployment schemes. However, uniform sensor distribution is an ideal scenario, in which

every point in the network has equal probability to be equipped with a sensor node. In

addition, uniform distribution can be considered as the steady state of nodes distribution

if nodes can move randomly [28]. We study the minimum cardinality of the CDS of this

one-dimensional network, which is also the necessary number of nodes involved in the

Route Request (RREQ) broadcasting in routing to achieve complete RREQ delivery in the

entire network. RREQ is usually used in reactive routing protocols such as DSR [127] for

route setup.

In the network we are considering, let the coordinates of the n sensors be X1 ≤
X2 · · · ≤ Xn. The MCDS in a 1-D topology can be found using greedy routing. Greedy

routing is defined as a routing scheme in which every node involved in data transmission

forwards packets to the neighbour that is closest to the destination [209]. In 1-D networks,

the resulting hops will have longest length in the direction toward the destination among

all possible hops, and so we also call greedy routing longest hop routing in this chapter.

This chapter uses the following notation, illustrated in Fig. 3.2

• n — total number of nodes in the network.

• d — total network distance, which is the length of the interval in which all sensor

nodes are uniformly distributed.



3.2. PROBLEM STATEMENT AND NETWORK MODEL 43

• r — radio transmission range, which is identical for all the sensor nodes.

• NCDS — the cardinality of a particular CDS.

• N — minCDS′s(NCDS).

• P(N) — probability mass function of N. We will denote Pn(N = k) as the probabil-

ity that N takes a particular value k. It is also a function of n.

• C, C — C denotes the event that the network is connected, i.e., there exists at least

one path between any pair of sensor nodes; and C is the complement event of C,

i.e., network is disconnected.

• L — the network span, L = Xn − X1.

• FL(·), FL(l|C) — cumulative distribution function (CDF) of L and the CDF of L

conditioning on the network connectivity.

• fL(·) — probability density function (pdf) of L.

• Wi — the length of the ith hop in greedy routing, in which i = 1, 2, ..., N + 1.

• Ti — the residual of ith hop, i.e., Ti = r−Wi.

• Dk — sum of the lengths of the first k hops, Dk = ∑k
i=1 Wi.

Variables N, L, Wi, Ti are all random, and are dependent on the random placement of

sensors.

We also adopt the commonly used assumption that direct links only exist between

any two nodes with straight distance no more than a predefined threshold r, which is

the radio transmission range [50] [67] [92]. This may not be the case in some practical

situations. However, in addition to its analytical tractability, this model implies a bound

if we select r as the smallest value of transmission range. This model is also justified in

Chapter 2. Without loss of generality, we normalized all the distance parameters with

transmission radius r, therefore, r = 1. Therefore, we are virtually applying an unit disk

graph to model the network.

We consider networks with a large number of nodes. This ensures that the network

is connected with high probability. As it is meaningless to discuss the number of relays

if the network is disconnected, a small value of n is not of our interest. In a collation
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Figure 3.2: Network Model for Poisson Approximation

of n points which are i.i.d. uniformly distributed on [0, d], the spacing between pairs of

adjacent points multiplied by n tend to i.i.d. exponential random variables with mean d

as n → ∞ [73]. Thus, we model the sensor locations as a 1-D Poisson process. Cheng and

Robertazzi [50] studied the expected number of relays in the first connected component

in a 1-D Poisson distributed network with infinite length. Our work differs from it as we

assume the network with finite length d is connected and obtain the cardinality of the

MCDS. As n is large, Wi’s, for i = 1, 2, . . . , N are considered to be approximately i.i.d.

random variables. Furthermore, each individual W is approximately independent of N.

These approximations are supported by simulation results in Section 3.5, which shows

the consolidation of our approximations.

As the following analysis are based on the Poisson approximation, our results will not

only apply to uniformly distributed network with large value of n, but are also applicable

to networks with all nodes forming a Poisson process, which increases the applicability

of our results.

3.3 Mean Number of Relays

In order to evaluate the performance of a given routing protocol in terms of the necessary

number of relays to be involved, N, we derive its expectation directly, and its distribution

is computed numerically in Section 3.4.
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In a system of many nodes that provides a connected network, after each hop there

is usually another node “near” the transmission range, and so all hops are only slightly

below r. Moreover, these hop lengths are approximately independent. (In the Poisson

limit, the length r −Wi−1 is an exponential random variable truncated by Wi, with the

dependence between Wi and Wi−1 only through this truncation.) Thus, a very coarse

estimate is

E[N] ≈ E[L|C]/E[W]

≈ E[L]/r. (3.1)

The rest of this section quantifies how much below r the average hop is, refining the

second approximation above, and obtains E[N] by studying E[L|C] and E[W]. We first

derive the distribution and density functions of the network span (network coverage)

L via two different approaches, Poisson approximation and Order Statistics, respectively.

Although the Order Statistics approach gives the exact distribution of L while the Poisson

approximation is only an approximation, the Poisson approximation shows good agree-

ment with the exact result when the network is dense. More importantly, the Poisson

approximation gives insights into the impact of connectivity on the network span under

asymptotic situations.

3.3.1 Distribution of Network Span - Poisson Approximation

To quantify the probabilistic properties of L, we introduce the following lemma first.

Lemma 3.3.1. Consider sensor nodes randomly deployed on a line, forming a Poisson point pro-

cess with parameter λ. Let n be the number of nodes falling in [0, d]. The expected value of the

network coverage L, as λ approaches infinity is:

E[L] = d− 2
λ

+ O(e−λd), λ → ∞. (3.2)

Proof. Let Z0 = X1 and Zn = d− Xn. Note that they are truncated exponentials 1, with

1Indeed, in addition to Z0 ≤ d and Zn ≤ d, there is still a joint truncation Z0 + Zn ≤ d. However, we
ignore the joint truncation as it occurs with very small probability to violate that truncation.
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pdf

fZ(x) =
λ exp(−λx)

1− exp(−λd)
, x ∈ [0, d]

and 0 otherwise, and hence Z0 and Zn have mean

E[Z] =
eλd − λd− 1
λ(eλd − 1)

=
1
λ
− d

eλd − 1

=
1
λ

+ O(e−λd) (3.3)

for large λ and fixed d. Combining eq. (3.3) with the fact that the network coverage is

L = d− (Z0 + Zn) gives eq. (3.2).

Equation (3.2) shows that as λ goes to infinity, E[L] ≈ d − 2/λ, since L is approxi-

mately the difference between d and the sum of two exponential random variables each

with mean approximately 1/λ. Indeed, if we approximate Z0 and Zn as i.i.d. exponential

RV’s, the probability density function of their sum is the convolution of each individual

pdf. As L = d− (X1 + Xn), which means that L is approximately a linear function of the

sum of two i.i.d. exponential RV’s. Hence we can approximate the pdf and the CDF of

the network coverage L, fL(l) and FL(l) as:

fL(l) = λ2(d− l)e−λ(d−l), l ∈ [0, d], (3.4)

and

FL(l) = e−λ(d−l)(1 + λ(d− l)), l ∈ [0, d]. (3.5)

respectively.

The following lemma shows that E[L|C] is a good approximation to E[L] for dense

networks; both of them tend to d, but the difference between E[L|C] and E[L] is much

smaller than the difference between either of them and d.

Lemma 3.3.2. Consider sensor nodes randomly distributed on a line according to a Poisson point

process with parameter λ. Nodes within the required network terrain, which is an interval [0, d],

form a sensor network. As λ goes to infinity, the cumulative distribution function of the net-

work coverage, L, and the cumulative distribution function of L conditioned on the network being
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connected satisfy

FL(l|C)− FL(l) = O(e−λr/2)

= o(1/λ), λ → ∞. (3.6)

In particular, the expectation of L and conditional expectation of L given the connectivity of the

network satisfy

E[L|C]− E[L] = o(d− E[L]), λ → ∞. (3.7)

Proof. To show eq. (3.6), note that

FL(l|C)− FL(l)

= FL(l|C)P(C) + FL(l|C)P(C)− [
FL(l|C)P(C) + FL(l|C)P(C)

]

=
[
FL(l|C)− FL(l|C)

]
P(C). (3.8)

The factor in brackets is bounded above by 1 = O(1). To bound C, partition [0, d]

into 2d/r intervals, each of length at most r/2. A sufficient condition for the network to

be connected is that each interval has at least one node, which occurs with probability at

least (1− e−λr/2)2d/r. Thus P(C) = O(e−λr/2) for large λ and fixed r, d.

Equation (3.7) is proved in a similar way

E[ l|C]− E [ l ]

= E[ l|C]P(C) + E[ l|C]P(C)− [
E[ l|C]P(C) + E[ l|C]P(C)

]

=
[
E[ l|C]− E[ l|C]

]
P(C). (3.9)

The term within brackets is bounded by a constant, hence it is O(1), and P(C) =

O(e−λr/2) from previous result. Also, note that d−E[L] = 2/λ + o(1/λ) from Lemma 3.3.1,

giving eq. (3.7).

3.3.2 Distribution of Network Span - Order Statistics Approach

We can also derive the pdf of L explicitly via order statistics approach. As all the sensor

nodes are i.i.d. uniformly distributed in the interval [0, d], and L = Xn − X1. Therefore,

the joint pdf of X1 and Xn, fX1,Xn(x, y), is given by
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fX1,Xn(x, y) = n(n− 1)
(

y− x
d

)n−2 (
1
d

)2

, 0 ≤ x ≤ y ≤ d. (3.10)

In fact, the event that X1 and Xn fall into infinitesimal intervals x < X1 < x + dx and

y < Xn < y + dy simultaneously is equivalent to the event that n− 2 nodes fall into the

interval [x, y], while there are (n)n, which is the permutation number of 2 out of n, choices

to form X1 and Xn.

Substituting X1 by Xn − L in eq. (3.10) and integrating it over Xn from l to d yields the

pdf of L, which is

fL(l) =
∫ d

l
fX1,Xn(y− l, y)dy

=
∫ d

l
n(n− 1)

(
l
d

)n−2 (
1
d

)2

dy

= n(n− 1)
(

1− l
d

) (
l
d

)n−2 (
1
d

)
, (3.11)

for 0 ≤ l ≤ d. The integration limits are determined as Xn must be larger than L but less

than d.

The CDF of L can be derived from eq. (3.11) as

FL(l) = n
(

l
d

)n−1

− (n− 1)
(

l
d

)n

, if 0 ≤ l ≤ d. (3.12)

With density function (3.11) of L, the expectation of L can be easily obtained, which is

E[L] =
∫ d

0
t fL(t)dt

=
[

n− 1− n(n− 1)
n + 1

]
d

=
n− 1
n + 1

d (3.13)

3.3.3 Properties of Hop Length

The number of relays, or the number of hops, is not only affected by the network span,

but is also influenced by the hop length W. This section drives the distribution of W’s.

We consider a sensor network with sensor nodes forming a Poisson point process with

parameter λ on a line. Let W0 be equal in distribution to the random hop length in the
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longest hop routing scheme, for any but the last hop. The CDF and pdf of W0 can be

approximated by

FW0(t) ≈ 1− 1− exp [−λ(r− t)]
1− exp(−λr)

, 0 < t ≤ r, (3.14)

and

fW0(t) ≈ λ exp [−λ(r− t)]
1− exp(−λr)

, 0 < t ≤ r, (3.15)

respectively.

The expectation of W0 is:

E[W0] ≈ 1
1− exp(−λr)

[
r− 1

λ
+

1
λ

exp(−λr)
]

=
r

1− exp(−λr)
− 1

λ
. (3.16)

Equation (3.14) is only strictly true for the first hop W1, which is proved in [108].

In fact, for other hops Wi, i = 2, 3, . . . , N, the distribution of r −Wi−1 is truncated by

Wi. However, this dependence is negligible for large n (i.e., large λ). Therefore, in a

Poisson point process with large λ, we consider the ith hop, where i ≤ N, the distance

between the next hop relay to the transmission range limit, denoted by Ti = r − Wi,

has an exponential distribution with parameter λ, except that, Ti is less than or equal to

the transmission range r, thus it follows a truncated exponential distribution, with the

cumulative distribution function

FT(t) ≈ 1− exp(−λt)
1− exp(−λr)

, 0 < t ≤ r (3.17)

which leads to eqs. (3.14) and (3.15), hence eq. (3.16) follows.

For r ¿ N/λ, the expected length of the last hop is half the expected length of the

other hops, since the destination will be approximately uniformly distributed within the

maximum possible range of the last hop. Thus

E [NW0 + W0/2] ≈ E [L] . (3.18)
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Lemma 3.3.2 implies that it is reasonable and accurate to replace E [L|C] with E [L]

when compute the E[N] via eq. (3.1) for dense networks. The basic idea of above lemmas

is as follows. A dense network in which nodes follow a Poisson process is highly likely to

be connected. So we can use the network span X(n)−X(1), to approximate the coverage of

a connected network, E[L] can serve as an accurate approximation of E [L|C]. Therefore,

combining eq. (3.18) with eqs. (3.2) and (3.16) gives

E[N] ≈ d− 2/λ + 2 exp(−λ)/λ

r/ [1− exp(−λ)]− 1/λ
− 1

2
(3.19)

≈ d− 2/λ

r− 1/λ
− 1

2
. (3.20)

neglecting terms of O(e−λ).

3.4 Distribution of Relay Number

In this section, we propose an approach to compute the distribution of N numerically.

In order to derive the distribution of N, we have the following proposition, which is a

straightforward result of the law of total probability.

Proposition 3.4.1. Consider sensor nodes randomly deployed according to Poisson process with

parameter λ in 1-D space, forming a connected sensor network. Let n be the Poisson distributed

number of nodes in the network terrain [0, d]. The probability mass function of the cardinality of

the MCDS of this network, P(N = k− 1), is given by:

P(N = k− 1) =
∫ d

0
P(N = k− 1|L = l) fL(l) dl. (3.21)

The following proposition derives the probability that N = k− 1 given that the net-

work coverage is l, P(N = k− 1|L = l).

Proposition 3.4.2. In 1-D space, if all nodes are randomly deployed forming a Poisson process

with parameter λ and the resulting network is connected, then the conditional probability that the

cardinality of the MCDS is k− 1, given the network coverage l, is

P(N = k− 1|L = l) = P(Dk−1 < l)− P(Dk < l), 0 < l < d (3.22)

where Dk = ∑k
i=1 Wi, is the sum of length of the first k hops.
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Proposition 3.4.2 follows because the event Dk−1 < l is equivalent to the union of two

mutually exclusive events: Dk < l, or Dk−1 < l while Dk ≥ l.

We can approximately compute P(Dk−1 < l) by numerical inversion of Laplace trans-

form, as Dk = ∑k
i=1 Wi, and Wi’s can be approximated by i.i.d. RV’s with pdf given by eq.

(3.15).

The Laplace transform of (3.15) for r = 1 is

L( fW(t)) =
λ exp(−λ)

1− exp(−λ)

[
exp(λ− s)− 1

λ− s

]
. (3.23)

As the pdf of Dk is a k fold convolution of fW(t), by transform method, we can obtain

the Laplace transform of pdf of Dk−1, which denote as L(Dk−1) to be given by

L(Dk−1) =
[

λ exp(−λ)
1− exp(−λ)

]k−1 [
exp(λ− s)− 1

λ− s

]k−1

.

(3.24)

Numerical inversion of (3.24) yields the pdf of Dk−1 and Dk, denote as fDk−1(x) and

fDk(x), which lead to P(Dk−1 < l) and P(Dk < l) where the probability that Dk−1 = l and

Dk = l are ignored as they are zero for continuously distributed nodes.

Combine eqs. (3.4), (3.22) and (3.24), by (3.21), we can numerical compute the proba-

bility mass function of N.

For networks with uniformly distributed nodes, if n is large, we adopt Poisson ap-

proximation yielding n ≈ E(n) = λd, which enables the above approach to compute the

distribution of N.

3.5 Numerical Results and Model Validation

To verify our preliminary assumptions that W ′s are approximately independent of each

other in dense sensor network, as well as are independent of N, we conduct 105 Monte

Carlo simulation for n = 25, 30, ..., 500, in a network with all nodes uniformly distributed

within [0, 12] and r = 1. For each network instance, we obtain the values of W ′s and N,

and compute their Correlation Coefficients (CC)

Although Chi-square test is a more general methodology to test the independence of

random variables, we compute the correlation coefficients to demonstrate the indepen-

dence, mainly because the dependence between Wi−1 and Wi only through the truncation
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of Wi to Ti−1, which leads to the negative correlation between Wi−1 and Wi. Correlation

coefficients between different W ′s, and between W ′s and N are computed. Results are

shown in Fig. 3.3 and Fig. 3.4. It is clear in Fig. 3.3 that the correlation coefficients

between different W ′s become closer to zero as the number of nodes n increases as we ex-

pected. The dotted line shows that the correlation coefficient between the length of first

hop W1 and the length of the last hop Wlast is small when n is small, which is different

from other curves. This comes from the border effect of Wlast. The standard deviation

of Wlast could be large when n is small, results in a small correlation coefficient. In Fig.

3.4, as we expected, N and W ′s pose negative correlation and the correlation coefficients

approach zero as n increasing. The magnitude of the correlation coefficient between N

and W3 (shown with triangles) starts with a small value when n is small, increases with n

when n is not too large, and then approaches zero as n becomes large. This phenomenon

can be explained by the following argument. When n is small, the correlation between

W ′s and N is high, however, the variances of W ′s and N are also large, which produce

a relative small correlation coefficient. As n increasing, strong correlation between W ′s

and N still exists, while the variances of W ′s and N become small, which generate large

correlation coefficients. As n keep increasing larger and larger, variances of W ′s and N,

and dependence between them are very small, stated by small values of correlation coef-

ficients, in terms of magnitude. So our assumptions are valid for large n.

0 100 200 300 400 500
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Total number of nodes n

C
or

re
la

tio
n 

C
oe

ffi
ci

en
ts

 b
et

w
ee

n 
W

’s

CC between W
1
 and W

2

CC between W
6
 and W

7

CC between W
1
 and W

last

d = 12
r = 1

Figure 3.3: Simulation results for Correlation Coefficients (CC) between W’s

To show Lemma 3.3.2, and verify eq. (3.12), Fig. 3.5 and Fig. 3.6 demonstrate the
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Figure 3.4: Simulation results for Correlation Coefficients (CC) between W’s and N

comparison of CDF of the network coverage given by eq. (3.5) and eq. (3.12), and the

network coverage conditioning on the network connectivity obtained by simulations, for

a network that all nodes are uniformly distributed within interval [0, 12], other param-

eters are indicated in the graph. Solid lines in the graphs represent the analytical CDF

obtain from eqs. (3.5) and (3.12), while the markers demonstrate the simulation results.

We can see from the figure that for a network with normalized total distance d = 12, both

eq. (3.5) and eq. (3.12) demonstrate good agreement with simulation results when the

number of nodes n is high, which is as expected. Moreover, both Fig. 3.5 and Fig. 3.6

show that for large n and same values of CDF, the difference between argument of CDF,

which is the network span, is less than one radio-range. The observation reveals that the

distribution of N is highly concentrated on its expected value, and is not so important

in practice. Thus the more interesting case is the MCDS in two dimensional networks,

which is the topic of the next chapter.

Furthermore, Fig. 3.7 compares the CDF of L obtained from eq. (3.12) and (3.5). Notice

that eq. (3.12) gives us the exact solution of FL, we can see that eq. (3.5) over-estimates the

CDF of L. This is because the derivation of (3.5) approximate two truncated exponential

RV’s X1 and d− Xn by exponential RV’s on infinite support. However, as shown in Fig.

3.7, the difference can be ignored. This also consistent with our theory since the Poisson

Approximation is only valid when n is large. We also verify eq. (3.14), by measuring the

CDF of the lengthes of the first hop W1 and the seventh hop W7, as examples, in networks
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Figure 3.5: Comparison of analytical (equation (3.5)) and simulation results for CDF of
the network coverage

with same total distance and transmission range, but n = 90 and n = 60 respectively. It

can be seen that eq. (3.14) predicts Wi with reasonable accuracy in probabilistic sense, as

shown in Fig. 3.8 and 3.9.

The algorithm to do the numerical inversion of (3.24) is based on Abate’s algorithm

[4], which is essentially a Fourier-series method, and the discretization error is bounded

by exp(−8 ln(10))
1−exp(−8 ln(10)) ≈ 10−8 according to the parameters we selected in the algorithm.

To demonstrate the accuracy of our approaches to obtain the mean and the pmf of

N, we do 106 Monte Carlo simulation for d = 12, n = 60, 100, 140, 180, 200, obtain the

expected value of minimum number of relays nodes that maintain the whole network

coverage, comparing with the analytical results calculated by eq. (3.20). It can be seen

that good agreement is achieved between simulation and analytical results, from Fig.

3.10.

As the number of nodes n goes large, it is with increasing probability that the min-

imum number of nodes equal to the ceiling of d/r, i.e., E[N] → dd/re as n → ∞, as

the example obtained from simulation shown in Fig. 3.10. In Fig. 3.11, we compare the

simulation results of probability mass function of N and the analytical result given by eq.

(3.21). For n = 90, d = 12 and r = 1, 105 monte carlo simulations yield the empirical pmf

of N. Filled circles represent analytical results while empty circles for simulation results.

This example illustrates that our approach provides an acceptable accuracy level.
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Figure 3.6: Comparison of analytical (eq. (3.12)) and simulation results for CDF of the
network coverage

3.6 Conclusion and Discussion

In this chapter, we have shown that for a one-dimensional sensor network with n i.i.d.

uniformly distributed nodes, the cardinality N of the MCDS can be evaluated proba-

bilistically. We have derived its expectation, E [N], and computed its distribution, nu-

merically. The expectation and the distribution obtained imply important measures to

evaluate existing and potential ad hoc network routing protocols, especially for strictly

energy constrained sensor networks.

The classic result that a point process with all n points i.i.d. uniformly distributed can

be well approximated by a Poisson process as n goes large was adopted, which enabled

our results to be valid for networks with nodes have either uniform or Poisson distribu-

tions. The approaches used in this chapter were based on the evaluation of the margin

between the ideal hop length and the actual hop length of each hop. This is possible

because a one-dimensional network only requires a route that forms a line. However,

for more practical two-dimensional networks, our approaches require to be modified in

order to evaluate the cardinality of the MCDS, since there may be multiple routes among

a pair of source-destination nodes.
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Chapter 4

Minimum Connected Dominating Sets in 2-D Dense Wireless

Sensor Networks

4.1 Introduction

In Chapter 3, we investigated statistics of the cardinality, N, of the MCDS for one-dimensional

dense sensor networks. In this chapter, we extend this, and evaluate the cardinality of

the MCDS in two-dimensional dense networks. Based on our evaluation approaches, we

also propose a new algorithm, the Incremental Coverage Algorithm (INCOA), to con-

struct small sub-optimal dominating sets to approximate small CDS. Dense networks are

of interest because the sensing radius rs of each node could be much smaller than the

communication range r [1] [2] [3], which results in a high nodal degree for a sensor net-

work.

The MCDS plays an important role in facilitating efficient network operations, be-

cause performing data aggregation at nodes in the MCDS and restricting packet relaying

to only those nodes in the MCDS can reduce the traffic when broadcasting is initiated.

This also enables us to turn off as many inactive nodes as possible, hence reducing the

energy consumption. Under this situation, the MCDS is essentially a virtual backbone

in the networks, and this virtual backbone can greatly reduce the network traffic. It is

clear that light traffic results in less congestion, especially in dense networks, and conse-

quently, less energy consumption.

In addition to the consideration of energy saving, reducing the number of active nodes

for relaying is also a requirement of improving the throughput of the network, as the

transmission of multiple sensor nodes in dense networks can lead to severe interference.

Therefore, establishing a virtual backbone, which contains a small set of nodes that are in

active mode, is an attractive solution for multi-hop routing in sensor networks.

