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Abstract—Hardware disaggregation decouples 
resources (e.g., processors and memory) from monolithic 
servers, potentially improving service reliability. However, 
from another perspective, directly exposing resource 
modules to a shared network may adversely affect service 
reliability. In this paper, we study a reliable resource 
allocation problem in disaggregated DCs (DDCs), 
considering network impact and different disaggregation 
scales. We provide a mixed-integer linear programming 
formulation and a resource allocation framework named 
Radar for this problem. Numerical results demonstrate that 
the benefits of hardware disaggregation may be adversely 
affected by an imperfect network. It also shows that both 
the hardware backup and a proposed migration-based 
restoration can be applied to overcome this potential 
adverse effect.  

 
Index Terms—Composable/disaggregated infrastructure, 

hardware disaggregation, data center, reliability, network  
 

I. INTRODUCTION 
ITH the rapid growth of internet technology like big data 
and cloud/fog/edge computing, vast amounts of data are 

poured into the data center (DC), imposing a significant burden 
on data centers [1], [2]. Considerable effort has been made to 
ease this burden through various aspects, including resource 
allocation [3-5], energy efficiency [6-9], and thermal issues 
[10], [11], which are for server-based architecture. This 
architecture has caused significant resource stranding, 
hindering efficiency improvement [12].  

Composable/disaggregated infrastructure (CDI), which 
“uses an API to create physical systems from shared pools of 
resources” [13], is an emerging computing infrastructure for 
future data centers (DCs) to break through the boundary limits 
of traditional servers [14], [15]. In its current early stage, CDI 
has grown fast due to its high benefits, which is expected to 
grow to $13.5 billion by 2027 with an annual growth rate of 21 
percent [16]. This paper refers to a CDI-based DC as a 
disaggregated DC (DDC), which represents a DC employing 
hardware disaggregation. Hardware disaggregation decouples 
resources (e.g., processors and memory) from integrated 
servers and reassembles them into resource pools 
interconnected through a fast network, converting a server-
based DC (SDC) into a DDC. New techniques like non-volatile 
memory express [13], compute express link [13], computational 
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storage [17], and the advancement in optical interconnection 
[18-20] provide diversified support for communication 
solutions to hardware disaggregation. DDCs achieve resource 
ef1ficiency and flexibility by reducing resource stranding in the 
SDC [12], [21-25]. Hardware upgrades and resource expansion 
become cost-efficient since they can be operated at the 
component level instead of the server level [22].  

In this paper, we focus on service reliability in DDCs. 
Providing high service reliability is critical for DCs to provide 
continuous operations, ensuring high quality of services, while 
unreliable service may lead to severe economic loss [26]. 
Compared to SDCs, resource availability and reliability in 
DDCs are potentially improved for two main reasons. Firstly, 
improved flexibility expands the optimization regions [27], and 
secondly, resource decoupling leads to a less harmful failure 
pattern where failures among different resources may not 
implicate each other as in SDCs  [28]. However, disaggregation 
may also adversely affect service reliability as resource 
modules are now directly exposed to a shared network. The 
failure of the shared network may lead to the unavailability of 
many resource modules.  

In addition, due to the strict latency and bandwidth 
requirements of inter-resource communications, e.g., CPU-
memory communication, the scale of disaggregation is limited 
[29]. Most efforts on resource disaggregation have considered 
rack-scale, where a resource, e.g., CPU, can use a different 
resource, e.g., memory, from the same rack but not from a 
different rack. Although several publications considered 
pod/DC-scale disaggregation [29], [30], their practical 
application is limited to only a few cases.  

In this paper, we study the reliability performances in DDCs 
considering network impact and different disaggregation scales. 
We summarize the key novelty and main contributions of this 
paper as follows.   
 We study the problem of reliable resource allocation for 

DDCs considering network effects and different 
disaggregation scales. In addressing this problem, we aim 
to achieve both high resource efficiency and high 
reliability. We consider both static and dynamic scenarios.  
For the static scenario, the resources are allocated to a 
batch of known requests. We aim to maximize the 
reliability of each accepted request and the acceptance 
ratio, defined as the ratio of the number of accepted 
requests to the total number of requests. For the dynamic 
scenario, where requests arrive and depart randomly, 
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resources are allocated to each request upon its arrival and 
are released at its departure. In addition, hardware failures 
occur over time, and each failure is fixed after a certain 
time to repair. Hardware failures interrupt their hosted 
requests, resulting in the requests failing to complete their 
service. The objectives in the dynamic scenario are to 
minimize the blocking probability (one minus the 
acceptance ratio) and the number of accepted requests 
failing to complete their service.  