Constructing the MCDS for a network is an effective approach to establishing such

a virtual backbone. As computing the MCDS in a given network is known to be NP-

59
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hard [78], only heuristics, which construct a sub-optimal CDS, are efficient for general

networks. Existing heuristic algorithms include Alzoubi, Wan and Frieder [10], Butenko

et al. [37], Das and Bharghavan [58], Guha and Khuller [89], Ou et al. [172], Sanchis [192],

Wu and Li [223], and the references therein. A brief introduction to these algorithms is

given in Chapter 2.

Most existing CDS construction algorithms are specifically designed for ad hoc net-

works, and hence they are not scalable for sensor networks, which may contain hundreds

or even thousands of sensor nodes. One such an example is a sensor network for mili-

tary surveillance. Since this network needs to provide a high level robustness and fault

tolerance [207], it may contain a large number of sensors. Constructing virtual backbones

in such networks could be very complicated, in terms of both time complexity and mes-

sage complexity. In this chapter, we also propose a new algorithm, which can efficiently

construct a dominating set to approximate a small connected dominating set in dense

networks.

This chapter is organized as follows. In Section 4.2, we review some existing work

related to the asymptotically optimal results for the MCDS problem. A formal statement

of our research problem is given in Section 4.3. We evaluate the expectation of the cardi-

nality of the MCDS in Section 4.4, and propose our algorithm in Section 4.5. Numerical

and simulation results are shown in Section 4.6. We conclude this chapter in Section 4.7.

4.2 Background and Related Work

In this chapter, we are considering a network in which every single point in the sensing

field is within the connectivity range of some relay nodes. Therefore, we define a finite

dense sensor network as a finite network in which the spacing between sensor nodes is

very much less than the transmission range.

One related problem is the integrated consideration of network connectivity and sens-

ing coverage, the so called connectivity-coverage problem [215]. This problem arises be-

cause in sensor networks, it is desirable that events should be detected wherever they

occur as long as it is within the sensing field, while at the same time, the network should

be connected such that the occurrences of events can be reported to control centres. Hence

any location where events may occur should be within the sensing range of some sensors,

and sensors should be able to communicate with each other. The connectivity-coverage
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problem aims to arrange the minimum number of sensors such that these two require-

ments can be satisfied simultaneously.

The connectivity-coverage problem is still an open problem for general networks.

However, some understandings and the asymptotically optimal result, which solved the

connectivity-coverage problem for a network in an infinite plane, were obtained. Wang

et al. [215] proposed the concept of connectivity-coverage, and analysed the relationship

between connectivity and coverage. They proved that a network is connected whenever

its sensing field is fully covered, if the transmission range r is at least twice of the sens-

ing range rs, i.e., r ≥ 2rs. A coverage configuration algorithm was proposed which can

provide a different degree of coverage for networks with r ≥ 2rs. That is, each point can

be ensured to be covered by multiple sensors. Zhang and Hou [230] proved the same

result for the relationship between r and rs with a different approach. They also reproved

Kershner’s classical result [130] that the optimal pattern in terms of the number of nodes

to achieve full coverage under asymptotic scenario is placing sensors on the vertices of an

equilateral triangular lattice by minimizing the overlapped sensing area. The approach is

different from that in [130], in which geometric analysis was adopted. For the case r = rs,

Iyengar, Kar and Banerjee [125] showed that a strip-based deployment pattern is near op-

timal for an infinite network, but without a rigorous proof. Iyengar et al.’s asymptotically

optimal layout is shown in Fig 4.1. Sensors are deployed in equally spaced horizontal

strips. In each strip, adjacent sensors have spacing r between them. Adjacent strips are

a distance (1 +
√

3/2)r apart. One vertical rib of sensors is used to connect sensors in

different strips. Bai et al. [16] improved Iyengar et al.’s results by proving that the strip-

based deployment pattern is asymptotically optimal, not only when r = rs, but also for

r ≤ √
3rs. Furthermore, they also proved the optimality of a slightly different strip-based

layout, which can achieve full coverage and 2-connectivity, for an arbitrary ratio of r/rs.

This deployment layout could be advantageous to the network reliability.

The connectivity-coverage problem is related to our 2-D MCDS problem in the follow-

ing sense. For the MCDS problem, we aim to minimize the size of the virtual backbone,

subject to the constraint that all the nodes are within the transmission range r of at least

one node in the backbone. For an asymptotically dense network, the constraint becomes

that every point in the sensing field is within the distance r of some nodes in the back-

bone, so that events which occur there can be reported to at least one relay node. As

relay nodes in the backbone are connected, eventually these events can be reported to
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Figure 4.1: Asymptotically optimal pattern for achieving both connectivity and coverage,
r = rs

data collection centres. Therefore, the backbone itself is a connected sensor network that

can be reached from arbitrary points in the sensing field. Hence, solving the minimum

virtual backbone problem for an asymptotically dense network is mathematically equiv-

alent to solving the asymptotic coverage-connectivity problem with rs = r, which also

tries to minimize the set of nodes that are connected while every point within the sens-

ing field is under surveillance. The deployment pattern for this asymptotically optimal

solution is shown in Fig. 4.1. According to our previous discussion, if there are sensor

nodes on those positions in Fig. 4.1, those sensors form the MCDS under the asymptotic

scenario. Hence we call those positions asymptotically optimal positions. Under this pat-

tern, the optimal sensor node density (in the context of connectivity-coverage problem),

λo, is given by [125]

λo =
1

(π
3 +

√
3

2 )r2
≈ 1

1.914r2 . (4.1)

Note that the sensor nodes in the context of connectivity-coverage problem correspond

to the relays for the MCDS problem.

Although this asymptotically optimal solution for the MCDS problem is known, it

cannot be applied to practical problems directly. In a realistic situation, sensor networks

always contain a finite number of sensor nodes within a finite area. Furthermore, the

probability that there exists a sensor node on an arbitrary point is zero for a network that

is randomly deployed, no matter how dense it is. Thus the real interesting problem is:

what is the cardinality of the MCDS in a large, finitely dense sensor network? How can
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we find such an MCDS efficiently? We aim to answer the questions in this chapter.

4.3 Problem Description

We define our network model first. We consider a random network in a d× d square area.

There are n sensor nodes, which are i.i.d. uniformly distributed in this network area, each

with isotropic transmission range r. We assume d is large compared to r. We also assume

that the average nodal degree πr2(n/d2) is large. Therefore, the network scenario we are

investigating is a large dense sensor network. We aim to obtain the expectation of the

cardinality of the MCDS, E [N], for this network. We are also interested in developing

efficient algorithms to construct the MCDS for such a network.

As we study dense networks, by similar reasons for 1-D scenario, we approximate the

spatial point process formed by the positions of all the sensor nodes by a spatial Poisson

point process, with intensity λ = n/d2. We also normalized all the distance parameters

by the transmission range r, which leads to r = 1. From now on, all distance-related

parameters, e.g., λ and d, are normalized. With the above setting, πλ represents the

average nodal degree, which is the average number of nodes within the radio range of a

single node.

As mentioned before, under the asymptotic situation, one MCDS is a set of nodes that

are aligned as the strip-based pattern. However, in practical situations, the probability of

having a node on each asymptotically optimal position is zero. We can select the nodes

that are closest to each asymptotically optimal position as relay nodes. However, they

may not form a CDS. Nodes in the relay set may not connect to each other, or some

ordinary nodes may not be able to connect to any relay. Hence we may need extra nodes

in addition to that relay set.

4.4 Problem Formulation

To obtain the MCDS by exploiting the asymptotically optimal solution, we adopt a modi-

fied spacing approach, which tries to find the MCDS according to the strip-based pattern,

but with a different spacing parameter. We described the approach as follows. In the

asymptotically optimal pattern, the ideal spacing parameter is r for nodes in a common

horizontal strip, and (1 +
√

3/2)r for two adjacent horizontal strips. However, the strip-
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(a) Asymptotic optimal pattern (b) Modified spacing pattern

Figure 4.2: Three node pattern

based asymptotic pattern is only applied to an infinitely dense network. For a finitely

dense network, we try to utilize a modified value ro < r, which gives a margin to tolerate

the randomness in the nodes positions, such that the relay set produced can form a CDS,

though they may not exactly be on the positions expected.

We demonstrate our approach through a three node example in Fig. 4.2. In this illus-

tration, we only show three nodes which are adjacent to each other in adjacent horizontal

strips. Figure 4.2(a) is the asymptotically optimal pattern in which the spacing between

consecutive relays in a horizontal strip is r, and the distance between two adjacent hori-

zontal strips is (
√

3
2 + 1)r. Figure 4.2(b) shows the modified spacing pattern in which r is

replaced by ro.

We define some terminology first. We call the positions in the asymptotically optimal

pattern the asymptotically optimal positions. According to some rules (discussed later), the

asymptotically optimal pattern can be transformed and hence applied to finite networks

by using the modified spacing parameter ro. We call the expected position of relays in this

finite transformation of the asymptotically optimal pattern the nominal position of relays.

Each nominal position corresponds to a relay, which is the closest node to that nominal

position, so called a nominal relay. We denote the number of nominal relays by N1. Note

that nominal relays will not generally be exactly at nominal positions. We call the position

of nominal relays the actual position. In Fig. 4.2(b), we can see that there is an intersection

or an overlapping area among the three discs representing the transmission coverage of

each node. If such an intersection does not exist, for a given set of three actual positions,
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there is a gap between the three transmission ranges and nodes within that gap cannot

connect to those three nominal relays. Under that situation, we need an additional relay,

called a filling relay, wherever the transmission areas of the three actual relays do not have

an intersection. We denote the number of filling relays by N2. Hence the cardinality of

the CDS, NCDS is approximately the sum of N1 and N2, i.e., NCDS ≈ N1 + N2. We want to

find the particular ro, denoted by rom, such that the expected value of NCDS is minimized.

Therefore, our problem can be mathematically formulated as the following optimization

problem

Objective:

min
ro

E [NCDS] ≈ E [N1] + E [N2] , (4.2)

given r, n and d. With the normalization of r = 1, both N1 and N2 are functions of ro.

The following section proposes an approximation to compute the optimal solution of

(4.2), rom = arg min E[NCDS].

4.4.1 Approximation of the Cardinality of the MCDS

As mentioned in the previous section, the asymptotically optimal pattern is only applied

to an infinitely dense network. We need to do some transformation of the asymptotically

optimal pattern, such that it can be applied to a finite dense network. We describe the

rules of the transformation as follows.

In a square network with a d × d sensing field, as the network is finite, in order to

cover the upper-left corner of the sensing field, there should be a relay on the position that

has distance ro to the upper-left corner. We let the nominal position of this relay on the

location that has distance ro to the upper-left corner, and the angles between the segment

line connecting the upper-left corner and the nominal position to both the vertical and

the horizontal edges to be 45 degree, as shown in Fig. 4.3. The black dot in Fig. 4.3 is

the nominal position. Once we have this first nominal position, the nominal positions for

the rest of nominal relays can be determined according to the modified asymptotically

optimal pattern, in which adjacent nodes in a single horizontal strip have distance ro, and

adjacent horizontal strips have distance (1 +
√

3/2)ro.
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Figure 4.3: Illustration of the nominal position of the upper-left relay.

4.4.2 Expected Number of Nominal Relays

In order to solve (4.2), we first express E [N1] as a function of ro. For a d × d network,

given d and ro, N1 is deterministic, and is independent of λ. Hence we have E [N1] = N1.

We call a horizontal strip of nodes a row. Denote the number of rows by H, and the

number of nominal positions in the vertical rib by ∆1. Geometrical analysis yields N1

approximately

N1 ≈
[

d− ro/
√

2
ro

]
×H + ∆1. (4.3)

Equation (4.3) can be explained as follows. Since the network area is finite, relays are

expected to be on the nominal positions whose pattern was described in the previous

section. The nominal position of the upper-left relay is shown in Fig. 4.3. As the nominal

positions are expected to align every ro in a row, and the network edge length is d, we

have approximately (d− ro/
√

2)/ro nominal relays in a row, if we ignore the edge effect

and the fact that we can only have integer number of relays. The set of nominal relays

also contains ∆1 relays in the vertical rib.

We now find H as a function of d and ro. Since the distance between adjacent horizon-

tal strips is (
√

3
2 + 1)ro in the nominal situation, the number of rows depends on whether

the transmission range of the sensors in the last row can cover the bottom edge. However,

we ignore this fact, and approximate H by adding an additional row, which also provides

a conservative estimation of H. This leads
[

d−ro/
√

2
ro

]
×H to be an approximation of the
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total number of relays in all the horizontal strips. The H in eq. (4.3) is approximated by

H ≈

 d− ro/

√
2(√

3
2 + 1

)
ro


 + 1

=

[
2d/ro −

√
2√

3 + 2

]
+ 1. (4.4)

The ∆1 is the number of nodes in the vertical rib, and it is slightly less than the number

of rows. If we need an additional row of relays to cover the bottom edge of the network,

we need a relay corresponding to each row, except for the last two row, in the vertical rib,

i.e., ∆1 = H− 2, otherwise we need a relay for each row except the last row in the vertical

rib, i.e., ∆1 = H− 1. As we always add an additional row at the bottom of the sensing

field, we have ∆1 = H− 2. So ∆1 is given by

∆1 ≈ H− 2

=

[
2d/ro −

√
2√

3 + 2

]
− 1, (4.5)

Note that N1 should be an integer. However, in this section, we ignore the integer

effect by smoothing it to a real number. More accurate analysis of N1 is given in Appendix

A.

4.4.3 Expected Number of Filling Relays

The number of filling relays, N2, is also a random variable. In order to evaluate its expec-

tation, we investigate the three node pattern, which is shown in Fig. 4.2(b). In the graph,

the overlapping area between the transmission range of these three nodes guarantees that

nodes between these three nodes can communicate with them. Hence we do not need a

filling relay for the three node pattern if there is overlapping, otherwise a filling relay

needs to be added. Let Bi denote the event that the ith set of three discs representing the

transmission range of the three nodes do not overlap, which is equivalent to the event

that we need an extra relay for this three node pattern.

Define
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IBi(x) =





1, x ∈ Bi

0, otherwise,
(4.6)

which is the indicator function of event Bi, i.e., IBi equals to 1 if and only if event Bi occurs.

The expected number of filling relays for the ith set of three node pattern is E[IBi ]. Thus if

we can compute the number of three node patterns, denoted by N3, we can evaluate the

expected number of extra filling relays required, for a given network and given ro, which

is

E[N2] = E

[
N3

∑
i=1

IBi

]
= N3E [IB1 ] . (4.7)

Note that N3 is a function of d and ro.

When d is large,

N3 ≈ N1. (4.8)

This is because for a large network, corresponding to each node in the network, there

exists a three node pattern, as can be seen in Fig. 4.1. This approximation becomes tight

when both d and λ approach infinity. Therefore, eq. (4.7) becomes

E[N2] ≈ N1E [IB] . (4.9)

A more accurate evaluation of N3 is given in Appendix A.

4.4.4 Expected Number of Filling Relays for a Three Node Pattern

As IB is the indicator function of the event that we need a filling relay for a three node

pattern, its expectation, which is the expected number of filling relays needed, equals to

the probability that the underlying event occurs. It is

E [IBi ] = P(Bi). (4.10)

Exact computation of P(B) is difficult, as nodes can be on arbitrary positions around the

nominal positions and the overlapping area is not a polygon. However, we can evaluate

P(B) through an approximation.



4.4. PROBLEM FORMULATION 69

(a) Illustration of nominal positions (b) Illustration of actual positions

Figure 4.4: Three node pattern to compute E[IB]

To obtain the probability P(B) that we need an extra relay node for a three node pat-

tern, we approximate the boundaries of the overlapping area of the three transmission

range discs by straight line segments. This idea is shown in Fig. 4.4. Figure 4.4(a) shows

the ideal situation, in which nodes locate exactly on the nominal positions. If there are

three nodes exactly located on the nominal positions in the three node pattern, the discs

representing the radio range overlap as shown in Fig. 4.4(a). The intersection point for

the two lower discs is denoted by A. The two straight lines L1 and L2 for the two lower

discs are the tangent lines at the intersection point A, for lower left and lower right trans-

mission range discs, respectively. The third line L3 is the horizontal tangent line of the

upper disc. Hence the overlapping area of transmission ranges of these three nodes can

be approximated by the triangle circumscribed by L1, L2 and L3. We also denote by vari-

able a the distance between L3 and A. It takes the particular value a∗ (discussed later) for

the ideal situation, i.e., when nodes locate on the nominal positions.

For a random network, the ideal situation occurs with probability zero, hence we

cannot find nodes exactly located on those nominal positions, if nodes are randomly dis-

tributed according to uniform distribution. If we select the nearest node to each nominal

position to be the nominal relay corresponding to that nominal position, we can have the

actual nominal relay pattern, actual pattern in short, as the example shown in Fig. 4.4(b).

As can be seen in Fig. 4.4(b), the actual relays do not locate on the nominal positions.

Thus, the position of A is random, which results in a being a random variable as well.

The positions of L1, L2 and L3 are also random. If a is less than zero, L1, L2 and L3 do not
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overlap, and we need an extra filling relay node. By this setting, we assume that the two

lower nodes are always connected, which is a reasonable assumption for dense network.

We propose a scheme to approximate the probability that a < 0 in the rest of this section.

Let a∗ be the particular value of a for the ideal nominal pattern. Based on simple

geometric manipulation, a∗ is given by

a∗ =

√
r2 − r2

o
4
− (ro +

√
3

2
ro − r)

=

√
1− r2

o
4
− (1 +

√
3

2
)ro + 1. (4.11)

Note that a∗ = 0 if ro = r (= 1). We can compute the increment of a for the actual

pattern compared to the ideal nominal pattern. Denote this increment ∆a, and it can take

negative values. Therefore, for the actual pattern, a = a∗ + ∆a, and a < 0 is equivalent to

a∗ + ∆a < 0. (4.12)

We are aiming to express ∆a as a function of modified spacing ro.

In Fig. 4.4(b), consider the lower left disc. If the line connecting the actual position and

the nominal position of the relay is parallel to the tangent line L1 in the nominal pattern,

and the distance between the nominal and actual position is small, we can approximately

consider that the tangent line L1 in the actual pattern coincides with the L1 in the nomi-

nal pattern. We construct an orthogonal coordinate system for the lower left node in the

actual pattern. The origin is the nominal position. The axis of the first dimension is par-

allel to L1 with the positive direction pointing to the upper left corner, and the axis of the

second dimension is orthogonal to L1, with the positive direction pointing to the upper

right corner, as shown in Fig. 4.4(b). With these configurations, we can approximately

consider that the offset of the position of the lower left relay affects A and a only via its

projection onto the second dimension of the coordinates system, scaled by the cosine of

the angle θ between L1 and L3 under the nominal pattern. This approximation is valid

when the offset is small, i.e., dense network cases. The details are as follows.

Denote the distance from an arbitrary point to its nearest Poisson point of a Poisson
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process with intensity λ by R. So R is a random variable with distribution function [190]

FR(x) = 1− exp
(−λx2π

)
, x ≥ 0, (4.13)

and its pdf is given by

fR(x) = 2λπx exp
(−λx2π

)
, x ≥ 0. (4.14)

Let R1 be the distance from the nominal position of the lower left node to its nearest

Poisson point, which is the actual position of the nominal relay. The distribution of R1

is given by eq. (4.13). Let α be the angle between the line connecting the actual position

and the nominal position and the axis of the first dimension, as shown in Fig. 4.4(b). The

distribution of α is uniform within the interval (0, 2π]. The projection of R1 onto the axis

of the second dimension is consequently R1 sin α. Similarly, we define R2, β and R3, γ for

the lower right node and the upper node. By symmetry, the angle between L2 and L3 in

the nominal pattern is also θ. Hence ∆a can be expressed by

∆a = − (cos θ(R1 sin α + R2 sin β) + R3 sin γ) . (4.15)

cos θ is the weight factor of the offset of the actual positions of the lower two nodes on a.

A simple geometric argument yields the value of cos θ as

cos θ =

√
r2 − r2

o
4

r

=

√
1− r2

o
4

. (4.16)

The second equality comes from the fact that r = 1. Based on above discussion, the

event that we need an extra relay for these three nodes is equivalent to the event that

∆a + a∗ < 0, which is

(√
1− r2

o
4
− (1 +

√
3

2
)ro + 1

)
−

(√
1− r2

o
4

(R1 sin α + R2 sin β) + R3 sin γ

)
< 0. (4.17)

We know that E[IB] = P(B), which is the probability of the underly event that enables

the occurrence of (4.17). This probability can be evaluated either analytically or by Monte
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Carlo methods, as shown in the following two subsections.

4.4.5 Analytical Approach

To evaluate the probability of (4.17), let Y = sin α. Its pdf fY is the common density

function that sin α, sin β and sin γ follow. By the similar reasoning as shown in [175], fY

is given by

fY(y) =
1

π
√

1− y2
, −1 < y < 1. (4.18)

Let Z = R1 sin α, and denote the density function of Z by fZ. The analytical formula

of fZ is given by eq. (B.2) in Appendix B. The R2 sin β and R3 sin γ follow the same

distribution. This leads to the density of R1 sin α + R2 sin β as a two fold convolution of

fZ, denote it by fZ∗Z.

Therefore, the density of ∆a, whose expression is given by eq. (4.15) is

f∆a(y) =
∫ ∞

−∞

1
cos θ

fZ∗Z

( −x′

cos θ

)
fZ(y− x′)dx′. (4.19)

and we have

P(B) =
∫ −a∗

−∞
f∆a(y)dy. (4.20)

in which a∗ is given by eq. (4.11).

The exact expression of eq. (4.20) is given in Appendix B. Due to its complexity, we

develop a Monte Carlo method to compute this probability.

4.4.6 Monte Carlo Method

For a given ro and other system parameters such as n and d, we generate 106 random sam-

ples of R1, R2, R3, α, β and γ, according to their distributions. The frequency that (4.17)

occurs approaches its probability as the number of samples increases, which enables us

to approximate P(B) by this frequency. With this Monte Carlo method, we propose a

heuristic algorithm to evaluate the rom that yields an good approximation of the optimal

NCDS.
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4.4.7 Heuristic for rom

We aim to find the optimal solution rom of ro, such that the expected value of NCDS,

E [NCDS], is minimized. As NCDS ≈ N1 + N2, we have

E[NCDS] ≈ N1 + N3E[IB]

≈ N1 + N1P(B). (4.21)

in which N1 is given by eq. (4.3), which is a decreasing function of ro, and N3 is ap-

proximated by N1, while P(B) is an increasing function of ro, which can be computed

by Monte Carlo method mentioned in Section 4.4.6. Therefore, we can find a particular

ro, rom such that (4.21) is minimized. We propose a heuristic to compute that rom. This

heuristic adopts the Monte Carlo approach to evaluate P(B) for a given ro, and then by

applying Golden Section Search [219] to compute the rom such that E[NCDS] is minimized.

The formal statement of the algorithm is shown in Algorithm 1.

Algorithm 1 Heuristic for ro

Input: Total number of nodes n; the normalized network edge length d; m = (
√

5− 1)/2;
error threshold ε; the potential range of ro, ro ∈ [rstart, rend].

Output: rom, such that E[NCDS] is minimized.
1: rs = rstart, re = rend.
2: r1 ← re −m(re − rs), compute E[NCDS(r1)] by eq. (4.21).
3: r2 ← rs + m(re − rs), compute E[NCDS(r2)] by eq. (4.21).
4: while |re − rs| > ε do
5: if E[NCDS(r1)] > E[NCDS(r2)] then
6: rs ← r1.
7: r1 ← r2.
8: E[NCDS(r1)] ← E[NCDS(r2)].
9: r2 ← rs + m(re − rs).

10: compute E[NCDS(r2)].
11: else
12: re ← r2.
13: r2 ← r1.
14: E[NCDS(r2)] ← E[NCDS(r1)].
15: r1 ← re −m(re − rs).
16: compute E[NCDS(r1)].
17: return rom ← r1 + r2

2 .

To successfully execute this algorithm, we need to know the total number of nodes n,

the normalized network edge length d, and λ is computed as n/d2. As we adopt Golden
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Section Search in this algorithm, the computation procedure is iterative, and we need an

error threshold ε as the stoping criterion. The parameter m is set to (
√

5− 1)/2 ≈ 0.618,

corresponding to the name Golden Section Search, which is the search interval reduction

factor for each round of iteration. We also need to know the potential range of ro, which

is within the interval [rstart, rend]. As the network is normalized to the transmission range

r, rend could take the value of one, and rstart could be a value close to 0.5. In fact, we could

do some pre-evaluation to reduce the possible range of ro. The output of the algorithm

is the rom, such that the E[NCDS] takes a value that is close to the minimum. In line 3,

10 and 16 of Algorithm 1, E[NCDS] is computed according to eq. (4.21), in which N1 is

given by eq. (4.3), and N3 is approximated by N1. The E[IB] is obtained by the Monte

Carlo approach described before. The algorithm reduces the search interval iteratively

according to the Golden ratio, until the length of the search interval |re − rs| is less than a

pre-defined threshold ε. The algorithm outputs the median of the two end points.

The underlying reasoning of the above approach is as follows. We only investigate

three node patterns. The overlap between these three transmission range discs guaran-

tees that we do not need an extra relay for these three nodes. Thus we want to evaluate

the probability that the transmission range of these three nodes do not overlap each other,

indicating that we need an extra relay node. Hence if we know the number of three nodes

pattern, we can compute the expected number of additional filling relays required. By

this model, we implicitly assume that the two lower nodes are always connected. This is

a reasonable assumption if the network is dense.

4.5 An Algorithm to Construct an MCDS

In this section, we propose a new algorithm, Incremental Coverage Algorithm (INCOA),

to approximate an MCDS in connected dense networks by exploiting the above approach.

This algorithm first computes the optimal rom according to Algorithm 1, then uses this rom

to compute the nominal relay positions with the optimal strip-based pattern. With these

positions, the algorithm finds the nominal relays, and finally, computes the filling relays,

such that all sensor nodes can be reached by at least one relay. The generated MCDS can

be used in flooding to greatly reduce the retransmission.

We first propose the centralized version of INCOA and then develop its distributed

version.
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4.5.1 A Centralized Algorithm INCOA to Compute an MCDS

First, consider a centralized algorithm, the Incremental Coverage Algorithm (INCOA),

which is shown in Algorithm 2.

Algorithm 2 Incremental Coverage Algorithm (INCOA)

Input: A set of nodes T, all nodes know their positions; total number of nodes n; network
edge length d.

Output: T1 ⊂ T, and T1 is a dominating set.
1: T1 ← ∅
2: Compute the optimal spacing rom according to Algorithm 1.
3: Compute the nominal positions according to rom and the strip-based pattern. Those

positions are indexed by set Q.
4: for all i ∈ Q do
5: Select the nearest node of nominal position i as the nominal relay i.
6: T1 ← T1 ∪ nominal relay i
7: while The set of uncovered nodes, T2, has cardinality |T2| > 0 do
8: Select a node j from covered nodes that can cover the largest number of uncovered

nodes.
9: T2 ← T2 \ j.

10: T1 ← T1 ∪ node j
11: return T1

In this algorithm, with the computed rom, we can manipulate the nominal positions,

and find the nominal relays, which are the closest node to each nominal position. The

algorithm also selects some additional nodes as filling relays by greedy criteria to cover

those nodes that cannot be connected by any nominal relay.

Note that in this algorithm, the connectivity of the selected nodes is not guaranteed.

If those relays are not connected, we can have an additional step to Algorithm 2 to select

some connecting relays to maintain the connectivity. However, this will not affect the

cardinality of the selected relay set much.

Another solution to the connectivity of the relay set is selecting a set of candidate

nodes for a nominal position, and by selecting different nodes in each candidate set to be

the nominal relay, we can establish connectivity gradually. This solution will be left as

future work.

4.5.2 Distributed Version of INCOA

As it is desirable to use distributed algorithms and protocols in a practical sensor network

environment, we propose a distributed version of INCOA. To develop the distributed

algorithm, we make following assumptions first.
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• The networks we are considering are connected, as the connected dominating set is

not well-defined in an unconnected network.

• There is a MAC layer protocol that manages the point-to-point links, such that there

are no errors, acknowledgements and retransmissions in the network layer. The

MAC layer protocol could be either a random access scheme, such as IEEE 802.11

[112], 802.15.3 [113], or 802.15.4 [114], or an access scheme based on scheduling,

such as TDMA or CDMA [182].

• Each node has a unique ID.

• All nodes know their own positions, either via GPS or some other localization tech-

niques.

• All the links are bi-directional.

• There is synchronization among all the nodes, either via GPS or other techniques.

• Nodes are stationary, i.e., nodes do not move once deployed.

We then define four states for nodes.

• White node (initial state)

• Dominatee

• Nominal Dominator

• Filling Dominator

The algorithm can be divided into two steps

• Nominal Dominator selection

• Filling Dominator selection

Initially, all nodes are white nodes. A white node u periodically broadcasts a “Hello”

message (with time interval t(r)), which contains its own ID and the ID of the node which

is known by u to have the shortest distance to the nominal positions corresponding to u.

The corresponding distance is also contained in the “Hello” message. After the nomi-

nal dominator selection step, some nodes become nominal dominators, and the rest of
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nodes become dominatees if they are within the transmission range of some nominal

dominators, otherwise they are still white nodes. The second step, filling dominator se-

lection, selects filling dominators from dominatees, to provide connectivity to those white

nodes which are not able to be reached by any nominal dominator. The union of nominal

dominators and filling dominators is the dominating set we obtained to approximate the

MCDS.

We assume all nodes know their own positions, the network edge length d, and the

optimal spacing rom computed by Algorithm 1. We also assume that each node has the

knowledge of all the nominal positions, which can be computed by using the rom and d.

Therefore, each node knows to which nominal position it belongs, and is aware of the

distance, Rd, between its own position and the nominal position(s) it belongs to. As we

have assumed that all nodes are synchronized, we assume that there is a start time 0,

which is common to all the nodes to begin the operations of the distributed algorithm.

In addition, we define a common function t for all the nodes, which returns a value of

time, t(Rd), that is proportional to the distance Rd. A longer Rd results in larger t(Rd). The

value of t(Rd) is used by each white node to schedule the broadcasting of the first “Hello”

message. We also assume that the messages transmitted by a node u can be immediately

received by all of u’s one-hop neighbours.

In the following description, all the Rd are referred to the Rd of local nodes. Initially (at

time 0), all the white nodes schedule a broadcast of a “Hello” message, T, which will be

transmitted at time t(Rd). Note that the values of t(Rd) are different for different nodes,

as they have different distances between their own positions and the nominal positions

they belong to. Corresponding to each nominal position, every node u has a pair of local

parameters (y1, y2), in which y1 is the known smallest Rd to that nominal position, and

y2 is the corresponding ID of the node with the smallest Rd. Initially, y1 of a node u is

set to the Rd value of u, and y2 is the ID of u. Upon receiving a “Hello” message, each

node updates its local parameter pair (y1, y2). The “Hello” message contains the (y1, y2)

pair of the sender. After a time 2t(r), all the nodes within the radius r of a nominal posi-

tion will realize who has the shortest distance to the nominal position. This node sends

a “dominator claim” message at time 2t(r) + t(Rd) to state the fact that it is a nominal

dominator. All nodes that can receive a “dominator claim” message sets themselves as a

dominatee. At the same time, all white nodes initiate a “request to be covered” message,

which will be sent at a time 2t(r) + t(Rd). However, if a white node receives a “domina-
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tor claim” message before the scheduled time, the “request to be covered” message will

be cancelled. Therefore, after a time 3t(r), all the dominatee will have the information

about all its uncovered white neighbours. Each dominatee then schedule a message to

broadcast how many white neighbours it has at a time 3t(r) + t(Rd). After a time 4t(r),

all the dominatee will know which neighbour dominatee has the largest number of white

neighbours, and this dominatee set itself as a filling dominator. The dominatee with

smaller ID will be selected if there is a tie. This dominatee schedules a “dominator claim”

message, which is going to be sent immediately after it becomes a filling dominator (i.e.,

at time 4t(r)). All the white nodes receiving this message set themselves as dominatees.

The uncovered white nodes will keep sending “request to be covered” messages at time

gt(r) + t(Rd), in which g is any even number. As each time, a dominatee with highest

degree of white neighbours will be selected as a filling dominator, and all the uncovered

white neighbours of that filling dominator will become dominatees, the total number

of uncovered white nodes will keep decreasing, and eventually all the uncovered white

nodes will become dominatees.

The operations of this distributed algorithms are as follows.

Distributed version of INCOA

State space S = {White Node, Nominal Dominator, Filling Dominator, Dominatee}
SINITIAL = {White Node}
STERMINAL = {Nominal Dominator, Filling Dominator, Dominatee}.

WHITE NODE

• At time 0, a white node u initializes its local parameter y1 to be the Rd of u, and y2

to be the ID of u.

• Upon receiving a “Hello” message, a white node u performs the following opera-

tions. If Incoming y1 < local y1, then local y1 = Incoming y1, and local y2 = Incoming

y2.

• A white node u sends a “Hello” message if the time is t(Rd), and re-sends it every

t(r), if the time is less than 2t(r).
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• A white node u set itself to “nominal dominator”, if the time is 2t(r), and its local

y1 and y2 indicate it has the shortest distance to the nominal position.

• A white node u set itself to “dominatee” if it receives a “dominator claim” from its

neighbour.

• A white node u sends a “request to be covered” message if the time is gt(r) + t(Rd),

in which g is an arbitrary even number.

NOMINAL DOMINATOR

• A nominal dominator v sends a “dominator claim” message at time 2t(r) + t(Rd).

DOMINATEE

For a dominatee w,

1: Initialize wnc ← 0

2: if receiving a “request to be covered” message then

3: wnc = wnc + 1.

4: while wnc > 0 at time qt(r) (q ≥ 3, q is odd) do

5: At time qt(r) + t(Rd), q ≥ 3 and q is odd, a dominatee w broadcasts how many

white neighbours it has (the value of wnc).

6: At time (q + 1)t(r), q ≥ 3 and q is odd, a dominatee w changes its state to filling

dominator if it has the highest value of of wnc, among all its dominatee neighbours.

7: At time (q + 1)t(r), q ≥ 3 and q is odd, a dominatee w resets its local white neigh-

bour counter to zero, if w does not become a dominatee.

8: if receiving a “request to be covered” message then

9: wnc = wnc + 1.

FILLING DOMINATOR

• A filling dominator m sends a “dominator claim” message immediately after it be-

comes a filling dominator.

The state transition diagram of nodes in the distributed INCOA is shown in Fig. 4.5.
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Figure 4.5: The state transition diagram of nodes in the distributed INCOA

4.6 Model Validation and Numerical Results

4.6.1 Algorithm Comparison and Mean of the MCDS Cardinality

To verify our approaches, we consider a network scenario with d = 10, for total num-

ber of nodes n = 1000, 2000, ..., 5000, i.e., λ = 10, 20, ..., 50. We generate 500 connected

network instances, with all the nodes i.i.d. uniformly distributed in the d × d network

area. We compute rom for each value of n. With these rom, we compute the number of

relays needed numerically according to the Monte Carlo approach mentioned above, we

then run the INCOA algorithm and obtain the number of relays needed. The results are

compared with the results obtained by Butenko et al.’s algorithm [36], and also the num-

ber of nominal relays. All the comparisons are based on the average number of relays

over 500 network instances. The results are shown in Fig. 4.6. The analytical results in

the figure are obtained through eq. (4.21), in which P(B) is computed through the Monte

Carlo method described before, and N1 is computed by substituting the rom for ro in eq.

(4.3).

As shown by the example in Fig. 4.6, the average number of relays obtained by IN-

COA is less than that computed by Butenko’s algorithm, when λ is larger than about 20

(for this example), which is expected as INCOA works for dense networks.

It can also be seen that the analytical results for the expectation of the cardinality of

the CDS obtained by Algorithm 1 and Monte Carlo approach are close to those computed

by INCOA. More importantly, these two values both approach the number of nominal re-
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Figure 4.6: Expectation of minimum number of relays.

lays, when the network density becomes large. The number of nominal relays is obtained

by eq. (A.1). This result is not surprising as the higher network density indicates a higher

probability that we can find nodes in the vicinity of nominal positions, hence a lower

probability to need extra relays. In the figure, it is also shown that the analytical results

are larger than those obtained by INCOA, this is because we take approximation to com-

pute N1, which ignores the integer round-off effects, hence are larger than the true value

of N1, when we compute the analytical results. It is noted that the number of nominal

relays is a decreasing step function taking integer values, which means that with the in-

crease of λ, hence the increasing of rom, the number of nominal relays keeps constant

until rom reaching a value that makes the number of nominal relays in each horizontal

strip decreases by 1. This is also the edge effect caused by finite networks.

4.6.2 Probability of Requiring a Filling Relay

In this subsection, we demonstrate some results of the probability of requiring a filling

relay for a three node pattern, P(B), obtained from our approximation using intersecting

hyperplanes and simulations of actual discs. The aim is to verify our approach, and gain

a clear understanding of it.

We compare the approximation and simulation results of P(B) for λ = 100 and 20,

and ro = 0.7, 0.75, ..., 1. We generate 105 random samples for each of R1, R2, R3, α, β

and γ according to their distributions. The results are shown in Fig. 4.7. The probability
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Figure 4.7: Probability of requiring a filling relay for a three node pattern.

E[IB] = P(B) is a function of only ro and the network density λ, independent of the

network edge length d.

As shown in Fig. 4.7, the results obtained from the approximation and simulation

match well. Our approach is a good approximation when λ is large. It should be noted

that in general, the curves of actual discs (simulation results) should be above the approx-

imation results, as we approximate the intersection area by a triangle that has a larger area

than the actual intersection area. However, as can be seen from the curves for the case

that λ = 20, the approximation results may exceed the simulation results, especially for

some ro that are not too large. This is because we assume that L1 and L2 have constant

slopes, which is not exactly. In particular, for a small ro, the relative offset of the actual

position of relays has a larger impact, and the constant slope assumption also has a larger

impact. Hence we have the results.

Note that IB is a Bernoulli random variable. The variance of a single sample is P(B)(1−
P(B)). So the variance of P(B) is approximately P(B)(1−P(B))/105, by taking the square

root, we can have the standard deviation of P(B). Following this approach, the standard

deviations of P(B) for λ = 10, ro = 0.7, 0.75, ..., 1 are estimated as: 0.0003, 0.0004, 0.0005,

0.0008, 0.0012, 0.0015, 0.0015. The standard deviation of P(B) for λ = 20 are estimated

as: 0.00003, 0.000046, 0.000106, 0.000284, 0.000735, 0.00135, 0.00156. It is clear that for a

larger λ, P(B) has a smaller variation.

It is interesting to see that for different values of λ, our approximation predicts that
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P(B) = 0.5, when ro = r = 1. In fact, a equals to zero when ro = r = 1, which means

that the overlapping triangle of three radio transmission discs reduces to a single point.

However, the actual positions of those three nodes vary from the nominal positions, and

only the directions of the offsets affect the value of a, if the directions make the size of the

triangle bigger, then no filling relay is needed, but if the directions make it smaller, then

a filling relay is necessary, no matter how small the change is. The value of λ does not

affect the directions, it only influences the values. The directions of the offsets are affected

by α, β and γ, which are uniformly distributed. For ro = r = 1, the intersection area

of the ideal reduces to a single point A∗, if those three nodes are exactly on the nominal

positions. However, the actual positions of those three nodes have random perturbations.

The distance between each actual position to A∗ is i.i.d., so we have equal opportunity to

have a positive or negative intersection area.

4.6.3 Relaxation for the Number of Nominal Relays

We approximate N1 in Subsection 4.4.2, and give a more accurate evaluation in Appendix

A. In fact, N1 is an integer given d and ro, as shown by eq. (A.1) in Appendix A. However,

to simplify the calculation, we relax eq. (A.1) by removing the rounding operation, as

shown in eq. (4.3).

To show the impact of this relaxation, we compute N1 by eq. (A.1) and eq. (4.3), for

d = 10 and 50, with ro = 0.7, 0.71, ..., 1. The results are shown in Figs. 4.8 and 4.9.

Both Figs. 4.8 and 4.9 show that the values of N1 obtained by relaxed approximation

are close to the more accurate results obtained by taking integer rounding. The relative

errors of N1 between the relaxation version and the integer version is shown in Fig. 4.10.

Its maximal value is around 15% for d = 10, and 3% for d = 50. The fluctuations in

the curves are because the actual N1 are taking integer values, and are not a strictly de-

creasing function. More importantly, the relative error of N1 is a decreasing function of

d, as shown in Fig. 4.11. The curve in Fig. 4.11 shows the maximal relative error for

d = 10, 20, ..., 50. It is clear that the relative error decreases as d increases. Therefore, our

relaxation is more accurate for a large network.

4.6.4 Impact of Network Density on the Modified Spacing

It is expected that for a given network, with the increase of network density λ, the rom

computed by Algorithm 1 also increases, because denser networks give a higher proba-
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Figure 4.12: Optimal modified spacing, rom vs. network density λ, d = 10.

bility that there exist nodes in the vicinity of those nominal positions. This can be verified

by Fig. 4.12, which shows that for networks with d = 10 and 20, λ = 10, 20, ..., 50, the

optimal modified spacing rom increases with λ.

4.6.5 Total Number of Relays

Fig. 4.13 show the values of E[N] computed by (4.2), for d = 10, λ = 10 and 20, respec-

tively.

We can see that for a fixed d and λ, the expected number of relays, E[N], is a convex

function, which enables us to find its minimum by using Golden Section Search method.

In Fig. 4.13, the values of E[N] are equal for small ro and for ro = 1, independent of λ.

This is because for small ro, E[N2] = 0, and N1 is deterministic, independent of λ; while

ro = 1 indicates that P(B) = 0.5, which is also independent of λ, as shown in Fig. 4.7.

We use Fig. 4.14 to compare the E[N] computed without the rounding operation

and with the rounding operation, and show the effectiveness of our approximation. The

figure shows that the E[N] obtained by using different N1 and N3, for a network with d =

10 and network density λ = 10. It can be seen that the more accurate E[N], which takes N1

as eq. (A.1) is not a convex function of ro, hence the Golden Section Search method is not

guaranteed to find the optimal value of ro. The figure also shows that the E[N] obtained

by eq. (A.1) fluctuates with ro. This is because N1 given by eq. (A.1) is influenced by

the edge effects. This problem can be solved by either using the relaxation method in
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which the integer round-off effects are ignored (this approach has been adopted in this

chapter), or applying curve fitting approach to the curve of eq. (A.1) to smooth the results.

However, the latter solution may not be able to produce a general formula to apply to the

whole range of system parameters. Therefore, we need to repeat the fitting approach for

each set of system parameters.

4.7 Conclusion

In this chapter, we have developed a new algorithm, the Incremental Coverage Algorithm

(INCOA), and its distributed version, which can efficiently generate a dominating set

that maintains a high probability of network connectivity, in a large and dense sensor

network. The cardinality of the generated dominating set is close to that of the MCDS.

The accuracy of our algorithm increases with the network size and network density.

We have also proposed a new approach to numerically evaluate the cardinality of

the MCDS for 2-D large dense sensor networks. The approach is an extension of the

asymptotically optimal result which is only applicable to infinite networks. Our approach

computes the expectation of cardinality of the MCDS numerically by using a Monte Carlo

method. The value obtained through our approach can be useful for evaluation of routing

protocols and algorithms to generate the MCDS, specifically for dense networks.



Chapter 5

Connectivity of a Class of Wireless Sensor Networks

In Chapter 3 and 4, we studied a small connected relay set for dense WSNs. In this

chapter, we focus on the connectivity of the sensors themselves for low-density networks,

rather than a virtual backbone. In addition, in Chapter 4, we studied relays which are

randomly located around some nominal positions. In contrast, we investigate network

connectivity with sensors are randomly located around some nominal positions in this

chapter. We assume that all sensors have their own target positions, and they attempt

to locate on the target positions so as to provide optimal performance. However, due to

the constraints of deployment, they may not be able to be placed on the target positions,

hence position randomness is introduced.

5.1 Introduction and Background

In a WSN, sensor nodes are often highly resources constrained, with limited computation,

memory, energy and communication capabilities. These limitations prevent the sensors

from communicating over a single hop as in cellular networks. Therefore, WSNs require

multi-hop communication as a spontaneous choice for data dissemination. Maintaining

connectivity in such a network is vital, since direct communications between two nodes

may not exist. This chapter focuses on this fundamental problem, i.e., connectivity, of

random WSNs.

As pointed out in Chapter 2, positions of nodes in a WSN are random in many cases

due to the batch deployment or the environmental constraints of the WSN. The random-

ness imposes the requirement of probabilistic measures to analyse the connectivity of

WSNs, i.e., the connectivity is studied in probabilistic sense. Although the randomness is

often unavoidable, it is not desirable to deploy sensor nodes in a purely random manner

without any control mechanism, as such a kind of deployment may not be cost-effective.

In contrast to the purely random deployment, a better way to deploy sensors is to place

sensors targeting some carefully pre-engineered locations, which results in a low-density

89
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WSN. For example, this may arise if nodes are dropped at equal intervals from a vehicle

(either airborne or terrestrial) travelling at a constant speed. The network setting could

also arise when untrained volunteers are asked to place sensors at a height y above the

ground (for good radio propagation), and every x metres (x and y can be arbitrary values

which are determined by the network design specification). Since there may not be suit-

able mounting points exactly every x metres, randomness could exist in the exact sensor

locations. This motivates us to propose a new network model.

We consider stationary networks, in which all nodes are static. In particular, we focus

on one-dimensional space, in which stationary nodes are randomly deployed according

to non-identical probability distributions, which have identical variances. Mathemati-

cally, we consider the scenario that the positions of n nodes form a one-dimensional point

process. These n points are randomly distributed with deterministic and equally spaced

mean locations. That is, for n sensors, there are n target locations that are equally spaced

with one for each sensor. Each sensor is deployed randomly according to a distribution

function, which has an expectation equal to the corresponding target location. The offset

in the sensor locations is i.i.d. For such a network, we aim to evaluate its connectivity

probability. We also would like to estimate the number of nodes required, and evalu-

ate the tolerable randomness of the node placement, to maintain a certain probability of

connectivity.

Extensive research has been dedicated to the connectivity study of wireless multi-hop

networks. Gupta and Kumar [92] used connectivity requirements to bound the capac-

ity of wireless networks. Bettstetter [21] investigated the number of nodes required to

maintain k-connectivity in a certain area. Foh et al. [75] derived formulae to compute

the probability of connectivity for a network with uniformly distributed sensors in one-

dimensional space. Other work that studied network connectivity includes [27], [45] and

[66]. These studies all assumed that the positions of all the nodes are randomly dis-

tributed according to identical distributions, usually a uniform distribution, whereas in

this chapter we are considering a different setting.

The rest of the chapter is organized as follows. Section 5.2 introduces our research

problems and the model applied. Section 5.3 gives a brief introduction to curve fitting,

which is a major tool used in this chapter. Section 5.4 develops an empirical approach

that can evaluate the network connectivity probability, as well as compute the number of

nodes required to achieve a desired probability of connectivity. We consider special and



5.2. PROBLEM STATEMENT AND MODEL DESCRIPTION 91

extreme cases that are not covered by the empirical approach in Section 5.5. In Section 5.6,

a similar empirical approach is adopted to investigate networks with nodes distributed

according to a different distribution. We develop an algorithm in Section 5.7, aiming to

provide a conservative estimate of the necessary number of nodes required to provide a

certain level of connectivity. We conclude this chapter in Section 5.8.

5.2 Problem Statement and Model Description

We aim to establish a finite linear sensor network, and maintain the connectivity between

nodes fixed at the edges of the network via n additional randomly deployed intermedi-

ate nodes. Note that in a linear network, connectivity between the two nodes located at

the edges of the network indicates the connectivity between any pair of sensor nodes.

The network setting could also represent the scenario that a data collection point sits on

the edge of the network, and we aim to establish the connectivity between the farther-

most sensor and the data collection point. We assume that all the sensors have identical

transmission radius r, and the unit disk model is applied.

Fig. 5.1 shows a sample network. We consider a one-dimensional coordinate system

with the source at the origin and the destination at the position with coordinate d. With-

out loss of generality, all spatial variables are scaled such that d = 1. The location of

the ith intermediate node is assumed to follow a double sided distribution F with mean

µi = i/(n + 1), and identical variance σ2. Note that µi is the nominal position (target

position) for the ith node, and σ stands for the position offset. The numerical labels in Fig.

5.1 stand for the target position of sensors, and the spike curves above the coordinate axis

represent that F are Gaussian distributions. In this chapter, we consider two scenarios,

where F are Gaussian distributions and Laplacian distributions.

Let C denote the event that the network is connected. We are interested in answering

three problems. First, given node transmission radius r, the number of nodes n, and

the measure of sensor placement dispersion σ, what is the probability P(C)n,r,σ that the

network is connected? The second problem is how many nodes does the network need to

achieve a required probability of connectivity Ptarget, for given r and σ. Mathematically, it
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Figure 5.1: Sensor placement model

is equivalent to the optimization problem

objective: min n (5.1)

subject to: P(C)n,r,σ ≥ Ptarget.

Notice that P(C)n,r,σ is an increasing function of n, since with more nodes, it has higher

opportunity to find a relay within the transmission range of a node. Therefore, finding

the minimal n is equivalent to finding the n such that P(C)n,r,σ is minimal. The third

problem that we are interested in is to find the dispersion σ for positions of nodes, such

that P(C)n,r,σ ≥ Ptarget, for given n and transmission radius r. This problem is important

when we need to select proper node deployment schemes.

Let xi, i = 1, ..., n denote the location of the ith intermediate sensor, which represent

the coordinates of those sensor nodes in a 1-D coordinate system. Note that the locations

of the sensors may not be in the same order as they are dropped due to the randomness in

their positions. That is, we may have xi ≥ xi+1 for some i. Let x(1) ≤ x(2) ≤ ... ≤ x(n) be

a relabelling of the node positions in increasing order based on their physical locations.

With this model, the question of whether the network is connected is mathematically

equivalent to testing the hypothesis that all physically consecutive sensors are within a

certain distance from each other. This gives a sufficient statistic, the maximum distance

between two physically consecutive nodes. Its probability distribution is crucial to the

application of that hypothesis test or equivalently to the network connectivity probability.

This distribution is easily described in terms of the underlying event in the experiment

sample space, but the analytic expression involves a complicated n-fold integral which

defies explicit evaluation, especially for large n. Therefore, we use empirical approaches,

which apply curve fitting, to answer the first two questions for this model. The next
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section gives background of curve fitting.

5.3 Background of Curve Fitting

In science and engineering, we are often required to estimate and predict the behaviour

of certain systems based on partially available information [44]. Moreover, real systems

are often continuous, while measuring can only be done in discrete manner, which also

requires us to evaluate system states other than those discrete points in which measure-

ments are taken. To achieve these goals, we may express empirical data based on models

of mathematical equations. Finding proper values for parameters of those equations is

known as curve fitting.

The goal of curve fitting is to find the values of parameters for the mathematical mod-

els that most closely match the measured data. Simply speaking, curve fitting is seeking

function parameters such that for certain values of independent variables, the dependent

variables obtained from the function match the measured data, which can be obtained

from experiments, simulations, or observation. The name curve fitting comes from the

fact that if the function has only one independent variable, the given data set is often plot-

ted as a curve on a two-dimensional plane. We are aiming to find the best curve that can

not only approximate existing data values but also give reasonable prediction for those

data points without measurements.

Complete curve fitting procedure comprises of two steps. First, selection of a proper

model, i.e., a reasonable function, to fit the empirical data; and the second, determining

the values of parameters in the function selected in step one, such that the function with

these parameter values can best approximate the measured data. The model selection

may or may not be dependent on the physical properties of the systems. In terms of

the curve with the best values of parameters for a given model, it is the curve with pa-

rameters that minimize the deviation between the measured data and the expected value

predicted by the function for the same measured points. The matching between the mea-

sured values and the computed values of the dependent variables can be either with or

without errors.

Depending on the sizes of errors associated with the measured data, curve fitting

can be divided into two general categories. The first class is regression, which is often

applied when the measured data contains significant errors. As the values of measured
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total number of nodes average received packets per node (packets/s)
57 0.74
60 1.06
64 0.85
68 0.81
72 1.41
78 1.34
82 1.41
87 1.20
90 1.62
95 1.30
96 2.01

Table 5.1: Average received packets per node and the total number of nodes.

data are not accurate, we are more interested in the general trend of the data rather than

the values at exact data points. Thus the curve is derived to match the overall behaviour

trend of the whole set of available data points. On the other hand, if the existing data

set is known to be very accurate, the second class of curve fitting can be applied, which

fits a curve that matches the values of existing data points exactly. For the second type

of fitting, the estimation of values within the range of a discrete set of known data points

is called as interpolation, while the process to evaluate the function values of new data

points outside the range of the known discrete data set is called extrapolation.

Regression can be further divided into linear and nonlinear regression, depending on

whether the function is restricted to be linear combination of parameters to be estimated.

Note that when the selected model only has one independent variable, the linear regres-

sion produces a function that is not only linear with regard to the parameters, but also

linear to the independent variable. So the curve is a straight line for linear regression.

Exact fitting can also be classified as either linear or nonlinear, depending on whether the

selected function is linear to the independent variable or not. We illustrate these concepts

by an artificial example of a WSN. In the example, we assume that experimental data,

which measures the average received packets per node within one second under light

random traffic load condition is obtained, for each value of total number of nodes in the

WSN.

Table 5.1 shows the correspondence between the average received packets per node

and the total number of nodes in the WSN. To derive the functional relationship between

these two data sets, we do curve fitting.

The plot of the original data set is shown in Fig. 5.2(a), and the result of linear re-
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(b) Linear Regression Model.
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(c) Linear Interpolation Model.
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(d) Nonlinear Interpolation Model.

Figure 5.2: An illustration of different types of curve fitting.

gression is shown in Fig. 5.2(b). It is clear that regression only interprets the overall

trend of the data, but without going through exactly those measured data points. The

curve obtained by linear interpolation is shown in Fig. 5.2(c). A straight line segment

that connects two concatenated data points form the linear function to approximate the

data between these two points. If the data set contains more than two points, the curve

obtained by linear interpolation is piecewise linear. Figure 5.2(d) demonstrates the result

of nonlinear interpolation for the same set of data. As its name suggests, the curve con-

necting two consecutive data points need not be a straight line. Note that curves obtained

through fitting may not be unique. It depends on the mathematical model selected to fit

the measured data.

Exact fitting requires that the measured data contains no errors, which is a stringent

condition. This constraint restricts the utilization of exact fitting and causes the wide us-

age of regression. In regression analysis, in order to derive the best parameter values for
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the model, we need some functions of model parameters that can measure the closeness

between the measured data and the model predicted values. The best curve is then ob-

tained by minimizing this function with respect to the parameters. This function is called

the test-of-fit function. Commonly used test-of-fit functions include least square func-

tion and Chi-square function. Basically, these two types of functions are similar. They

all consider the aggregate effects of errors between each measured data point and the

model predicted data value. As we are interested in the magnitudes of the errors, all er-

rors are squared, and then are summed up. The difference is that Chi-square function is

defined as a weighted difference between the observed data and the expected data. An-

other widely used method to compute the best curve is maximum likelihood estimation,

which is the computation of the parameters that have the largest probability to generate

the observed data. This method is mainly used to fit measured data to known proba-

bility distribution functions. Other estimation methods for regression analysis include

Quasi-likelihood estimation, LAM estimator, L1-norm minimization, robust estimation,

and Bayesian estimation. See Seber and Wild [201] for a detailed discussion of these

methods. In general, to assess the fitting results, a quantitative value named goodness of

fit is applied. It is the fraction of the total discrepancy of the measured data with respect

to the model. The smaller the value is, the better the fit.

Curve fitting that uses data obtained from experiments or simulation is a very com-

mon technique in many fields of science and engineering. Typical applications can be

found in [44]. However, it is not pervasively applied in the study of networking. One

existing work of the application of curve fitting in network research is the OSPF perfor-

mance analysis by Cui et al. [57]. Tang et al. [211] also exploit curve fitting to study the

connectivity of ad hoc networks by using Monte Carlo simulation to determine the prob-

ability of connectivity empirically. Nonetheless, the network scenarios they considered

contain uniformly distributed nodes, which is different from our setting. In this chapter,

we use curve fitting as a major tool to analyse the connectivity of the aforementioned

network model.

5.4 Empirical Approach

In this section, we develop an empirical approach to evaluate the probability of connec-

tivity for a given network, and conversely, to determine the number of nodes required to
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maintain a certain level of connectivity. The results obtained from this approach can be

applied to network design and provisioning.

As the maximum distance between two physically consecutive nodes corresponds to

a sufficient statistic for the network connectivity, we investigate the network connectivity

by estimating the distribution of this sufficient statistic. The estimation is readily per-

formed by simulating a large number of n-tuples of sensor locations. We can empirically

investigate the probability of connectivity by fitting a curve to the Cumulative Distribu-

tion Function (CDF) of the maximum distance between consecutive nodes. The parame-

ters of this curve are again expressed as empirical functions of the problem parameters,

by surface fitting.

5.4.1 Empirical Analysis

To investigate the probability of connectivity for a given network, we study the CDF

of the maximum distance between physically consecutive sensors maxi(x(i+1) − x(i)) by

simulation. For a given sensor network, let rm = maxi(x(i+1) − x(i)). Note that the prob-

ability of connectivity is a function of the transmission range r, total number of nodes

n, and the standard deviation σ of the distributions of node positions. The network is

connected if and only if rm ≤ r. We have

P(C)n,r,σ = P(rm ≤ r). (5.2)

On the other hand, let n∗ be the solution of optimization problem (5.1), which is the

minimal value of n that satisfies the constraint: P(C)n,r,σ ≥ Ptarget, i.e., n∗ is the smallest

number of sensors required for our one-dimensional network to be connected with a pre-

specified probability Ptarget. We also aim to find a good approximation for n∗.

To achieve these two goals, we empirically obtain the CDF of rm parameterized by n

and σ in two steps: 1) for many pairs (n, σ) the CDF of rm is modelled by a parametric

distribution; 2) the parameters of these distributions are expressed as functions of n and

σ which leads to an approximate CDF of rm that is applicable to a wide range of n and σ.

The procedure is explained as follows.
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5.4.2 Step 1: CDF Fitting of rm

We consider 38 × 26 = 988 pairs (n, σ) with n = 10, 20, ..., 190, 200, 300, ... 2000 (38

values); σ = 0.005, 0.010, ..., 0.045, 0.05, 0.10,..., 0.85 (26 values). For each of these (n, σ)

pairs we obtained 106 values of rm by Monte Carlo simulation yielding an empirical CDF.

The distribution function we select to fit is Log-Logistic distribution [135]

P(rm ≤ x) =
1

1 + exp [−(log x− α)/β]
. (5.3)

The method to fit the Log-Logistic distribution function is the maximum likelihood es-

timation [135] [103]. For each pair of (n, σ), we can obtain a pair of parameters α and β

after fitting.
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Figure 5.3: Illustrations of fitting of Log-Logistic distribution function to the CDF of rm.

Fig. 5.3 shows some examples of the fitting results for the CDF of rm. The four sub-

figures compare the empirical CDF of rm obtained from simulations and the CDF of Log-
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Logistic distribution after fitting the simulation data. The four different scenarios shown

are (a) (n = 100, σ = 0.15), (b) (n = 500, σ = 0.15), (c) (n = 1000, σ = 0.05), and (d)

(n = 1500, σ = 0.05), respectively. As shown by these examples, the empirical CDFs are

well approximated by Log-Logistic distributions.

5.4.3 Step 2: Meta Fitting of Parameters of Log-Logistic Distribution
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Figure 5.4: α as a function of σ and n

For each pair of (n, σ), we can obtain a pair of parameters α and β. Hence α and β are

also functions of system parameter n and σ.

For all the α and β obtained after fitting the CDF of rm, they are modelled as functions

of the parameters (n, σ). Fitting is again applied to find the appropriate functions, such

that we can express the probability of connectivity as a function of n, r, and σ, which also

enables us to estimate the n∗ numerically.

The graphs that illustrated α and β, obtained from the fitting of the CDF of rm, as

functions of n and σ are plotted in Figs. 5.4 and 5.5. As can be seen from these graphs, the

surfaces of α and β have irregular shapes and no simple curves are found which fit these

surfaces well for all n and σ. In particular, there are difficulties in cases of small values of

n and σ which will be treated separately in the next section.

When n ≥ 10 and σ ≥ 0.005, the surface can be well approximated by piecewise
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Figure 5.5: β as a function of σ and n

functions, with boundaries at n = 200 and σ = 0.1.1 The four pieces are denoted xy,

where x = 0 if n < 200 and x = 1 otherwise, and y = 0 if σ < 0.1 and y = 1 otherwise.

Then, α and β are given by:

α =





a11 + a12 log n + a13/
√

σ, in piece 00

a21 + a22 log n + a23σ, in piece 01

a31 + a32 log n + a33(log σ)2, in piece 10

a41 + a42 log n + a43σ, in piece 11

(5.4)

where aij are the elements of:

A =




−0.05395 −0.59031 −0.06547

0.19443 −0.69949 0.81407

0.70759 −0.78886 −0.01237

0.87847 −0.82842 0.76975




,

1Because of the difficulties to predict the form of these functions, we utilize a software TableCurve 3D to
accomplish this task. The best function is selected from more than 50, 000 available functions.
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and

β =





b11 + b12 log n/n + b13
√

σ log σ, in pieces 00

1/(b21 + b22(log n)2 + b23 log σ), in pieces 01

1/(b31 + b32
√

n log n + b33/
√

σ), in pieces 10

b41 + b42 log n + b43σ2 log σ, in pieces 11

(5.5)

where bij are the element of matrix B given by:

B =




−0.00732 −0.12021 −0.17869

5.11980 0.08831 −0.71657

7.95398 0.00239 0.38936

0.18681 −0.01173 0.02877




.

From (5.4) and (5.5), we can calculate α and β, and substitute them into (5.3), giving

P(rm ≤ r)n,σ =
1

1 + exp
[
− log r−α(n,σ)

β(n,σ)

] ≡ f (n, r, σ) (5.6)

in which we define a function f of n, r, and σ by the CDF of Log-Logistic distribution

and the fitting results of α and β. Indeed, f is the estimated probability of connectivity

for given transmission radius r, number of nodes n, and node dispersion measure σ.

On the other hand, for given r, σ, and pre-specified Ptarget, by letting f (n, r, σ) =

Ptarget, we can solve n from (5.6) numerically, yielding an approximation n1 of n∗. In Fig.

5.6, we show an example, which compares the n1 obtained by eq. (5.6), and n∗ obtained

by simulation, for σ = 0, 0.01, 0.015, ..., 0.1, r = 0.1, and Ptarget = 99%, to demonstrates

that our approach gives a very accurate result in terms of n∗. It can be seen that n1

and n∗ match well. The results also indicate that even for small values of σ, i.e, small

randomness in sensors locations, we have a large increment of n∗ compared with σ = 0,

the case that sensors are placed on the optimized locations precisely. This result confirms

our motivation to introduce control mechanism in node placement rather than purely

random node deployment.

To illustrate our approach, we consider σ = 0.004, 0.008, ..., 0.04; r = 0.002, 0.008,

0.014,..., 0.038. We compute n1 by solving the equation f (n, r, σ) = Ptarget for n. For

each n1 obtained, we conduct Monte Carlo simulation using the corresponding r and σ
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Figure 5.6: Analytical and simulation results for n.

to evaluate the probability of connectivity. Figure 5.7 demonstrates the intervals repre-

senting the range between the 5th percentile and the 95th percentile for Ptarget = 0.91,

0.94, 0.96, 0.98, 0.992, 0.995, and 0.998. The graph is plotted based on log scale. We set

P(C) = 1− 10−6 if there is no disconnection in 105 samples. It is clear in Fig. 5.7 that our

approach approximates the n∗ accurately by n1. However, as shown by the example, n1

may be less than n∗, and it may not actually give connectivity with probability Ptarget.

5.4.4 Complementary Cases

As discussed in Subsection 5.4.3, there are difficulties in applying our fitting procedure

to the cases of small n and σ. However, it is not difficult to obtain a very accurate approx-

imation of n∗ from simulation, when n∗ is small, i.e., n∗ < 10. So we only consider some

important situations when σ is small in this subsection. We define noptimal = d/r − 1,

which is the necessary number of nodes to maintain connectivity when all the nodes are

precisely placed on target positions.

Small σ, constant r: The smaller the σ is, the more precise are the locations of the

sensors. If σ = 0, n∗ = noptimal. If σ > 0, but close to zero, adding a few relays to the

value of d/r− 1 provides a good approximation for n∗. An approximation is given in the

next section to obtain the n∗ under small σ situations.

Small r, constant σ/r and d = 1: Interestingly, this case is equivalent to the case

where r and σ are fixed and d increases to infinity. In Fig. 5.8, we present simulation
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Figure 5.7: Simulation values for P(C)n1 .

results for n∗ times r versus r. We demonstrate that for the case σ/r = 1, the value of

n∗r is approximately constant (except for very small values of r, which correspond to

unrealistically many nodes) as indicated by the roughly horizontal line. This behavior

of n∗r versus r can be interpreted as follow: given constant small r and σ, the number

of hops needed, n∗, is roughly proportional to the distance covered, d. When n∗ is very

large, there is an increased probability that one hop is much longer than the mean. This

requires an increased margin r− d/n∗, causing n∗r to increase if r is very small.

Small r and fixed σ: Small r values indicate cheap low power sensors. It is of interest

to study the trade off of number of sensors required versus their cost. In Fig. 5.9 we

observe that n∗r increases as r decreases which indicates that the required number of

sensors increases faster than r decreases. If a sensor cost function of r is available, results

such as those of Fig. 5.9 could be used to optimize n.

In the next section, a simple but accurate approximation is proposed to obtain n∗

when σ is small. Alternatively, it also can be used to derive required σ given the number

of available sensors n, and the transmission radius r. This problem corresponds to an

important problem in practice, that is, given the number of available nodes, and trans-

mission radius r of each node, how much is the tolerable randomness in sensor placement

that the network can still achieve required probability of connectivity.
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5.5 Approximation for Small Perturbation of Node Positions

As mentioned before, even small σ leads to a large increment of n∗, compared with the

noptimal. We are interested in the relationship between the increment of σ, and the incre-

ment of the number of sensors, particularly, when σ is small compared with d/(n + 1).

We assume that all nodes do not cross over and hop lengths between adjacent nodes

are independent with each other. This is because when σ is small compared with d/(n +

1), it is uncommon for nodes to be reordered, i.e., xi = x(i), and distances between any

adjacent two nodes are approximately independent.

5.5.1 A Simple Approximation for Connectivity Probability

We introduce a simple and straightforward approximation in this section to evaluate the

probability of connectivity for small σ scenario.

The sufficient and necessary conditions for the network to be connected are:



d ≤ r,

|x(i+1) − x(i)| ≤ r, for i = 0, 1, ..., n.
or

The first condition means that the source destination pair is directly connected, and the

second condition indicates that communication is conducted through a multi-hop fash-

ion.

In this thesis, we assume d > r to avoid the triviality. Under this assumption, inter-

mediate relays are required. The network is connected if and only every pair of adjacent

sensor nodes are connected, which is:

P(C)n,r,σ = P

(
n⋂

i=0

(
|x(i+1) − x(i)| ≤ r

))
(5.7)

In eq. (5.7), the values of
∣∣∣x(i+1) − x(i)

∣∣∣ and
∣∣∣x(i+2) − x(i+1)

∣∣∣ are dependent, for i =

0, 1, ..., n, because they have a common term x(i+1). However, in the scenario we are con-

sidering, i.e., σ ¿ d/(n + 1), we assume that
∣∣∣x(i+1) − x(i)

∣∣∣ and
∣∣∣x(i+2) − x(i+1)

∣∣∣ are inde-

pendent. We also assume that nodes do not cross over. According to these assumptions,

eq. (5.7) reduces to

P(C)n,r,σ = P

(
n⋂

i=0

(|xi+1 − xi| ≤ r)

)

=
n

∏
i=0

P (|xi+1 − xi| ≤ r) (5.8)
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It is easy to see that xi+1− xi are Gaussian distributed since all xi (except the positions

of the source and destination nodes) are Gaussian random variables. The probability that

the distance between two adjacent nodes is not longer than the transmission range r is

given by

P(|xi+1 − xi| ≤ r)

=
∫ r

−r

1
2σ
√

π
exp

[
−(y− 1

n + 1
)2/4σ2

]
dy, for i = 1, 2, ..., n− 1, (5.9)

and

P(|x1| ≤ r) =
∫ r

−r

1√
2πσ

exp
[
−(y− 1

n + 1
)2/2σ2

]
dy, (5.10)

for the first hop, and

P(|1− xn| ≤ r) =
∫ r

−r

1√
2πσ

exp
[
−(y− 1

n + 1
)2/2σ2

]
dy, (5.11)

for the last hop.

Combing (5.8), (5.9), (5.10) and (5.11) yields the following results:

P(C)n,r,σ =
i=n−1

∏
i=1

∫ r

−r

1
2σ
√

π
exp

[
−(yi − 1

n + 1
)2/4σ2

]
dyi

×
∫ r

−r

1√
2πσ

exp
[
−(y− 1

n + 1
)2/2σ2

]
dy

×
∫ r

−r

1√
2πσ

exp
[
−(y− 1

n + 1
)2/2σ2

]
dy. (5.12)

Note that in eqs. (5.9) to (5.12), there is no parameter d, as it is scaled to 1. With eq.

(5.12), we can numerically evaluate the probability of connectivity for a given network

approximately when σ ¿ d/(n + 1). We demonstrate validity of our approximation by

conducting simulations.
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5.5.2 Simulations and Numerical Results

To demonstrate the validity of our approach, we evaluate the probability of network con-

nectivity through Monte Carlo simulations, and compare with the results obtained by eq.

(5.12). Examples are demonstrated with following network parameters: (r = 0.2, σ =

0.01), (r = 0.2, σ = 0.05), (r = 0.4, σ = 0.05), (r = 0.4, σ = 0.08), and (r = 0.4, σ = 0.15).

Results are shown in Figs. 5.10 to 5.14.
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Figure 5.10: Comparison of connectivity probability, r = 0.2, σ = 0.01

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of sensors n

P
ro

ba
bi

lit
y 

of
 c

on
ne

ct
iv

ity
 P

(C
)

r = 0.2, σ = 0.05, simulation
r = 0.2, σ = 0.05, analytical

Figure 5.11: Comparison of connectivity probability, r = 0.2, σ = 0.05



5.5. APPROXIMATION FOR SMALL PERTURBATION OF NODE POSITIONS 108

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Number of sensors n

P
ro

ba
bi

lit
y 

of
 c

on
ne

ct
iv

ity
 P

(C
)

r = 0.4, σ = 0.05, simulation
r = 0.4, σ = 0.05, analytical

Figure 5.12: Comparison of connectivity probability, r = 0.4, σ = 0.05

We can see from these examples that when σ is small compared with d/(n + 1), eq.

(5.12) can accurately predict the probability of connectivity, whereas large σ breaks the va-

lidity of this model. It is also shown that the decrease of connectivity probability caused

by the increase of σ can be compensated by longer transmission radius r. In particular,

as shown in Fig. 5.14, for large σ, eq. (5.12) does not yield a monotonic function. This

is because large σ results in high randomness of nodes locations, which may lead to the

crossover of node locations. Moreover, the assumption that the distances between adja-

cent nodes are independent is no longer valid.

These comparisons between simulation and analytical results show that our model

is a good approximation to the probability of connectivity when σ is relative small com-

pared to transmission range r and d/(n + 1). Although our model shows the validity for

small σ, however, it only evaluates the connectivity probability for a given set of parame-

ters but does not answer the question that how much perturbation on the node positions

can be tolerated such that the network still provides required probability of connectivity

with given number of nodes and transmission radius. In the next subsection, we propose

another approximation which can answer this question.

5.5.3 Approximation to Compute Position Offset σ

Let p be the probability of an arbitrary pair of adjacent nodes being disconnected, hence

1− p denotes the probability that these two nodes are connected. When σ ¿ d/(n + 1)
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Figure 5.13: Comparison of connectivity probability, r = 0.4, σ = 0.08

and σ ¿ r, p is small.

Since we approximate all the distances between adjacent nodes to be independent of

each other, for n intermediate nodes in the network, we have n− 1 independent distances

(ignoring the edge effects). The network is connected only if all these n − 1 distances

are less than or equal to the transmission range r, whose probability is given by 1− p.

Therefore, the probability of connectivity is given by

P(C) ≈ (1− p)n−1 (5.13)

By solving this equation, we can have

p ≈ 1− exp [log P(C)/(n− 1)] (5.14)

Given n relays, and a required probability of connectivity Ptarget, substitute it in eq.

(5.14) for P(C), we can compute p. If we can manipulate the expression for p through

the knowledge of node distribution, combining with eq. (5.14), we can evaluate the node

position offset σ. Next we derive the expression for p in this case.

We assume that the left node of a pair of adjacent nodes is the ith node. Let X be the

random variable to represent its position, correspondingly fX(x) and FX(x) denote the

pdf and CDF of X, respectively. Similarly, let random variable Y represent the position of

the right node of the pair, denote the pdf and CDF of Y by gY(y) and GY(y), respectively.
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Figure 5.14: Comparison of connectivity probability, r = 0.4, σ = 0.15

Let Z = Y − X be the distance between these two nodes. Denote the pdf and CDF of Z

by hZ(z) and HZ(z). Let R = −X, and denote the pdf of R by qR(r). We have qR(r) =

fX(−r), hence Z = Y− X = Y + R, and hZ(z) is given by

hZ(z) =
∫ ∞

−∞
gY(t)qR(z− t)dt

=
∫ ∞

−∞
gY(t) fX(t− z)dt (5.15)

Therefore,

p = 1−
∫ 1

−∞

∫ ∞

−∞
gY(t) fX(t− z)dtdz

= 1−
∫ ∞

−∞

∫ 1

−∞
gY(t) fX(t− z)dzdt

= 1−
∫ ∞

−∞
FX(t− 1)gY(t)dt (5.16)

Equation (5.16) gives a general expression for p. Note that eq. (5.16) is valid for any

distribution for X and Y.

For the case we are studying, X and Y follow Gaussian Distribution hence fX(x) =

f (x)µi ,σ and fY(y) = f (y)µi+1,σ, where f (x)µ,σ is given by

f (x)µ,σ =
1√
2πσ

exp
[−(x− µ)2/2σ2] (5.17)
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In addition to eq. (5.16), we can also derive the pdf of Z via transform methods. Let

MX(t) be the moment generating function of X. Accordingly,

MX(t) = exp
[
µit + (σt)2/2

]
, (5.18)

MY(t) = exp
[
µi+1t + (σt)2/2

]
, (5.19)

Therefore, the MZ(t) = MY(t)M−X(t), which is given by

MZ(t) = exp
[
(µi+1 − µi)t + (σt)2] (5.20)

Notice that µi+1 − µi = 1/(n + 1), we have MZ(t) = exp [(1/(n + 1))t + (σt)2]. It

means that Z is another Gaussian random variable with mean µ = 1/(n + 1) and variance

2σ2. It has the CDF

F(z) =
1

2σ
√

π

∫ z

−∞
exp

[
−(t− 1

n + 1
)2/4σ2

]
dt (5.21)

which also gives the expression of p as

p = 1− F(r). (5.22)

From eq. (5.21) we know that if σ ¿ r − 1
n+1 , p = 1− F(r) is close to zero, and the

network is connected with high probability.

Combining eqs. (5.14) and (5.22), we can approximately derive some network design

parameters such as the sensor placement variance parameter σ so that we need some

certain amount more nodes than the amount when we place nodes on their optimal po-

sitions, while keeping a constant Ptarget.

To verify our approximation approach, we calculate p from (5.14) for given Ptarget

and n, solve σ from p, then do simulation to obtain the probability of connectivity. The

probability is compared to the Ptarget. As the example shown in Fig. 5.15, the approxima-

tion gives very accurate results for small σ. In this example, n is arbitrarily chosen to be

n = 1.21noptimal.

As shown in Section 5.4.1, 5.4.4 and 5.5, for a wide range of n and σ, we provide so-

lutions to evaluate the probability of connectivity, and to obtain the minimum number of

nodes to achieve predefined network connectivity probability. We also propose a simple
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but accurate approximation to compute the maximum allowable randomness of sensor

placement given a certain number of nodes. The approach is accurate when the number

of nodes is not very different from the number of nodes needed in deterministic sensor

placement. This is equivalent to the situation where sensors are expensive, and so the

placement needs to be carefully planned.

5.6 Networks with Laplacian Distributed Nodes

In this section, we study a network with all nodes distributed according to Laplace dis-

tributions (Double Exponential distributions) [128] with identical variance and equally

spaced expectations. This network is similar to the one we have investigated, except all

nodes are distributed according to Laplace distributions instead of Gaussian distribu-

tions. We want to study the impact of the distribution of node locations on the network

connectivity. A similar empirical approach is adopted. Because the Laplace distribu-

tion has a much heavier tail than that of the Gaussian distribution, we consider a sensor

network in which all nodes follow Laplace distributions in this section. The probability

density function of Laplace distribution is

f (x) =
1

2σ
exp [− |x− µ| /σ], (5.23)
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Figure 5.16: Curve fitting of CDF of rm for a network with Laplacian distributed nodes.

in which µ is the mean, and σ is the standard deviation.

The sensor placement model is similar to the model shown in Fig. 5.1. However,

locations of all the nodes follow Laplace distributions instead of Gaussian distributions.

Using the same empirical approach described before, we can obtain an approximation of

n∗, denoted by n2, as follows.

Fitting the CDF of the maximum distance between physically consecutive nodes:

We consider the same 988 pairs of parameters (n, σ) as used in Subsection 5.4.2. We

conduct Monte Carlo simulation and generate empirical CDF of the maximum distance

between physically consecutive nodes for each pair of (n, σ). As the example illustrated

in Fig. 5.16, these CDFs are again well approximated by Log-Logistic distributions. The

CDF of Log-logistic distribution was given by eq. (5.3).

For each pair of (n, σ), we can obtain a pair of parameters α and β after fitting.

Meta Fitting: Fitting α and β as functions of the parameters n and σ. However, β

cannot be well expressed by a single function. Let the “piece xy” notation be the same as

in section 5.4.3, in which x = 0 if n < 200 and x = 1 otherwise, and y = 0 if σ < 0.1 and

y = 1 otherwise. Hence, we have β as a piecewise function.

When n ≥ 10 and σ ≥ 0.005, the surface of α and β can be well approximated by:

α = a1 + a2 log n + a3
√

σ (5.24)
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β =





b11 + b12σ2.5 + b13
√

σ log σ, in pieces 00

1/(b21 + b22(log n)2 + b23
√

σ), in pieces 01

1/(b31 + b32
√

n + b33/
√

σ), in pieces 10

1/(b41 + b42 log n + b43σ log σ), in pieces 11

(5.25)

where ai is listed in table 5.2 and bij are the element of matrix K given by:

Table 5.2: ai
i

Parameters 1 2 3
ai 0.10570042 -0.75547991 1.0780847

K =




0.019728 1.0062285 −0.1301619

7.1305944 0.08837203 −2.1444418

7.7860075 0.031850892 0.33342419

2.022401 1.0863066 −1.0514925




From (5.24) and (5.25), we can compute α and β, and substitute them into (5.3), yield-

ing

P(rm < r)n,σ =
1

1 + exp
[
− (log r−α(n,σ))

β(n,σ)

] ≡ f1(n, r, σ). (5.26)

For a pre-specified connectivity probability Ptarget, the solution n2 of Ptarget = f1(n, r, σ)

for n, with given r, σ, and Ptarget, is an approximation of n∗.

5.6.1 Numerical and Simulation Results

To demonstrate the validity of our approach, we consider σ = 0.004, 0.008, ..., 0.04; r =

0.002, 0.008, 0.014,..., 0.038. For each pair of (r, σ), we compute n2 by solving the equation

Ptarget = f1(n, r, σ) for n. We then conduct Monte Carlo simulation using the correspond-

ing r and σ, for each n2 obtained, to evaluate the probability of connectivity. We plot the

5th and 95th percentile for probability of connectivity in loglog scale graph Fig. 5.17. The

probability of disconnect is set to 10−6 if there is no disconnection in 105 samples. It can

be seen from Fig. 5.17 that our empirical approach can produce reasonable estimates for
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Figure 5.17: Simulation values for P(C)n2 .

As a comparison, Fig. 5.18 compares the numbers of nodes required, which are ob-

tained from eq. (5.26) and simulations, respectively, when σ is small and Ptarget is high.

The results show good agreement. It is also indicated that even for small randomness in

the positions of nodes, there is a large increment in the number of nodes needed com-

pared with the number of nodes needed when all the nodes are placed in their optimized

locations, which is consistent with the situations that all nodes are Gaussian distributed.

In order to compare the impacts of different distributions of nodes on the connectivity

of networks, we conduct simulations to obtain n∗, for networks with nodes distributed

according to both Gaussian and Laplace distributions. We compare the n∗ obtained for

these two different scenarios, when other system parameters are the same, i.e., transmis-

sion range r and standard deviation σ are the same. We show examples in Fig. 5.19, in

which n∗ are obtained for networks with r = 0.05 and 0.1, while the target probability of

connectivity are set to 98% and 99%.

We can observe an interesting result. If the standard deviation is identical for both

Gaussian and Laplace distribution, the number of Gaussian distributed nodes required is

less than those for Laplace distributions when σ is small, while we need more Gaussian

distributed nodes than Laplace distributed nodes as σ becomes large. This phenomenon

can be interpreted as follows. When σ is small, to get a disconnect network, the posi-

tions of some nodes need to be far away from the mean, which is more likely to happen
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Figure 5.18: Analytical and simulation results for n∗.
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for Laplace distribution as it has a heavier tail than Gaussian distribution has. When σ

is large, the typical events account for the major part of disconnection. As the Laplace

distribution is more concentrated on the mean, we need more nodes for Gaussian dis-

tribution. We also notice that for the same network design parameters, the number for

Lapalcian distributed nodes is quite close to the number of Gaussian distributed nodes

needed. Therefore, we conjecture that as long as the distributions that nodes followed are

symmetric about the mean, the number of sensors needed to maintain certain probability

of connectivity is not very sensitive to the distributions.

5.7 A Network Design Algorithm

Even though the empirical analysis can produce an approximation n1 (or n2) of n∗, it

cannot guarantee that the approximation is conservative, i.e., the n1 may be less than the

n∗ even they are very close. A design approach that can provide conservative estimation

of n∗ is thus expected. In this section, we propose an algorithm, intended to provide a

conservative design.

Estimating n∗ through the proposed empirical approach may not achieve the design

objective of having the network connected with probability Ptarget since it is possible

to underestimate n∗ with grave consequences. One way to be more conservative is to

approximate n∗ by estimating n̂ defined as the minimum number of nodes required to

achieve a connectivity probability of P̂ such that Ptarget ≤ P̂ ≤ 1 using the above em-

pirical procedure, which gives another value nc. The n̂ is the solution of optimization

problem (5.1) with Ptarget = P̂, and nc is the solution of equation f (n, r, σ) = P̂ for n.

Unfortunately, this may not be sufficient as shown by the following example. Consider

the most conservative case of P̂ = 1. If σ = 0 then P(C|n = n∗ = noptimal) = 1, but also

P(C|n = n∗ − 1) = 0. Thus, underestimating n∗ by as little as one, yields a very low con-

nectivity probability. Therefore, in order to find a conservative estimate of n∗, we choose

P̂ > Ptarget, we estimate n̂ and add safety margin which considers the error in estimating

n̂. This is summarized as follows.

Proposition 5.7.1. Let n̂ and nc take the meaning as previously defined, and define η = (n̂/nc)−
1 be the fitting error. Let η̄ be such that

P(η ≤ η̄) > Ptarget/P̂. (5.27)
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Let nd = nc(1 + η̄). Then

P(C|n = nd) ≥ Ptarget. (5.28)

Proof.

P(nd ≥ n̂) = P (nc(1 + η̄) ≥ n̂)

= P ((1 + η̄) ≥ (1 + η))

= P(η̄ ≥ η). (5.29)

By the Law of Total Probability:

P(C|n = nd) ≥ P(C|n = nd ≥ n̂)P(nd ≥ n̂)

≥ P̂ P(nd ≥ n̂). (5.30)

Therefore,

P(C|n = nd) ≥ P̂P(η̄ ≥ η)

≥ Ptarget. (5.31)

The empirical distribution of η, for a given P̂ and many σ, nc, and r values can then

be calculated. This is shown for P̂ = 0.95, 0.99 and 0.9995 in Fig. 5.20 for the scenario

that all nodes are Gaussian distributed. Note that the empirical CDF of η is affected

by the sampling scheme of σ and r selected by the network designer. Figure 5.20 is for

σ = 0.004, 0.0044, ..., 0.04 and r = 0.002, 0.0024, ..., 0.036.

Combining (5.27), (5.29) and (5.30), a network containing nd sensors is connected with

probability at least Ptarget. The algorithm can be summarized as Algorithm 3.

To illustrate our approach, we consider σ = 0.004, 0.008,..., 0.04; r = 0.002, 0.008,

0.014,..., 0.038. The intervals representing the range between the 5th percentile and the

95th percentile for Ptarget = 0.91, 0.94, 0.96, 0.98, 0.992, 0.995, 0.998 are plotted in Fig. 5.21.

We compare both the P(C)n1 and P(C)nd via log scale. All the P(C)nd values are above

Ptarget, as we expected. We set P(C) = 1− 10−6 if there is no disconnection in 105 samples.

However, even though the examples show that our design approach can provide sat-

isfactory performance, it still can not guarantee the nd we obtained is conservative, be-
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Figure 5.20: CDF of η.

Algorithm 3 Conservative Network Design Algorithm

Input: Nodes position spread data sheets such as shown in Fig. 5.20.
Output: A conservative estimate nd of n∗.

1: P̂ = 0.95, if Ptarget < 0.95, P̂ = 0.99 if Ptarget < 0.99, P̂ = 0.9995 otherwise.
2: Read the value of η̄ from data sheets such Figure 5.20.
3: Calculate σ = location spread/d.
4: Solve f (n, r, σ) = P̂ for n, denote as nc, where f is defined in (5.6).
5: Approximate n∗ by nd = nc(1 + η̄).
6: return nd.

cause this approach depends on the sample scheme we used to produce the Fig. 5.20. In

another word, it depends on how accurately that we can model the real CDF of error by

the empirical CDF of error.

5.8 Conclusion

In this chapter, we have investigated the probability of connectivity for a 1-D network, in

which all the nodes are randomly placed with equally spaced mean and i.i.d. variances

σ2. The positions of all the nodes follow double sided distributions that are symmetric

about the mean.

By using an empirical approach, which is widely applied in different fields of science

and engineering, we have obtained formulae to evaluate the probability of connectivity

for a network given σ, number of nodes n, and node transmission range r. With those for-
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Figure 5.21: Simulation values for P(C)n1 and P(C)nd versus Ptarget

mulae, we can numerically estimate the minimum number of nodes required to achieve a

certain probability of connectivity, if network design parameters, such as σ and r are pre-

specified. For the extreme cases in which the number of nodes required is very small, or

the network is nearly deterministic, our empirical approach cannot be applied. However,

we can obtain the necessary number of nodes needed easily by simulation if this number

is small. Moreover, we have provided simple approximations to achieve the same goal

when σ is small, and these approximations can accurately predict the probability of con-

nectivity, as well as evaluate the required node placement accuracy to achieve network

design targets.

We have studied networks in which all the nodes follow Gaussian distributions and

Laplace distributions, through the empirical approach we proposed. Our studies have

suggested that as long as the distribution that all sensor nodes followed is double sided

and symmetric about the mean, the number of nodes required to maintain a pre-specified

probability of connectivity is not very sensitive to the distribution, if all other network

design parameters are the same. As our empirical approach does not provide a conserva-

tive estimate of the necessary number of nodes needed, the results it predicted may not

be able to provide required probability of connectivity. Therefore, we have proposed an

algorithm, aiming to provide a conservative estimate of the necessary number of nodes

required to maintain the required probability of connectivity.



Chapter 6

Background for Passive Optical Networks

Motivated by the continuous demands for cheaper and faster broadband access solutions,

we study Passive Optical Networks (PONs). In particular, we propose a generic planning

approach for greenfield PON deployment in the second part of this thesis.

6.1 Introduction

With the ever-increasing user bandwidth demands for broadband services and the ad-

vances in backbone networks, copper and wireless access networks remain a bottleneck

between end users and long haul backbones.

Current access networks can be classified into wireless, copper, and fibre access net-

works, according to the transmission media they use. Typical wireless technologies in-

clude WiMAX [5] [79], WiFi [141], and conventional Cellular systems [143], which can

provide broadband access with low cost and much flexibility. The major limitations of

wireless access are the low bandwidth and the short transmission range, due to the shared

broadcasting wireless channel, and the dispersal, as well as the attenuation of the signal.

Copper access networks, based on DSL and Cable modem techniques, are currently

the most widely deployed access networks. Compared to wireless access schemes, in

general, copper based wired networks can provide higher bandwidth and longer trans-

mission range. However, the typical bandwidth and transmission distances offered by

copper access networks are still not satisfactory, e.g., even contemporary ADSL2+ stan-

dard [124] can only support up to 24 Mbps data rate over up to 23, 000 feet distance.

Therefore, copper access technologies suffer similar drawbacks as their wireless counter-

parts.

In contrast to wireless and copper access technologies, fibre technology is an emerg-

ing promising option that can provide broadband access services through fibre to the

home (FTTH), curb (FTTC), and business (FTTB) systems (generically abbreviated as

121
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FTTx). Fibre access networks are grooming due to their virtually unlimited fibre trans-

mission capacity. It can cater to the increasing bandwidth demands required by various

bandwidth-intensive applications such as high-definition television (HDTV), Video-on-

Demand (VoD), peer-to-peer and video conferencing.

Fibre-based optical access networks can be deployed as point-to-point (dedicated) or

shared architectures, according to the utilization scheme of the transmission medium, i.e.,

fibre. Point-to-point architectures deploy a separate fibre between the central office (CO)

and each subscriber. This makes them too costly, and they are generally considered an

unattractive option. In contrast, with shared architectures each subscriber uses a separate

fibre to connect to a network concentrator (e.g., switch, router), and the network concen-

trator connects to the CO using a single shared fibre. Thus shared architectures are in

general much cheaper than dedicated architectures. As one of the shared fibre architec-

tures, Passive Optical Network (PON), is widely considered a promising technique for

the implementation of FTTx [69] [137].

In addition to providing FTTx solutions, PONs can also serve as backhaul architec-

tures for the interconnection between wireless based stations, which potentially realize

the future-proof fixed mobile convergence [202].

In this thesis, we use mathematical optimization models to formulate the optimal de-

ployment problem of greenfield PON systems, aiming to minimize the total deployment

cost, subject to the physical layer constraints of PON systems. Moreover, due to the high

computational complexity of the optimization model, we develop efficient heuristics for

suboptimal solutions. The approach is efficient to plan large network scenarios with hun-

dreds of ONUs.

This chapter provides a background for passive optical networks, discusses existing

major challenges, hence motivates our research in the optimal planning of PONs. In

Section 6.2, we give an introduction to PON technology. Section 6.3 elaborates the issues

of medium access control (MAC) and bandwidth allocation. The last section reviews

existing optimization models for PONs and general networks, and positions our research

topic.
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6.2 Passive Optical Networks

Passive Optical Network technology is an emerging technique, which provides low cost

point-to-multipoints fibre access to local subscribers. The term “passive” is due to the

lack of active components that require electrical power, within the transmission paths.

PONs provide simple optical fibre infrastructure without requiring power supply outside

the operators plants [137], hence significantly reduce the operational and maintenance

expenditure.

Several topologies can be implemented for PONs, including tree, tree-and-branch,

ring, and bus [137]. Among all these topologies, trees are the most popular, due to its

simplicity and ease of management. Figure 6.1 shows an example of PONs with the

tree topology. However, trees suffer the intrinsic drawback of the single point failure.

For example, a single break point on the trunk fibre can make the whole network out

of function. It should be noted that this problem is due to the tree topology rather than

the PON techniques. The Ring topology can be helpful to improve the reliability, with

increasing cost.

Figure 6.1: An example of PONs with the tree topology.

Typically, a PON comprises three types of components, including (i) an optical line

terminal (OLT), which is located in a local exchange (Central Office), (ii) some passive

optical splitters that duplicate optical signals by dividing signal power evenly to multiple

output interfaces [82], and (iii) a number of optical network units (ONUs), each for a
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service subscriber. With the tree topology, a single trunk or feeder fibre connects the

OLT to a single splitter, while multiple drop fibres connect the splitter to ONUs, one for

each. If the splitter has a maximal split ratio of 1 : N, then the PON can support up to

N drop fibres. In ring or bus topologies, there exist several splitters, one for each ONU.

Compared to conventional access techniques, PONs have several advantages, including

high bandwidth, long coverage, low cost, and transparent upgrade capability. The last

merit is because optical splitters are not sensitive to the PON data rate, hence an upgrade

of systems only requires an upgrade of the electronic devices in the central offices and the

customer premises.

Today there are two primary types of standardized passive optical network technolo-

gies, Ethernet Passive Optical Networks (EPONs) [115] [137], and Gigabit-capable Pas-

sive Optical Networks (GPONs) [120] [121]. EPON is standardized by IEEE, and is a cat-

egory of networks based on the Ethernet technique. It benefits from the huge market of

Ethernet devices. An EPON combines the low-cost Ethernet equipment and fibre infras-

tructure, and transmits Ethernet data frames directly. It can provide 1 Gbps capacity in

both upstream and downstream directions, and cover a distance of up to 20 km and sup-

port 20 km maximal differential distance 1. In addition, current Ethernet techniques such

as prioritization and virtual LAN tagging provide support for Quality of Service (QoS).

These techniques enable EPONs to transmit data, voice and video traffic efficiently in

an integrated network. In contrast, GPON evolves from the ATM PON (APON/BPON)

technique [119], and is standardized by ITU-T under work of the Full-Service Access Net-

work (FSAN) group [120] [121] [122] [123]. Compared to EPONs, a GPON can support

higher data rate, up to 2.488 Gbps for both downstream and upstream. It can cover a

longer distance, up to 60 km, and support a differential distance of up to 20 km.

Besides the two standardized PON techniques, PONs for the next generation are also

being developed. Research has been done to extend the transmission distance and up-

grade the network capacity, as these two features are essential to all types of access net-

works. In order to support users in rural areas who are far away from a central office,

Gupta et al. [90] propose to extend the maximal transmission distance of a PON from

standardized 20 km or 60 km, to 100 km. In terms of the bandwidth, a new generation

1The coverage distance of a PON is defined as the maximal transmission distance between an OLT and an
ONU. The Maximal differential distance is the maximal distance difference between different ONUs from a
central OLT within a common PON.
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of PON techniques are being developed to increase the transmission capacity by either

shortening the time duration of each data bit or increasing the number of parallel trans-

mission channels. IEEE 10 Gbps EPON standards are being developed, and the EPON

transmission capacity is upgraded from 1 Gbps to 10 Gbps [116]. A few GPON enhance-

ments are also in progress to extend GPON to support 10 Gbps downstream data rate [69].

Driven by the idea of exploiting multiple channels, Gupta et al. [90] apply Wavelength

Division Multiplexing (WDM) concept to increase PON transmission capacity by several

times. Note that the transmission capacity of a PON is not likely to affect the cost min-

imized planning, if we assume that all subscribers accept whatever capacity is assigned

by the operators. However, other system parameters, such as the maximal transmission

and maximal differential distances do affect the planning, as these two parameters are

constraints that should be satisfied when minimize the total deployment cost.

Existing implementations of PONs can be found in some Asian countries, where

FTTH systems are widely deployed. For example, in Japan, NTT had more than 2.8

million FTTH users in March 2005, and expected to reach 30 million fibre access users

by 2010 [203]. The original systems used by NTT were BPONs, but are now evolving

towards EPONs.

In order to successfully design and deploy PON systems, there are several issues that

should be addressed, including hardware related issues (e.g., transceiver design), secu-

rity issues, service requirements, multiple access and bandwidth allocation, and opti-

mized planning. Multiple access and bandwidth allocation in the upstream direction is

important for the efficient utilization of bandwidth, whereas it is not a problem for down-

stream traffic since that is broadcast to all ONUs. As a result, the differential distance

constraint in PON standards is introduced to improve the efficiency of multiple access

and bandwidth allocation schemes. Hence the MAC layer issues indirectly affect the cost

minimized planning of PONs. We review MAC and bandwidth allocation for PONs in

the next section, followed by a section discussing existing models for optimal network

planning. We do not provide details for hardware, security, and services issues.

6.3 Multiple Access and Bandwidth Allocation

Channel allocation or medium access control is an important issue in PONs, since the

feeder fibre is shared by all the ONUs. In the downstream direction, owing to the broad-
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casting nature of the PON system, there is no collision. But for upstream, all ONUs need

to be coordinated to transmit data.

An explicit transmission scheduling scheme is preferred in PONs because contention-

based random access is difficult to implement. In general, communication stations need

to be able to detect collisions, if they are applying contention-based random access such

as carrier sense multiple access/collision detection (CSMA/CD). However, due to the di-

rectional properties of optical splitters, ONUs cannot detect collisions occurring on the

OLT side directly. Therefore, CSMA/CD cannot be directly used for PONs. Some exten-

sions of CSMA/CD have been proposed to resolve this problem. Desai et al. [59] propose

an optical loopback technique to efficiently exploit CSMA/CD for the access control in

WDM PONs. Chae et al. [42] apply the similar idea to EPONs for a 155 Mb/s line rate.

Centralized control of OLT can also help to realize the collision awareness on the ONU

side. If the OLT informs ONUs the collision by broadcasting a special signal, all the

ONUs know the occurrence of the packet collapse. With this central control function of

the OLT, a PON can apply contention-based random access schemes. Nonetheless, this

centralized mechanism results in low efficiency in long reach networks, and is less tol-

erable for voice and video traffic. In addition, contention-based MAC cannot guarantee

bandwidth to each ONU, and the implementation is costly. Another possible solution

for data collision is to apply the WDM concept, which enables each ONU to operate at

a separate wavelength, thereby avoiding data collisions by using dedicated wavelength

for different ONUs. However, the implementation of this idea is also cost prohibitive, as

it requires a tunable receiver, or an array of receivers, each for a wavelength, at the OLT

side. Moreover, ONUs should be equipped with different transmitters, which is also not

cost-effective. Therefore, time-sharing scheduling is considered a more attractive solution

to manage the channel allocation. It can avoid data collision with only one wavelength

and a single transceiver in each ONU.

In general, scheduling can be classified into TDMA and polling, which represent static

and dynamic time sharing mechanisms, respectively. In a static TDMA scheme, each

ONU is allocated a fixed time slot, by using a common time reference that provides syn-

chronization. ONUs need to buffer data until their time slots arrive. They can only trans-

mit in their own time slots, and ONUs transmit idles if they have nothing to send when

their time slots arrive. The main drawback of static TDMA is that it may suffer from

low overall channel utilization. To resolve this problem, dynamic time sharing has been
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proposed. In dynamic time sharing, bandwidth are allocated dynamically, according to

the state information collected from all ONUs. Among all the dynamic time sharing

schemes, polling has been widely applied. One standardized protocol on which many

other polling algorithms are based is multipoint control protocol (MPCP). It is specified

by the IEEE 802.3ah standard [115]. MPCP aims to provide primitives for any particular

bandwidth allocation and transmission scheduling algorithms. A simple but inefficient

polling scheme is the poll-and-stop polling, in which the OLT polls all ONUs in a round-

robin fashion, while the polling of each ONU only starts after receiving reports from

the previous ONU. To improve poll-and-stop, Kramer et al. [136] propose interleaved

polling, in which polling for current ONU can be performed even if the OLT does not

receive the response from the previous ONU. Other polling algorithms include [42] and

[151]. Zheng et al. [232] give a brief overview of MAC and bandwidth allocation related

issues for EPONs. By utilizing QoS related features such as traffic priority and service

level agreements, other scheduling schemes are also available [137].

6.4 Optimized Design of PONs

As PONs aim to provide high bandwidth with low cost, numerous techniques have been

developed to reduce the overall cost of PONs. These techniques mainly focus on the PON

architectures refinement [229] and component costs reduction. However, optimal design

and planning is also important for cost-effective PON deployment.

The costs of land trenching and laying fibres are expensive. These costs generally

dominate the overall cost of the system deployment. Therefore, reduction of the total

trenching distance for laying fibres can effectively reduce the PON deployment cost (we

do not consider obstacles, and assume that a straight connection can be made between

two arbitrary points, hence it is the greenfield PON planning we are investigating.).

Nonetheless, little research has been conducted in cost-minimized design and planning

for PON deployment. Only very recently, Hajduczenia et al. [96] tried to optimize the

PON deployment based on optical power budget requirements and deployment cost.

Algorithms are proposed to minimize the total deployment cost of a PON. This study

however only considers several small special application scenarios, and the discussion

is limited to a single PON. Therefore, more generalized and systematic approaches are

required for practical deployment with hundreds of Optical Network Units (ONUs), in
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which trenching, fibre cable, network components costs are considered simultaneously.

The focuses include the formation of PONs and the determination of splitter position for

each PON.

There also exists other work that applies optimization models to planning of PONs,

but with different objectives rather than minimizing the deployment cost. They only

focus on optimizing certain special performance metrics. For example, Sarkar et al. [198]

study the optimal placement of ONUs for an optical-wireless hybrid access network, such

that the average distance between all mobile users to an ONU is minimized, if each ONU

is associated with a wireless base station that provides network services to mobile users.

It should be noted that the optimal network planning problem is not unique to PONs.

Similar issues (e.g., the optimal choices of locations for network concentrators) arise in

any distribution networks. The early studies of this problem can date back to 1960’s.

Hakimi studied the optimal placement of a single [98] and multiple [99] switching centres

for communication networks in 1964 and 1965, respectively, in which the optimum is

defined in the sense that the sum of connection distances is minimal.

Existing models for the optimal design of traditional networks can be categorized into

uncapacitated, capacitated, and dynamic models. In the uncapacitated models, each net-

work concentrator is assumed to have capacity to serve unlimited terminals. This type of

models are over-simplified. Literature discussing this type of models include Krarup and

Pruzan [138], Labbé et al. [140], and Mateus et al. [157]. To model the problem more prac-

tically, capacitated concentrator models are introduced, in which all concentrators have

limited capacities. This type of models are studied by Amiri [12], Barcelo and Casanovas

[19], Klincewicz and Luss [134], Lee [142], and Mirzaian [162], etc. The last type of models

are dynamic models, which take future expansion of user demands into account. Models

in this category include Balakrishnan et al. [18], Chardaire et al. [46], and Shulman [204].

However, all three types of models do not consider networks subject to constraints such

as maximal differential distance, as PONs, and only few work (see Amiri [12] and Lee

[142]) considers multitype concentrators.

In the investigations of the optimal network design problem, the following subprob-

lems are often of interest (i) the number of concentrators needed, (ii) the location of each

concentrator, (iii) the connection relationship, between terminals and concentrators, un-

der different optimization objectives. However, though these subproblems can be identi-

fied, there are no general models and algorithms to solve all of them simultaneously.
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In this thesis, we study the cost minimum planning for greenfield PON deployment.

We propose a general mathematical model for the problem, and develop efficient heuris-

tics to obtain sub-optimal solutions. In addition, we evaluate the impacts of PON system

constraints, such as maximal split ratio, maximal PON transmission distance, and max-

imal PON differential distance, on the overall cost of PON deployment. Note that the

usage of our algorithms are not limited to the optimal network design for PONs. With

minor modifications, they can also be applied to the optimal network design and plan-

ning for more general networks.



Chapter 7

Cost Minimization Planning for Greenfield Passive Optical

Networks

In this chapter, we investigate the optimal deployment of Passive Optical Networks. In

particular, we aim to minimize the total deployment cost.

7.1 Introduction

With the emergence of various bandwidth-intensive services such as HDTV, VoD, peer-

to-peer and video conferencing applications, there is an increasing bandwidth demand

on broadband access. To meet this demand, the access networks are evolving from the

traditional DSL and Cable techniques to a new generation of fibre-based access tech-

niques. Fibres are permeating from the curb (FTTC), through the building (FTTB) and

the node (FTTN), eventually to the home (FTTH) [69] [136]. Today there are two major

types of passive optical access networks, i.e., Ethernet Passive Optical Network (EPON)

[115] [136], and Gigabit-capable Passive Optical Network (GPON) [120] [121]. EPON is

a type of networks based on the Ethernet technique, which benefit from the huge mar-

ket of Ethernet devices. An EPON can provide 1 Gb/s capacity in both upstream and

downstream directions, and cover a distance of up to 20 km as well as support 20 km

differential distance. In contrast, GPON is a standard evolved from ATM PON (APON)

technique. A GPON can support higher bandwidth, up to 2.5 Gb/s, in both upstream

and downstream directions. It can cover a longer distance, up to 60 km, and support a

differential distance of up to 20 km.

The research community has carried out much research for passive optical network,

mainly focusing on the following aspects. First, many investigations are dedicated to ef-

ficient bandwidth allocation and QoS support, including Assi [13], Foh [74], and Kramer

[136], as bandwidth allocation in the upstream direction in both EPON and GPON is al-

ways one of the most challenging issues. A range of efficient scheduling and bandwidth

130
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allocation strategies have been developed and evaluated. Second, transmission distance

and capacity are also essential to passive optical networks. In order to support users in

rural areas who are far away from a central office, Gupta et al. [90] propose to extend

the maximal transmission distance of a PON from standardized 20 km or 60 km, to up to

100 km. Also, to provide even higher bandwidth, a new generation of PON techniques

is being developed to increase the transmission capacity by either shortening the time

duration of each data bit or increasing the number of parallel transmission channels, as

described in Chapter 6.

On the other hand, optimal design and planning for PON systems is also important to

cost-effective PON deployment. As the cost of land trenching and laying fibres is expen-

sive, which generally dominates the overall cost of the whole deployment, minimizing

the total trenching distance for laying fibres is often regarded as a key optimization ob-

jective for PON deployment. Nonetheless, little research has focused on this aspect. Only

very recently, Hajduczenia [96] tries to minimize the total PON network deployment cost.

This study however only considers several small special application scenarios. More gen-

eralized approaches are thus required for practical deployment with hundreds of Optical

Network Units (ONUs).

In this chapter, we consider a generic approach for greenfield PON system deploy-

ment, which is capable of planning a large network scenario with hundreds of ONUs. We

formulate the research problem for the PON network design and planning and develop

mathematical optimization models for the problem. Due to the high computational com-

plexity of the optimization model, we also propose efficient heuristics for sub-optimal

solutions. Extensive simulation studies indicate that the proposed approaches are very

efficient compared to a benchmark sectoring approach. In addition, we also evaluate the

impacts of PON system constraints, such as maximal optical split ratio, maximal PON

transmission distance, and maximal PON differential distance, on the overall cost of PON

deployment.

The rest of the chapter is structured as follows. In Section 7.2, we elaborate on the

PON network deployment problem and develop a mathematical optimization model for

the problem. We introduce a benchmark sectoring approach and an efficient heuristic,

called Recursive Association and Relocation Algorithm (RARA) in Section 7.3. We also

improve the performance of RARA by combining it with the Minimum Spanning Tree

(MST) approach to exploit the benefit of cable conduit sharing among multiple fibre links.
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In Section 7.4 and 7.5, we conduct simulation studies to evaluate the performance of the

proposed approaches and gain insights into the factors that affect costs of PON deploy-

ment. We conclude the chapter in Section 7.6.

7.2 Problem Definition and Mathematical Optimization Model

7.2.1 Problem Definition

Fig. 7.1 shows an example of PON network planning and deployment. Given a dispersed

set of locations, with one ONU at each location, and a central office, from which passive

optical networks are deployed to connect to the ONUs, our objective for PON network

deployment is to minimize its total cost. This total cost is composed of various subcosts,

including (i) the system cost of PON, such as the costs of Optical Line Terminals (OLT),

and optical splitters, (ii) the labour cost for trenching and laying fibres, and (iii) the cost

of fibre cables. In general, among all these costs, the labour cost of trenching and laying

fibres is the most expensive, which overwhelms all the other costs in the whole deploy-

ment. Thus, in the PON network deployment, minimizing the total distance of trenching

and laying fibres is generally a key objective for the optimization.

Figure 7.1: Illustration of PON networks.

The optimization problem needs to consider several PON systems constraints, includ-

ing (i) maximal transmission distance, (ii) maximal differential distance, and (iii) optical

split ratio. Typically, the optical split ratio ranges from 1:4, 1:8, 1:16, 1:32, 1:64, to up to

1:128. A 1:n optical splitter means that up to n ONUs can be connected to the splitter.
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In addition to the above system constraints, we may also consider other geographic

constraints, such as road maps, high mountains, and private properties, which may make

the solutions obtained by RARA infeasible. However, in the current study we do not

consider these constraints by assuming a greenfield type of network design and planning,

in which the trenching distance between to points are the Euclidean distance between

them, and we also assume no existing deployment. Moreover, solutions obtained by

RARA can be used for two purposes even taking these constraints into account (i) they

can serve as lower bounds and be useful for comparisons and (ii) they can be modified

to turned to be feasible solutions. For example, if a fibre link of an optimization solution

is required to cross a private property, which is however not accessible, we may make a

local bypass to get around the property.

7.2.2 Mathematical Optimization Model

We develop a mathematical model for the optimization problem, which is as follows.

• Sets:

– S: index set of splitters. The cardinality of S limits the maximal number of

splitters allowed for the whole deployment. For example, if we have 500

ONUs, then the total number of splitters will never exceed 500. This is be-

cause each ONU can only connect to a single splitter, and thus the total num-

ber of splitters never exceeds the total number of ONUs; otherwise, there are

unnecessary spare splitters, which are not cost-optimal.

– Ts: set of splitter types, which is based on the split ratios. The splitter types

can range from 1:4, 1:8, 1:16, 1:32, 1:64, to up to 1:128 according to the PON

standards.

– U: index set of ONUs. Each ONU corresponds to a geographic position in the

Euclidean plane.

• Parameters:

– x0, y0: position coordinates of the central office (CO).

– xo
i , yo

i : position coordinates of the ith ONU, i ∈U.

– ∆: a large value that is required by the Integer Linear Programming, which is

set to be 105 in our study.
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– Tk: the total number of outlet ports of the kth type of splitter. For example, a

1:8 splitter has eight outlet ports.

– α: the cost factor or weight of the OLT.

– βi: the cost factor or weight of each outlet port of the ith types of splitter. For

simplicity, we assume that the cost of each outlet port of each type of splitters

in the set Ts is identical.

– γ: the cost factor or weight of trenching and laying fibres (per kilometer).

– θ: the cost factor or weight of fibre cables (per kilometer).

– ltotal
max : the maximal transmission distance of a PON between an OLT and an

ONU, which is in general less than 100 km.

– ldiff
max: the maximal differential distance between different ONUs within the

same PON network, which is in general less than 20 km.

• Decision Variables:

– xs
i , ys

i : the position coordinates of ith splitter, i ∈S.

– Φi: the usage indicator function of the ith splitter. It takes the value of one if

the splitter is used; otherwise, zero.

– Ψj
i : the connection or association indicator function between the jth ONU and

the ith splitter. It takes the value of one if the ONU is connected to the splitter;

otherwise, zero.

– πk
i : the splitter type indicator function of the ith splitter. It takes the value of

one if the splitter is the kth type; otherwise, zero.

– ls
i : the distance from the ith splitter to the central OLT.

– l j
i : the distance from the jth ONU to the ith splitter.

– lmax
i : the maximal distance from an ONU to the OLT in the ith PON, i ∈ S.

Each PON corresponds to a splitter.

– lmin
i : the minimal distance from an ONU to the OLT in the ith PON.

– τi, ζ
j
i : auxilliary binary variables for the “if and then” conditions in the opti-

mization model.
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• The objective is to minimize the total cost of PON deployment that interconnects

all the ONUs to the central OLTs, subject to the PON system constraints includ-

ing maximal transmission distance, maximal differential distance, and optical split

ratio.

Objective:

minimize

α∑
i∈S

Φi + β∑
i∈S

∑
k∈Ts

ΦiTkπk
i + (γ + θ)

(
∑
i∈S

Φils
i + ∑

i∈S
∑
j∈U

Ψj
i l

j
i

)
. (7.1)

• Subject to:

∑
i∈S

Ψj
i = 1, ∀j ∈ U; (7.2)

∆ ·Φi ≥ ∑
j∈U

Ψj
i , ∀i ∈ S; (7.3)

∑
j∈U

Ψj
i ≤ ∑

k∈Ts

Tk · πk
i , ∀i ∈ S; (7.4)

∑
k∈Ts

πk
i − 1 ≤ ∆ · τi, ∀i ∈ S; (7.5)

1− ∑
k∈Ts

πk
i ≤ ∆ · τi, ∀i ∈ S; (7.6)

Φi ≤ ∆ · (1− τi), ∀i ∈ S; (7.7)

ls
i =

√(
xs

i − x0
)2 +

(
ys

i − y0
)2, ∀i ∈ S; (7.8)

l j
i =

√(
xs

i − xo
j

)2
+

(
ys

i − yo
j

)2
, ∀i ∈ S, j ∈ U; (7.9)

(
ls
i + l j

i

)
− lmax

i ≤ ∆ · ζ
j
i , ∀i ∈ S, j ∈ U; (7.10)

lmin
i −

(
ls
i + l j

i

)
≤ ∆ · ζ

j
i , ∀i ∈ S, j ∈ U; (7.11)

Ψj
i ≤ ∆ ·

(
1− ζ

j
i

)
, ∀i ∈ S, j ∈ U; (7.12)

lmax
i ≤ ltotal

max , ∀i ∈ S; (7.13)

lmax
i − lmin

i ≤ ldiff
max, ∀i ∈ S. (7.14)
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In this model, the total cost is made up of three parts. The first part is the cost of OLTs,

as each splitter corresponds to a PON, which requires an OLT. The second part is the cost

of splitters, and the last part includes the cost for trenching and laying fibres and the cost

of fibre cables.

Constraint (7.2) says that each ONU must connect to a splitter. Constraint (7.3) de-

termines whether the ith splitter should be deployed, which depends on whether there

are any ONUs connected to the splitter. If there are any, the splitter must be deployed;

otherwise, not deployed. Constraint (7.4) selects a splitter type, which ensures that the

splitter has sufficient outlet ports to accommodate all the ONUs connected to it.

Constraints (7.5)-(7.7) ensure an if-then condition. If the ith splitter is selected, there

must be only one splitter type associated with the splitter. More specifically, if Φi = 1 (i.e.,

the ith splitter is selected), then τi = 0 must hold, which further leads to ∑k∈Ts
πk

i = 1 due

to (7.5) and (7.6) (i.e., there is a single splitter type for the ith splitter). Constraint (7.8)

computes the distance from a splitter to the central OLT. Constraint (7.9) computes the

distance from a splitter to an ONU. These two constraints are nonlinear.

Constraints (7.10)-(7.12) find the maximal distance and the minimum distance be-

tween an ONU and an OLT respectively within each PON. The constraints are also based

on an if-then condition. If Ψj
i = 1 (i.e., the jth ONU belongs to the ith PON or splitter), then

ζ
j
i = 0 must hold, which thus derives constraints (7.10) and (7.11) into ls

i + l j
i ≤ lmax

i and

lmin
i ≤ ls

i + l j
i , respectively.

Constraint (7.13) ensures that the maximal transmission distance of a PON is not ex-

ceeded. Constraint (7.14) ensures that the maximal differential distance between different

ONUs within the same PON network is satisfied.

7.2.3 Discussion

This model is difficult to solve. Even a simplified version is proved to be NP-hard [159].

It can be divided into three subproblems, they are (i) determining the total number of

required PONs (i.e., splitters), (ii) associating ONUs to splitters, which is termed ONU-

splitter association subproblem, i.e., clustering ONUs into groups that connect to common

splitters, and (iii) relocating the positions of the splitters that achieve the optimal cost,

which is called relocation subproblem.

In the first subproblem, the total number of required PONs or splitters cannot be de-

termined in advance. The only way to evaluate the required number of PONs or splitters
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that minimizes the total cost is to enumerate all possible partition patterns of ONUs and

then determine the optimal splitter location for each ONU cluster. By exhausting all the

possibilities, we can determine an optimal number of splitters. However, the computa-

tion complexity of this brute-force search increases factorially with the total number of

ONUs, which is prohibitive for a large number of ONUs.

The ONU-splitter association subproblem, i.e., subproblem (ii), attempts to find an

optimal association between ONUs and splitters, providing that the locations of the split-

ters are given. This subproblem can be proved to be NP-complete, which means that the

problem is intractable for a large planning scenario. Thus, for sub-optimal solutions, we

propose a heuristic subroutine to solve this subproblem. In this subproblem, the vari-

ables xs
i , ys

i , Φi, ls
i and l j

i all become given parameters. With given ls
i and l j

i , the nonlinear

constraints (7.8) and (7.9) are consequently eliminated and the whole optimization model

is thus degenerated into an Mix Integer Linear Programming (MILP) model, which can

be solved optimally for medium size scenarios. In this study we will use this MILP opti-

mization model to verify the effectiveness of our allocation heuristic.

The third subproblem focuses on determining splitter locations for each PON such

that the total fibre length, which is the sum of the fibre lengths from each ONU to the

OLT, is minimum. This relocation problem is well-known as Fermat-Weber point problem

(FWPP) [53], which is a nonlinear optimization problem and whose objective function

is convex, but not everywhere differentiable [139]. Several algorithms are available to

solve the subproblem. One of them is Weiszfeld algorithm [53] [139]. We adopted this

algorithm as a subroutine in our subsequent heuristic. Detailed description of Weiszfeld

algorithm is given in Appendix C.

The above three subproblems entangle with each other. For the optimal solution to

the whole problem, they need to be considered jointly, which however leads the whole

optimization problem to be even more intractable. Thus, an efficient heuristic is required

to solve this optimization problem.

Indeed, this optimization problem relates to the well-studied classical problem, called

Multifacility Location-Allocation Problem (MLAP), which is introduced by Cooper [55]

in the context of Operations Research. MLAP aims to select the positions of m distributed

warehouses, such that the total cost (usually represented by the Euclidean distance) to

serve a set of n given service centres is minimized, if each service centre is served by

one and only one distributed warehouse. This problem also known as p-median or multi-
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Weber problem. Basically, to explicitly solve this problem, one needs to solve S(n, m)

groups of equations, where S(n, m) is the Stirling number of the second kind. In fact, this

problem turned out to be NP-hard by [159].

Several heuristic algorithms were proposed to solve MLAP. Cooper [56] proposed Se-

quential Location Allocation (SLA) algorithm, which consists of alternating between an

allocation phase and a location phase. In allocation phase, the set of existing facilities

are partitioned into m groups, and facilities in same group will be served by same dis-

tributed warehouse. The Fermat-Weber problem is then solved for each group of facilities

separately after finishing the allocation step. These two procedures are alternatively con-

tinued until no further improvement can be achieved. Note that the results of allocation

step are kept if and only if the allocation can provide a better (less) cost value than the

cost value obtained in location step of the previous iteration. For other algorithms, see

[56] [63] [145] [150], and references therein.

Despite the similarity, the optimal PON deployment problem does show major dif-

ferences from the classical MLAP problem in several aspects. First, the fibre deploy-

ment problem is subject to the maximal transmission distance and maximal differential

distance of a PON, while in the MLAP problem, there are no such corresponding con-

straints. Second, in the fibre deployment problem, the number of splitters is not known

in advance, which it is a part of the solution to be determined, while the number of re-

quired distributed warehouses is given and fixed in MLAP. Finally, the splitter capacity

is limited in the fibre deployment problem, while the classical MLAP problem allows

warehouses to serve any number of service centres.

7.3 Heuristic Algorithms

We proposed two heuristics to solve the above PON deployment problem. One is based

on an intuitive sectoring approach, which functions as a benchmark for performance

comparison, and the second is called Recursive Association and Relocation Algorithm

(RARA), which employs a recursive process to keep on calling ONU-splitter association

and splitter relocation subroutines until an optimal (at least locally minimal) solution is

achieved.
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7.3.1 The Sectoring Algorithm

We first propose an intuitive sectoring algorithm. Like cutting a cake, the sectoring al-

gorithm partitions all the ONUs into equal-size groups according to their geometric po-

sitions. The group size is equal to the maximal optical split ratio1. ONUs in the same

group form a PON. After finishing the partitioning, Weiszfeld algorithm [53] [139] is sub-

sequently applied to find the optimal splitter position for each PON. Finally, all the ONUs

in the same group connect to the common splitter.

Fig. 7.2 illustrates an example of the above grouping process. Given a dispersed set

of ONUs and a maximal optical split ratio 1:4. We start from the positive direction of the

vertical axis, and rotate the radius line in the clockwise direction for ONU grouping. A

radius line is drawn when four ONUs are included in the current section. The rotation

goes on until all the ONUs are grouped. Note that the starting point can be arbitrarily

selected. If the number of ONUs is not integer multiple of splitter capacity, there is one

group with number of ONUs equals to mod (n, m), as shown in the example, there is a

group with three ONUs. After the partition, the position of splitter for each PON needs

to be computed by Weiszfeld algorithm. For dense networks, radially partitioning the

network may not be able to efficiently reduce the cost. However, the sectoring algorithm

can also be modified to partition the network arbitrary, but systematically, according to

some certain criteria.

7.3.2 Recursive Association and Relocation Algorithm (RARA)

Recursive Association and Relocation Algorithm (RARA) is extended from Cooper’s al-

gorithm [56], which has been used to solve MLAP in logistics studies. The flowchart of

RARA is illustrated in Fig. 7.3.

The left column implements an outer loop, which can be divided into several steps.

Step 1 randomly generates an initial set of splitters and their locations. The cardinality of

the initial splitter set S, s, ranges from a minimum value, Smin, to a maximal value, Smax,

in which Smin equals the number of necessary splitters to connect all the |U| ONUs, i.e.,

Smin = d|U|/ne, where 1:n is the maximal allowed split ratio, and Smax is set to be the

total number of ONUs, |U|. To avoid falling into a local minimum, for each value of s, we

1Note that in the algorithm, if the total number of ONUs is not an integer multiple of the split ratio, the
number of ONUs in the last group is less than the split ratio.
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Figure 7.2: An example of the sectoring approach.

regenerate different initial splitter sets (splitter coordinates). As shown in the left column

in Fig. 7.3, the algorithm runs this regeneration process N times, which is counted by an

iteration counter i.

Step 2 validates whether this initial set of splitters are eligible to meet all the PON

system constraints, such as the maximal transmission distance, maximal differential dis-

tance, and maximal optical split ratio, if this set of splitters are used to connect all the

ONUs. If this initial set of splitters are valid, then the algorithm calls a recursive pro-

cess, i.e., Step 3, to find the best set of splitters and their locations based on the initial

set of splitters. The middle column in Fig. 7.3 shows the detail of the recursive (search-

ing) process. Specifically, the process first calls an “ONU-splitter association and splitter

relocation” step (i.e., Step 4), which is termed A/R step.

The detail of the A/R step is further shown in the right column of Fig. 7.3. The A/R

step finds a set of valid splitters and their corresponding locations through a conver-

gence process, i.e., loop a. If the new solution at the convergence performs better than a

previously-recorded best solution, Step 5 is executed to update the best known solution.

In most cases, loop a can converge within a few iterations. However, sometimes it may

fail to converge after a predefined number R of iterations. If that occurs, a Simulated

Annealing (SA)-like process (i.e., Step 6) is called to finalize a (good) solution.
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Figure 7.3: Flowchart of RARA.
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Next, we describe the key components and subroutines in the RARA heuristic.

ONU-Splitter Association

The ONU-splitter association step is important to the whole heuristic to find an optimal

association between ONUs and splitters, subject to the PON system constraints. Given

the location of each splitter, it is possible to employ the aforementioned Mixed Integer

Linear Programming (MILP) model to find optimal solutions. The MILP model essen-

tially carries out an efficient exhaustive search. However, the association problem itself is

NP-complete, which is intractable for a large size planning scenario. Thus, in the RARA

algorithm we employed a heuristic subroutine to determine the association.

In the association heuristic, initially, all the ONUs are unconnected to any splitter.

Since the positions of all the splitters and ONUs are known, distance between an arbi-

trary pair of ONU-splitter is also known. Specifically, the association process first finds

a pair of ONU and splitter, which has the shortest distance among all the ONU-splitter

pairs. Then, three PON system constraints including the maximal optical split ratio, max-

imal transmission distance, and maximal differential distance, are verified for the selected

ONU-splitter association. If the association is found to be valid, then keep it and move on

to the next pair of ONU and splitter that has the shortest distance among all the remain-

ing unconnected ONUs, and the same verification process is carried out. Such a process

is repeated until all the ONUs find their associated splitters.

The pseudo-code of the allocation algorithm is shown in Algorithm 4. We adopt the

same notation as defined in the Section 7.2. The input of the algorithm is the set of ONUs,

U, the set of splitters, S, and a |U| × |S| matrix D, whose (i, j) entry, D(i, j) is the distance

between ith splitter and jth ONU. We denote |U| and |S| as the number of ONUs and

splitters, respectively. U and S also denote the coordinates of ONUs and splitters. The

algorithm returns an |U| × |S|matrix, called Mapping, indicating the connection relation-

ship between splitters and ONUs, which is initialized as an all zero matrix. Mapping(i, j)

is one if jth ONU is connected to the ith splitter.

The most time consuming operations of the algorithm is finding the splitter-ONU

pair, which has the smallest distance value, among all the available splitter-ONU pairs.

This operation requires |U||S| comparisons. As |S| is bounded by |U|. This operation is

bounded by O(|U|2). The operations of examining the system constraints of PON can be

done in constant time, hence with time complexity O(1). As the algorithm stops if and
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Algorithm 4 Association Algorithm

Input: Set of ONUs, U; set of splitters, S; capacity of each splitter, n.
distance matrix: D

Output: Matrix of connection relationship: Mapping
1: Mapping ←0 %Mapping is an |U| × |S| matrix
2: N ← |P|
3: (splitteri, ONUj) ← argmini,j(D(i, j))
4: while N > 0 and D 6= Ø do
5: if |Csplitteri | < n %C is the number of ONUs connected to the Mindexi th splitter

then
6: if D(splitteri, ONUj)+distance(splitteri, 0) < constraintt then
7: if maxj∈Csplitteri

(splitteri, j)-minj∈Csplitteri
(splitteri, j) < constraints % all

the constraints are satisfied; then
8: D ← D\D(:, ONUj)
9: Mapping(splitteri, ONUj) ← 1;

10: Csplitteri ← Csplitteri ∪UONUj ;
11: N ← N - 1
12: (splitteri, ONUj) ← argmini,j(D(i, j))
13: else
14: D ← D \ D(splitteri, ONUj)
15: (splitteri, ONUj) ← argmini,j(D(i, j))
16: else
17: D ← D \ D(splitteri, ONUj)
18: (splitteri, ONUj) ← argmini,j(D(i, j))
19: else
20: D ← D \ D(splitteri, :)
21: (splitteri, ONUj) ← argmini,j(D(i, j))
22: return Mapping

only if all the ONUs have been examined, the above procedure needs to be perform for at

least |U| times, and at most |U|2, yielding the time complexity of the allocation algorithm

to be at least O(|U|3), and O(|U|4) at the worst case. Though this algorithm is with

polynomial time complexity, it is still not very efficient for large value of |U|, as its order

is at least 3. The intrinsic nature of NP-completeness spawns this high order polynomial

complexity. Therefore, we need to improve this allocation algorithm to reduce the time

complexity.

Improvement of the Association Heuristic

In Algorithm 4, the distance between ONUs and splitters are store in an adjacency ma-

trix. The complexity of finding the minimum in such an adjacency matrix is O(|U||S|).

Therefore, the worst case time complexity to finish the allocation is O((|U||S|)2). As the

maximum |S| is bounded by a linear function of |U|, the complexity is O(|U|4), which is
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not very efficient for large |U|.
To improve this algorithm, a “Calendar” data structure [34] is employed to store the

pairs of ONUs and splitters. A Calender is essentially a set of linked lists. In order

to construct a calender, There is an array with k elements to store the header pointers

of each linked list. Each splitter-ONU pair is represented as a node, which is attached

to different linked lists of the Calender, according to the distance values. When a new

splitter-ONU pair is connect to a linked list, it is inserted according to ascending order.

Therefore, after finishing the construction of the Calender, elements in each linked list

are sorted. If the value of k is a carefully selected large enough value, every linked list

contains few elements, or a single element in the best case. Therefore, we only need to

O(1) operation to access the smallest distance of the splitter-ONU pair.

For Calender data structure, the most time is consumed in its construction. However,

using similar idea as generating discrete uniform random numbers by using continuous

uniform random number, we can directly place elements to their corresponding linked

lists in the calender when we construct it. For example, if the maximal possible distance

between splitters and ONUs is 1000, regardless the unit, we can let k = 1000, and the

ith linked list stores all the splitter-ONU pairs that have distance within interval [i− 1, i].

Therefore, if there exists a splitter-ONU pair whose distance is 888.8, this pair will be put

into the 889th linked list. Hence with carefully selected k such that each linked list only

contains a few elements(the best situation is 1), when we do the allocation, we only need

to examine the calender in one round, which gives the time complexity O(k). As k is often

proportional to |U||S|, the time complexity is reduced to O(|U|2), achieving an order of 2

improvement.

The above ONU association step eventually divides all the ONUs into several groups,

each of which is connected to a common splitter. Based on these groups, we can further

optimize the location of the splitter (i.e., Step 8) by employing Weiszfeld algorithm, which

determines the Fermat-Weber point, i.e., geometric median, for a polygon with a group

of ONUs and an OLT as vertices. Note that the Fermat-Weber point ensures the shortest

fibre distance to connect this group of ONUs to the OLT among all possible locations in

an Euclidean plane. Thus, if the new location of the splitter satisfies all the PON system

constraints, Step 9 will record the new location for the splitter as a better solution.
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Splitter relocation

The above ONU-splitter association step divides the whole group of ONUs into several

small groups with each corresponding to a PON. Based on these ONU groups, the next

step is to find the best location of optical splitter for each PON. The problem is essentially

to find a Fermat-Weber point for a polygon with a group of ONUs and an OLT as vertices

[53]. We extended traditional Weszfeld algorithm (see Appendix C) to realize such a

splitter location. In particular, when applying Weszfeld algorithm, we need to ensure

that the output satisfied the constraints of PON system. The output of the relocation

process is the best location of the splitter.

Simulated Annealing (SA)-like Subroutine

There is a key loop (i.e., loop a in the middle column of Fig. 7.3) in the RARA algorithm.

The loop stops whenever a solution to a set of splitters converges. However, the loop

may fail to converge occasionally, and enter a deadlock between two or even more local

minimum solutions. Under these circumstances, we need to find a way to resolve the

deadlock. For this purpose, we proposed a Simulated Annealing-like subroutine in the

RARA algorithm.

Specifically, when a deadlock occurs, the SA-like subroutine is called to repeat the

A/R step. The subroutine stores two variables. One is the best solution during the whole

Simulated Annealing process, and the other is the current solution. In each iteration, if the

new found solution is better than the current best one, then the new solution substitutes

for the current best one, as well as the current solution; otherwise, a random number

between the interval of [0, 1] is generated and compared with a temperature function,

which is updated in each iteration. The new solution is also accepted as current solution

if the random number is less than the value of the temperature function. The subroutine

stops when the temperature function is less than a predefined small threshold.

7.3.3 Maximal Sharing of Cable Conduit

In RARA, an important assumption is that an independent cable conduit is built for each

fibre link between an ONU and a splitter. However, it is possible to further tune down

the deployment cost by allowing a fibre link to traverse the cable conduits that have been

built for other fibre links, which is called sharing of cable conduits.
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Figure 7.4: Concept of cable conduit sharing in PON networks.

As shown in Fig. 7.4, there are three PONs in the deployed system. We take PON 2 as

an example to illustrate the concept of cable conduit sharing. Rather than building a cable

conduit directly for the fibre links between the splitter and ONUs B and C respectively,

we may build a cable conduit from A to B and from B to C, and then use the consecutive

conduits from the splitter to A and from A to B to lay fibres for the link between the

splitter and B. Similarly, we can use the consecutive conduits from the splitter to A, from

A to B, and from B to C, to lay fibres for the link between the splitter and C. By doing this,

the trenching cost for laying fibres can be significantly reduced, compared to independent

trenching for each ONU-splitter link.

To exploit the potential cost-reduction through conduit sharing, we develop an en-

hanced algorithm subsequent to the design obtained by RARA. Specifically, for each

PON, the algorithm employs the Minimum Spanning Tree (MST) concept to consider

each of the locations, including the splitter and each of the ONUs, as a vertex. An ex-

tended MST algorithm, similar to Prim’s algorithm [174], is then applied to find a con-

strained minimum spanning tree that connects all the locations. Note that different from

the pure minimum spanning tree algorithm, here we need to ensure the PON system

meets all the constraints, such as maximal transmission distance, when finding the mini-

mum spanning tree.
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7.4 Simulation Conditions and Test Scenarios

To evaluate the efficiency of the proposed approaches, we conduct extensive simulation

studies. The following conditions are assumed during the simulations. As a starting

point, the total number of splitter sets, N, is initially set to be 500, i.e., for a given number

of splitters, we generate 500 instances. The available split ratios are 1:4, 1:8, 1:16, 1:32, and

1:64. A maximal split ratio constrains how large a PON can be deployed in the planning.

Therefore, it is 1:64. For example, if the maximal split ratio is 1:32, up to 32 ONUs can be

connected to a single PON, i.e., no more than 32 ONUs can be connected to the splitter in

that PON. However, such a maximal split ratio does not require us to use the maximal-

size splitter constantly. For example, if there are only 11 ONUs connected to a PON, then

a smaller splitter with a ratio of 1:16, instead of 1:32, can be used for cost saving. The

following cost factors are assumed for the planning: the cost of trenching and laying fibre

is $16,000/km, the cost of fibre cables is $4,000/km, the cost of each OLT is $2,500, and

the cost of each splitter port is $100.

Three PON network planning scenarios are studied, including (i) a circle with a 16 km

radius, (ii) an annulus with a 16 km inner circle radius and a 50 km outer circle radius,

and (iii) a circle with a 50 km radius. Within each of the areas, we assume that all ONUs

are randomly distributed.

In scenario (i), we studied the cases with different numbers of ONUs ranging from 100

to 500 OUNs with 100 OUNs for each increment. Note that when making an increment

of ONUs, the locations of the existing ONUs are not changed. In addition to the existing

ONUs, the new ONUs are just randomly added and uniformly distributed. The EPON

system standard is applied for this scenario, which is subject to the system constraints of

20 km the maximal transmission distance and 20 km the maximal differential distance.

In scenario (ii), we considered the cases with the numbers of ONUs ranging from 300

to 700 also with increments of 100 ONUs. In this scenario the system constraints of GPON

are applied, which are subject to 60 km the maximal transmission distance and 20 km the

maximal differential distance.

Finally, the numbers of ONUs in scenario (iii) ranges from 600 to 1000 also with in-

crements of 100 ONUs. The locations of the ONUs in scenario (iii) are actually the com-

binations of the previous two scenarios. We combined the case of 300 ONUs of scenario

(i) with all the cases ranging from 300 to 700 ONUs of scenario (ii) to form all the cases of
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scenario (iii). For example, when considering the case of 700 ONUs in scenario (iii), those

700 ONUs is a combination of the case of 300 ONUs of scenario (i) and the case of 400

ONUs of scenario (ii). Also, for scenario (iii), the system constraints of GPON is applied,

which are subject to 60 km the maximal transmission distance and 20 km the maximal

differential distance.

7.5 Results and Analyses

7.5.1 Comparison of Different Approaches

In this section, we compare the performance of different planning approaches. Fig. 7.5

shows an example about how the total cost changes with the total number of ONUs for

scenario (i). The shown example has the maximal split ratio 1:16. We can see that the

RARA approach can achieve a much better performance, i.e., lower cost, than the bench-

mark sectoring approach. Moreover, RARA is shown to be more efficient with the in-

crease of the total number of ONUs. Also, comparing the results of cable conduit sharing

and non-sharing (i.e., with MST and without MST in the legends), we can see that cable

conduit sharing can help to significantly reduce the cost of PON deployment. The cost

reduction increases with the increase of the total number of ONUs. We also conducted

simulation studies for other values of the maximal split ratios, and obtained similar re-

sults. Fig. 7.8 shows the performance comparison between different approaches for the

scenario (i) with the maximal split ratio 1:32. Similar results are observed.

To highlight the significance of the RARA and the cable conduit sharing efforts, we

also compare two extreme cases, i.e., the sectoring approach without cable conduit shar-

ing, and the RARA approach with cable conduit sharing. it can be found that the RARA

approach and the effort of cable conduit sharing can jointly bring about 50% cost reduc-

tion for a network design scenario with 500 ONUs.

Figs. 7.6 and 7.7 show similar results for the different planning approaches, under

the annulus scenario, i.e., scenario (ii), and the larger circular scenario, i.e., scenario (iii),

respectively. Specifically, the sectoring approach without MST performs worst, and the

RARA approach with MST but without PON system constraints (i.e., allowing any max-

imal transmission distance and maximal differential distance) performs best.

An interesting result for the annulus scenario is that the Sectoring+MST approach out-

performs the RARA+MST approach. This is because the sectoring approach does not con-
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Figure 7.5: Total cost vs. number of ONUs, circular scenario, radius = 16 km, split ratio =
1:16.

sider the PON system constraints, including maximal transmission distance and maximal

differential distance, while the RARA approach always takes these type of constraints

into account. To evaluate the effectiveness of the RARA approach, we also report the

results of RARA+MST without considering the system constraints of maximal transmis-

sion distance and maximal differential distance, i.e., RARA+MST (unconstrained), which

significantly outperforms the approach of Sectoring+MST, as shown by the examples in

Figs. 7.6 and 7.7.

For PON systems with other values of maximal split ratio (1:4, 1:8, 1:32, and 1:64),

similar results are observed, as the example shown in Figs. 7.8 to 7.10, which show the

comparison of total costs between different planning approaches, for the maximal split

ratio of 1:32.

7.5.2 Impact of the ONU Density

The ONU density has great impact on the average cost per user. Figure 7.12 shows how

the average cost per user changes with the number of ONUs for the network scenario

with radius = 16 km, and maximal split ratio = 1:16 and 1:64, as examples. Since we

keep the network area to be constant, an increase of ONU number corresponds to an

increase of ONU density. It is clear from the graph that the average cost per user reduces

as the number of ONUs increases, which is equivalent to that the average cost per user
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Figure 7.6: Total cost vs. number of ONUs, annulus scenario, split ratio = 1:16.
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Figure 7.7: Total cost vs. number of ONUs, circular scenario, radius = 50 km, split ratio =
1:16.
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Figure 7.8: Total cost vs. number of ONUs, circular scenario, radius = 16 km, split ratio =
1:32.
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Figure 7.9: Total cost vs. number of ONUs, annular scenario, split ratio = 1:32.
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Figure 7.10: Total cost vs. number of ONUs, circular scenario, radius = 50 km, split ratio
= 1:32.
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Figure 7.11: Average cost per user vs. split ratio, circular scenario, radius = 16 km,
number of ONUs = 500.
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Figure 7.12: Average cost per user vs. number of ONUs, circular scenario, radius = 16
km, maximal split ratio = 1:16, and 1:64.

decreases with the increase of the ONU density.

This cost reduction brought by the high user density is because of the efficient ex-

ploitation of the single feeder fibre and the conduit sharing of the drop fibres. This result

has suggested that the deployment of PON systems as a solution to provide Internet ac-

cess to subscribers in urban areas is efficient.

7.5.3 Impact of Maximal Optical Split Ratio

Maximal optical split ratio is an important system parameter that affects the deployment

cost of PONs. Figures 7.11 and 7.13 show how the average PON deployment cost per

user changes with different maximal optical split ratios under the smaller circular sce-

nario, i.e., scenario (i), and the annulus scenario, i.e., scenario (ii). As shown in Fig. 7.11,

in addition to the similar performance ranks of the curves as reported in Section 7.5.1, we

can see that the average cost per user decreases with the increase of the maximal optical

split ratio. This is because a larger optical split ratio enables a single splitter to accommo-

date more ONUs, thereby more efficiently share the feeder fibre from the central OLT to

the splitter.

On the other hand, it is interesting to see that there is a saturating trend with the

increase of the maximal split ratio. When the maximal split ratio is small, the increase of

the split ratio can significantly reduce the deployment cost per user, e.g., up to 40% from a
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Figure 7.13: Average cost per user vs. split ratio, annulus scenario, number of ONUs
= 700.

ratio of 1:4 to a ratio of 1:16. However, if the split ratio has reached a certain level, a further

increase does not bring much reduction to the deployment cost. As shown in Fig. 7.11,

the cost reduction from the split ratio of 1:16 to 1:32 is very marginal. Similar observations

can be found for the annulus scenario as shown in Fig. 7.13, in which the cost per user

decreases with the increase of split ratio, until it approaches a saturation split ratio of

1:32. This phenomenon can be explained as follows. In order to exploit the benefits of

splitters with large value of maximal split ratio, more ONUs need to be connected to

those splitters. However, these ONUs may be geographically far away from each other,

which counteracts the cost reduction brought by the large split ratio. Therefore, the total

deployment cost cannot be further reduced once the maximal split ratio reaches a certain

level. It should be noted that the saturating threshold value changes with the density of

ONUs.

7.5.4 Impact of Maximal PON Transmission Distance

The maximal transmission distance of a PON is another important system constraint that

affects the total deployment cost. To evaluate the impact, the following test conditions are

assumed. We consider the smaller circular scenario with radius = 16 km. There are 400

ONUs i.i.d. uniformly distributed within the circle. We only show results for maximal

optical split ratios 1:4, 1:16, and 1:64. However, for other maximal split ratio, i.e., 1:8 and
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Figure 7.14: Total cost vs. maximal PON transmission distance, circular scenario, radius
= 16 km, ONU number = 400.

1:32, results are similar. The maximal differential distance is 20 km. Finally, the maximal

PON transmission distances are configured to change among 16, 18, 20, 24, and 30 km.

Fig. 7.14 shows how the total PON deployment cost changes with the increase of the

PON maximal transmission distance under the RARA approach with cable conduit shar-

ing. It is not surprising to see that the total cost decreases with the increase of the maximal

transmission distance, as a longer maximal transmission distance provides more flexibil-

ity and optimization opportunities for the design. It is interesting to see that there is

also a saturating trend, which shows a marginal total cost reduction after the maximal

transmission distance has been extended to a certain range is very small. Specifically, for

the current design scenario, such a saturation distance is around 20 km, which implies

that after 20 km, a further increase of maximal transmission distance cannot bring much

reduction in the total cost. This is because in order to be benefited from the longer maxi-

mal transmission range, the system needs to have longer distance between the OLT and

ONUs. However, this long range communication is not desirable as it will incur more

cost.

7.5.5 Impact of Maximal Differential Distance

The maximal differential distance of a PON can also influence the total deployment cost.

To evaluate this effect, we again designed the test scenarios as follows. We consider the
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Figure 7.15: Total cost vs. maximal differential distance, circular scenario, radius = 16
km, ONU number = 400.

smaller circle scenario, i.e., scenario (i), with 400 ONUs i.i.d. uniformly distributed. The

maximal transmission distance is set to be 20 km. The maximal differential distance is

assumed to range from 4 km to 20 km with 4 km increment.

Fig. 7.15 shows examples of total deployment costs change with the increase of max-

imal differential distance under the RARA+MST approach, with the maximal split ratios

1:4, 1:16, and 1:64. It can be found out that although the increase of maximal differ-

ential distance can bring some reduction to the total deployment cost, the reduction is

marginal. The result thus implies that the total PON deployment cost seems less sensi-

tive to the change of the maximal differential distance than the change of the maximal

transmission distance. This is because only nodes in the close vicinity of a splitter are ex-

pected to connect to that splitter, in order to reduce cost. This results in small differential

distances in a single PON. Therefore, large values of maximal differential distance may

not be necessary.

7.5.6 Effectiveness of ONU-Splitter Association Algorithm

In the RARA approach, there is an important step that associates ONUs to splitters for

a given specific set of splitters. For this association, in addition to the heuristic subrou-

tine as proposed in RARA, it is also possible to employ the MILP model described in

Section 7.2 (ignoring constraints (7.8) and (7.9)) to find an optimal solution for a medium-
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Figure 7.16: Comparison of the ONU-splitter association algorithm in RARA and the
MILP model for the circular planning scenario with radius = 16 km, split ratio = 1:16.
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Figure 7.17: Comparison of the ONU-splitter association algorithm in RARA and the
MILP model for the circular planning scenario with radius = 16 km, split ratio = 1:64.
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Figure 7.18: Total cost of the planning with disintegration and without disintegration, SR:
split ratio

size planning scenario, e.g., with up to hundreds of ONUs. This posterior MILP op-

timization, termed RARA+MILP, is carried out after the RARA heuristic has found a

list of splitters and the association relationship between the ONUs and the splitters. To

solve the MILP optimization model, we have employed the commercial software package

AMPL/CPLEX in the study. The smaller circular scenario, i.e., scenario (i), is considered

for the evaluation, and only the cases with the total number of ONUs no greater than 500

are studied. In addition, the maximal optical split ratio is assumed to be 1:64.

Figures 7.16 and 7.17 compare the total costs of the two design approaches, i.e., RARA

vs. RARA with the posterior MILP optimization (RARA+MILP), for maximal split ratio

1:16 and 1:64, as examples. It is found out that without considering the PON system

constraints including maximal transmission distance and maximal differential distance,

the RARA algorithm can achieve almost the same performance as that of RARA+MILP.

Their relative performance difference is less than one percent. Moreover, when the PON

system constraints are considered, the RARA algorithm still performs very well, close to

that of RARA+MILP. Their relative difference is consistently less than ten percent. These

results thus verify that the ONU-splitter association algorithm used in RARA is very

efficient, which can achieve good solutions, close to the optimal results obtained by the

MILP optimization.
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Table 7.1: Comparison of computation times (hours) of the apporaches with disintegra-
tion and without disintegration

Computation time (hours)

Optical split ratio 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64

With disintegration 4.93 6.16 7.06 7.93 8

Without disintegration 23.33 31.05 32.77 37.17 34.21

7.5.7 Disintegrating Large PON Planning Scenarios

RARA+MST is efficient and fast for scenarios containing only several hundreds of ONUs.

However, for a very large-scale planning scenario with thousands or several thousands

of ONUs, to obtain good solutions, the computation time of RARA+MST is significantly

increased. To shorten the computation time, one effective way is to divide a large plan-

ning scenario into several smaller parts. For example, we need to plan for a large circular

area containing 1400 ONUs. We may divide this large area into two parts, including one

smaller circular area with 700 ONUs and one outer annulus area with the remaining 700

ONUs. Then we can apply the approaches proposed in this study to solve the two smaller

scenarios and then sum them up to find a final solution to the large circular scenario. By

doing this, we expect that the computation time can be significantly reduced, while the

overall design performance is not significantly degraded, compared to the design with-

out such disintegration.

In our study, scenario (iii) is essentially made up of the combinations of the cases of the

smaller circular area, i.e., scenario (i), and the cases of the outer annulus, i.e., scenario (ii).

Thus, to evaluate the effectiveness of the proposed disintegration method, we compare

the solutions to scenario (iii) with the sums of the solutions to scenarios (i) and (ii).

Under the RARA+MST approach, Fig. 7.18 compares the total costs of the planning

without disintegration, i.e., scenario (iii), and the planning with disintegration, i.e., the

sum of scenarios (i) and (ii). We can see that the results without disintegration and with

disintegration are very close, while the latter requires much shorter computation times.

As shown by the example in Table 7.1, which are the computational time consumed for

the 600 ONU cases, the approach with disintegration requires only 20% computational

time of that required by the approach without disintegration. These results therefore

show that the disintegration method can efficiently plan for large-size PON deployment

without scarifying planning performance.
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7.6 Conclusion

We have presented an algorithm to plan greenfield PON networks to minimize their to-

tal deployment cost. A mathematical optimization model has been developed, which

is intractable due to its nonlinearity and NP-hard feature. We have proposed an effi-

cient heuristic algorithm RARA to find sub-optimal solutions to the problem. Due to the

dominant cost of trenching and laying fibres, we have also exploited the benefit of cable

conduit sharing among different fibre links to further reduce the deployment cost. The

simulation studies indicated that the RARA approach is efficient to significantly reduce

PON deployment cost compared to the benchmark sectoring approach. The simulation

studies also showed that the effort of cable conduit sharing can bring up to 20% cost sav-

ing compared to the pure RARA approach. Our studies have also revealed that high user

density can reduce the average cost per user, which suggested that PON is efficient to

provide network services in metro areas.

We have investigated the effects of various PON system constraints, including the

maximal optical split ratio, maximal transmission distance, and maximal differential dis-

tance. The results showed that there are saturating trends for the PON deployment cost

with the increase of the three system parameters. Moreover, compared to the maximal

differential distance constraint, the maximal transmission distance showed a stronger

impact on the total deployment cost.

The efficiency of the ONU-splitter association subroutine in RARA was also eval-

uated, compared to the optimal MILP approach. It was found out that the proposed

association heuristic is efficient to perform closely to that of the MILP approach.

Finally, to shorten the computation time for a large planning scenario, we have pre-

sented an approach to disintegrate a large size planning scenario into several small sce-

narios. It was observed that the disintegration effort can significantly reduce computation

time for the planning while no significant performance is sacrificed.

As a future research direction, since a Steiner tree in general has less total distance

compared to a spanning tree, we could replace the MST algorithm in the conduit shar-

ing procedure by a minimum Steiner tree algorithm, which may further reduce the total

deployment cost.



Chapter 8

Concluding Remarks

8.1 Summary and Conclusion

Throughout this thesis, we have discussed a series of important optimization problems

for the design, planning, and deployment of wireless sensor networks and passive op-

tical networks. We have focused on the optimal resource placement in such networks

with the aims of saving overall system deployment and operational costs, and improv-

ing system performance through these optimizations. In particular, we have investigated

three problems: minimum sized virtual backbones in WSNs, minimum sized WSNs, and

minimum cost greenfield PON planning. We briefly summarize the research conducted

in this thesis as follows.

• In Chapter 3, we have numerically evaluated the expectation and the distribution of

the cardinality of the minimum sized virtual backbone for one-dimensional dense

random WSNs through the estimation of the margin between the ideal hop length

and the actual hop length of each hop.

As shown in Chapter 3, the cardinality of the minimum sized virtual backbone,

which is the hop count in one-dimensional scenario for greedy routing, can be well

approximated by d−2/λ
r−1/λ − 1

2 , in which d is the network length and r is the sensor

transmission range. The approximation has been shown to be asymptotically accu-

rate. This result greatly simplifies the computation of minimum sized backbone in

dense 1-D networks.

• In Chapter 4, we have developed an algorithm and its distributed version to ap-

proximate the MCDS by a dominating set for two-dimensional dense random WSNs.

We have also proposed a numerical approach to compute the expectation of the car-

dinality of the minimum sized virtual backbone.

As shown in Chapter 4, the algorithms we proposed to approximate the MCDS are

161
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efficient and scalable. The underlying principle of the algorithms is the evaluation

of the optimal spacing between adjacent relays in the virtual backbone based on

an extension of the asymptotic optimal results. This approach has shown that the

asymptotic results applied to infinite networks can be well adopted by more practi-

cal finite dense networks with appropriate modifications. The dominating set found

by our algorithm can help to simplify the network operations such as broadcasting,

and reduce the network energy consumption.

In addition, the expected cardinality of the minimum sized virtual backbone through

our numerical approach is a useful benchmark for the evaluation of existing routing

algorithms and MCDS construction algorithms.

• In Chapter 5, we have investigated a one-dimensional random WSN with positions

of all the nodes following non-i.i.d. distributions with equally spaced expectations

and i.i.d. perturbations. The network scenario we studied represents the situa-

tion that all the nodes are randomly distributed with some control scheme on their

positions, which is more practical, compared to previous network models which

assumed all nodes are deployed with a purely random manner.

An empirical approach has been developed to estimate the minimum number of

sensors needed to maintain the network connectivity. We have solved extreme cases

which are not covered by the empirical approach by analytical approaches. We have

also proposed an algorithm aiming to provide conservative design of WSNs.

Through the comparison of networks with different node distributions, we have

observed that the number of nodes required to maintain the network connectivity

is not very sensitive to the distributions, if those distributions are double sided

distributions, which are symmetrical with respect to their means.

• In Chapter 7, we have presented a framework to minimize the total PON deploy-

ment cost for the optimal design and planning of greenfield PON systems. Prac-

tically, the framework has considered different PON system constraints, such as

maximal transmission distance, maximal differential distance, and maximal split

ratio simultaneously. This problem is NP-hard.

A heuristic algorithm, called RARA, has been developed to solve the problem. The

algorithm has also exploited the cable conduit sharing concept to further reduce
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the deployment cost. For the deployment of large scale PON systems, a hierar-

chical scheme has been proposed, which can efficiently reduce the computational

complexity while maintains a reasonable performance level.

The case studies have shown that cable conduit sharing can significantly reduce

the PON system deployment cost compared to the situation without cable conduit

sharing. In addition, our research has indicated that higher user density can benefit

the cost reduction. This advantage come from the efficient exploitation of the single

feeder fibre and the conduit sharing of the drop fibres, which is a result of the high

density subscribers. This result has suggested that the deployment of PON systems

as a solution to provide Internet access to subscribers in urban areas is efficient.

8.2 Key Contributions

The research in this thesis has aimed to provide optimal design and planning for various

networks, hence enabled the thesis to be valuable to network operators and designers.

In particular, we have proposed a new network model, which is more realistic if we

consider the practical network deployment schemes. Thus our network model provides

a new tool for studies of sensor network behaviours. In addition, our new algorithm to

approximate the MCDS, and the numerical approach to compute its cardinality, can find

potential applications in routing protocol design and performance evaluation. Therefore,

our results about the MCDS in sensor networks serve as powerful tools for protocol de-

signer and researchers who study the performance of layer three protocols. Moreover, as

the two-dimensional MCDS problem is NP-hard, our approaches, which evaluated the

MCDS cardinality probabilistically, suggest an important direction, which may be able to

quantitatively evaluate computationally intractable problems.

The optimization framework and heuristic algorithm presented in Chapter 7 have

provided valuable tools to guide and evaluate network planning and provisioning. The

algorithm efficiently provides network design guidance that greatly reduces the total net-

work deployment cost. All the system level constraints of PON were considered in the

framework, which makes the algorithm a practical solution kit for network operators.

Using our algorithm, the case studies have quantified the decrease in cost per user as

user density increases, which could be useful guidance for PON system planning.
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8.3 Discussion and Future Research

The research presented in this thesis has focused on placing network resources optimally

in wireless sensor networks and passive optical networks through optimization models.

Many important observations have been made which are related to the general disci-

plines of the planning, deployment, and performance evaluation of such networks. We

list the ones that we believe are the most important ones, and discuss some potential

directions for future research.

Firstly, the probability modelling is an important tool in the study of sensor networks.

This is primarily because of the intrinsic randomness embedded in such networks. The

randomness has its roots in the network deployment approaches which we considered, as

well as the wireless communication channels, which are left as future work. Note that the

random wireless channels also introduce models other than the unit disk graph, which

was used in this thesis. This randomness in the sensor networks brings difficulties and

challenges to investigation of the systems. Therefore, probability modelling is critical to

model such a network. However, important results can be derived despite this random-

ness. For example, although the MCDS problem is NP-hard, for a dense random network,

we can estimate its cardinality and approximate the MCDS by exploiting the randomness

and high density of nodes. However, the high density results in a large amount of sensors

in the network, which imposes challenges to the simulation. Therefore, there is a demand

for new techniques and algorithms for fast simulations.

Secondly, in our study of sensor network connectivity, it is clear to us that empiri-

cal approaches including curve fitting can provide useful tools to investigate sensor net-

works, particularly from an engineering problem solving perspective. More research can

be initiated using fitting with fewer functions to get better insight.

As pointed out by Li [146], nonlinear optimization serves as a fundamental tool for

wireless sensor networks, especially in the studies of resource allocation problems. In-

deed, nonlinear optimization also plays an important role in the system level modelling

for general communication architectures, including wireless and wired systems. It can

be used to find the optimal parameters with which the system can be tuned to either

provide better performance or reduce the deployment and operation costs. However,

the optimization models formulated are often intractable due to the system complexity,

or the non-convexity of the objectives, constraints, and feasible set. Therefore, heuristics
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and approximations are required to obtained suboptimal solutions. The example of the

former is the algorithm proposed in Chapter 7, and the relaxation of N1 in Chapter 4

serves an example for the latter case. With these heuristics and approximations, although

we may not be able to obtain the optimal results, we can have good sub-optimal solu-

tions which still provide insights to the systems. Nonetheless, by applying heuristics and

approximations, we have to cautiously consider the tradeoff between the computation

accuracy and the computational complexity. It is in general desirable to obtain accurate

results with less consumption of computational resources.

For the optimal PON planning problem, we have not considered the existence of any

obstacles, whereas geographical constraints to deploy fibres may exist for practical situ-

ations. Therefore, it is important to generalize our framework to consider scenarios that

have obstacles which block the fibres to be placed.

Bearing these points in mind, we propose some future research directions that are

natural extensions to the work presented in this thesis.

• As we have used simple unit disk model to approximate the sensor transmission

range for WSNs, our research results did not capture the random fluctuations of

the wireless channels. We could extend our work by applying a more practical

model, which reflects the randomness embedded in the wireless medium, for the

transmission range.

• It will be interesting to find out the hop count of communications between random

node pairs when they are using the virtual backbone constructed by our algorithms

in the two-dimensional MCDS problem. The results can be used to evaluate the

efficiency of our algorithm and indicate further improvement directions.

• As mentioned in Chapter 4, we could improve our algorithm by explicitly consid-

ering the connectivity. During the nominal dominator selection stage, we select a

set of nodes to be candidate nodes for each nominal relay. Finally, the nominal relay

will be selected from each candidate set by considering the connectivity.

• Since one of the purposes to construct an MCDS in a WSN is to save energy, one

possible future direction is extending our algorithm proposed in Chapter 4 by in-

troducing another parameter that indicates the energy level of each node. The se-

lection of relays need to consider the remaining energy of each node. With this
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new parameter, we can enable our algorithms to be energy-aware. If we relax the

constraint that the entire network area needs to be contacted by some relays, we

can modify our algorithms to generate different dominating sets at different time to

incorporate the load balancing problem.

• For the optimal PON deployment problem, this thesis has solely considered green-

field network planning. Therefore, for the cases of PON deployment in city area,

our approach does not work properly. This is because we need to consider more

geographic constraints. For example, if there are several blocks of buildings in the

city area, and fibre deployment is not allowed to cross the buildings. Thus fibre

cables need to align with the streets, which prevents us from using the RALA algo-

rithm. To resolve this problem, one possibility would be to extend our model and

algorithm to consider the L1 norm (Manhattan distances) rather than the Euclidean

distances used in this thesis.

Together with results obtained in this thesis, solutions of these potential future re-

search problems can serve tools for network design, planning, and performance evalua-

tion, which can benefit both network operators and research community in networking

areas.
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Analysis of E[N1] and E[N3]

In this appendix, we give a more accurate evaluation of E[N1] than that in Section 4.4.2.

A.0.1 Derivation of E[N1]

For a d × d network, given ro, with H and ∆1 defined as in Section 4.4, also define an-

other modification factor ∆2, which stands for the additional nodes in even number rows

compared to odd number rows. Hence N1 is given by

N1 =

⌈
d− ro/

√
2

ro

⌉
×H + ∆1 + ∆2. (A.1)

where dxe is the smallest integer that is no smaller than x. Equation (A.1) can be explained

as follows. The first term in eq. (A.1) represents the number of nodes in odd rows,

rounded it up to an integer, as the number of nominal positions is always integer. By the

similar reason, we can also round up H, that is

H =





⌈
d−ro/

√
2

(
√

3
2 +1)ro

⌉
+ 1, if (d− ro/

√
2)− (

⌈
d−ro/

√
2

(
√

3
2 +1)ro

⌉
− 1)(

√
3

2 + 1)ro > ro

⌈
d−ro/

√
2

(
√

3
2 +1)ro

⌉
, otherwise.

(A.2)

As the distance between adjacent horizontal strip is (
√

3
2 + 1)ro, we should have at

least
⌈

d−ro/
√

2
(
√

3
2 +1)ro

⌉
rows. The first condition in eq. (A.2), which is given as (d− ro/

√
2)−

(
⌈

d−ro/
√

2
(
√

3
2 +1)ro

⌉
− 1)(

√
3

2 + 1)ro > ro, states that when the distance between the
⌈

d−ro/
√

2
(
√

3
2 +1)ro

⌉th

row and the bottom edge of the network is larger than ro but smaller than (
√

3
2 + 1)ro,

we need one extra row of nominal nodes to ensure that nodes close to bottom edge of

network can be connected by nominal relays. If the distance is less than or equal to ro, we

do not need that additional row, which is described in the second condition in eq. (A.2).
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The quantities ∆1 and ∆2 are given by

∆1 =





H− 1, if H =
⌈

d−ro/
√

2
(
√

3
2 +1)ro

⌉

H− 2, otherwise
(A.3)

and

∆2 =





⌊H
2

⌋
, if

⌈
d−ro/2

√
2

ro

⌉
>

⌈
d−ro/

√
2

ro

⌉

0, otherwise
(A.4)

respectively.

Equation (A.3) is basically the same as that in eq. (4.5).To explain ∆2, note that the

number of nodes in even rows may be different from that in odd rows, we need a modifi-

cation factor. If we need an additional node in each even row, we need [H/2] additional

nodes to cover the right edge of the network.

We shall derive N3 in next subsection.

A.0.2 Evaluation of N3

The quantity N3 is a function of d and ro. For some large d,

N3 ≈ N1 −
⌈

d− ro/
√

2
ro

⌉
−H− ∆1 − ∆2

=

⌈
d− ro/

√
2

ro

⌉
(H− 1)−H. (A.5)

which means that for each node in the network, except those nodes in the last row, in the

vertical rib, and those nodes in the first column, there exists a three node pattern. For

each three node pattern, we probably need an extra relay node there.
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Probability Density Function of ∆a

This section derives the pdf of ∆a, which is given by ∆a = −(cos θ(R1 sin α + R2 sin β) +

R3 sin γ). The pdf common to R1, R2 and R3 is given by eq. (4.14), while sin α, sin β and

sin γ are also i.i.d. RV’s, since α, β and γ are i.i.d. uniform RV’s in (0, 2π].

The common pdf of sin α, sin β and sin γ is given by eq. (4.18). We denote the product

of R1 and sin α as Z, i.e., Z = R1 sin α, and its pdf as fZ. Therefore, R2 sin β and R3 sin γ

also follow the same pdf fZ. We firstly derive the pdf of Z.

B.1 Probability Density of Product of RV’s Z

Z = R sin α, it is the product of two RV’s. To obtain the distribution of Z, we apply

Rohatgi’s well-known result [189], which says that for continuous RV’s X and Y, and

given their joint pdf fX,Y, define another RV V = XY, the pdf of V, fV is given by

fV(v) =
∫ ∞

−∞
fX,Y(x,

v
x
)

1
|x|dx. (B.1)

Note that R and sin α are independent, eq. (B.1), (4.18) and (4.14) yield the pdf of Z

fZ(z) =
∫ 1

−1

1
π
√

1− t2
· 2λπ

( z
t

)
exp

(
−λ

( z
t

)2
π

)
1
|t|dt. (B.2)

Therefore, we have the pdf of ∆a = −(cos θ(R1 sin α + R2 sin β) + R3 sin γ) as

f∆a(h) =
∫ ∞

−∞

1
| cos θ|

∫ ∞

−∞
fZ(x1) fZ(

x
cos θ

− x1)dx1 fZ(−h− x)dx. (B.3)

This formula can be explained as follows. As R1 sin α and R2 sin β are i.i.d RV’s,

the pdf of their sum is the convolution of their pdf’s. This sum times the 1
| cos θ| stands

for a scaled version of R1 sin α + R2 sin β. It can be shown that −R3 sin γ has identi-

cal distribution with R1 sin α, thus pdf of ∆a is the convolution of a scaled version of

R1 sin α + R2 sin β and R3 sin γ, yields the (B.3).

169



B.1. PROBABILITY DENSITY OF PRODUCT OF RV’S Z 170

Substitute eq. (B.2) into eq. (B.3), we have

f (h) =
∫ ∞

−∞

1
| cos(θ)|

∫ ∞
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Weiszfeld Algorithm

Weiszfeld algorithm is an iterative re-weight least square method, which computes the

position of geometric median, also known as Fermat-Weber point, for a convex polygon.

Though the complexity of Fermat-Weber problem itself is not known [53], Weiszfeld al-

gorithm is proved to be efficient in practice, especially for a small-scale problem. The

algorithm is proved to be convergent in linear time. The pesudo-code of Weiszfeld algo-

rithm is given below

Algorithm 5 Weiszfeld Algorithm [53]

Input: Set of ONUs U;
1: for i = 1 to |U| do
2: if ‖∑~v∈U\~vi

~v−~vi
‖~v−~vi‖‖ ≤ 1 then

3: return ~vi
4: Select initial solution x0 inside the convex hull form by U.
5: repeat
6: ~xk+1 = ∑~v∈U

~v
‖~v−~xk‖/ ∑~v∈U

1
‖~v−~xk‖

7: until ‖~xk −~xk+1‖ ≤ ε
8: return ~xk+1

In the algorithm, |U| stands for the cardinality of set U. ~v corresponds to an ONU in

U, which is a two dimension vector embedding the coordinates of the ONU. The for loop

(i.e., lines 1-3) is a procedure to check whether the Fermat-Weber point coincides with

any of the ONU positions. The procedure of the repeat-until loop (i.e., lines 5-7) is an

iterative step to find the Fermat-Weber point, providing that the point does not coincide

with any of the ONU positions. The subscript k of ~xk is an iteration counter.
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