 We provide mixed-integer linear programming (MILP) 
formulations to solve the multi-objective problem in the 
static scenario by converting it into a single-objective 
problem by the weighted sum approach. We first provide 
a MILP formulation for a DC-scale DDC and then extend 
it to MILP formulations for an SDC and a rack/pod-scale 
DDC. We provide approximate Pareto fronts by solving 
the MILP with varied weights in the objective function.  

 We propose Radar, a framework for reliable resource 
allocation in disaggregated data centers, which considers 
both static and dynamic scenarios. We provide a heuristic 
algorithm for the static scenario that can solve the problem 
at a significantly lower complexity than the MILP. For the 
dynamic scenario, two heuristic algorithms are provided, 
with one applied for scheduling the arrival requests, and 
the other applied when a failure occurs to restore the 
interrupted requests by migrating them elsewhere.  

 We provide extensive numerical results for the 
performance analyses. These numerical results are 
obtained by solving the MILP formulations and simulation 
studies. Numerical results demonstrate that the 
realistically imperfect network may significantly offset the 
reliability improvement brought by hardware 
disaggregation under the idealistic resilient assumption. 
Then, we also demonstrate that backup or a proposed 
migration-based restoration can overcome this weakness 
of disaggregation.   

Next, we present related work in Section II and introduce the 
disaggregated architectures in Section III. Then, we describe 
the reliable resource allocation problem in DDCs in Section IV. 
Sections IV and V provide the MILP formulation and Radar 
framework, respectively. The performance evaluation is 
presented in Section VI, and Section VII concludes the paper.   

II. RELATED WORK 
Some publications are dedicated to resource allocation for 

DDCs, though they do not consider reliability. Papaioannou et 
al. [25] proposed a heuristic algorithm for virtual machine (VM) 
placement for a rack-scale DDC to demonstrate that resource 
utilization in DCs can be significantly improved with resource 
disaggregation. They considered two specific resources, i.e., 
CPU and RAM. Similarly, Ali et al. [30] proposed a DC-scale 
VM placement method for a DC-scale DDC to minimize energy 
consumption. This paper considers CPU, memory, and IO 
resources. Zervas et al. [18] proposed a dedicated architecture 
for memory disaggregation, and they also provided VM 
placement algorithms based on different strategies: first-fit, 
best-fit, network-unaware locality-based, and network-aware 
locality-based. Ajibola et al. [31] provided MILP formulation 
for an energy-efficient workload scheduling, and they 

considered both rack-scale and pod-scale DDC architectures. 
They also considered specific resource types in their 
formulation. Pagès et al. [20] studied the virtual data center 
embedding problem for a rack-scale DDC to improve resource 
utilization. There are also several other works related to 
resource allocation or request scheduling for DDCs, e.g., [24], 
[32], and [33]. However, none of these studies considered 
reliability, and they considered a single objective mainly 
focusing on utilization. Moreover, their methods are limited to 
specific resources, e.g., CPU and memory.  

Several publications are dedicated to reliability issues in 
DDCs, though not to resource allocation. Shan et al. [12] 
incorporated the RAID-style memory replication as the fault 
tolerance mechanism in their proposed operating system (OS) 
for the DDC. Carbonari et al. [28] analyzed four failure-sharing 
models in the DDC and claimed that applications should be 
allowed to choose their preferred recovery models.  Based on 
two attributes specific to the disaggregated architecture, namely, 
the ability to reassign memory and failure independence, Angel 
et al. [34] proposed several primitive operations for a potential 
OS dedicated to DDCs.  

In the literature, we found only two papers that consider 
reliability or availability in resource allocation for DDCs, and 
the first one is the work done by Ferreira et al. [35]. This work 
aims to maximize the availability of the application and 
minimize the total cost when allocating resources. However, 
this work is different from our work. They considered that a 
user requires a specific number of resource components of each 
type, e.g., the requirement of three CPU chips and two memory 
modules. By comparison, we allow one component to be used 
by multiple requests, and each request comes with a given 
resource demand, e.g., 10 GB of memory demand. The second 
work was done by Guo et al. [27], who considered the resource 
allocation form similar to ours. They provided a resource 
allocation method for request scheduling to maximize the 
acceptance ratio subject to meeting requests’ requirements. 
However, both [27] and [35] assumed a resilient network and a 
DC-scale disaggregation, which may be unrealistic, and a DC-
scale DDC may not be able to support some applications 
because of latency and bandwidth requirements of inter-
resource communications. Different from them, we consider 
different disaggregation scales and study the impact of a 
network that is not resilient. We also consider the latency and 
bandwidth requirement of inter-resource communications, 
which they did not consider.  

III. OVERVIEW OF SDC VS. DDC ARCHITECTURES  
In this section, we introduce the DDC architectures we 

consider for the reliable resource allocation problem (which is 
defined in the next section). We also discuss the reliability 
challenges of these DDC architectures.  

Fig. 1 (a) shows an SDC architecture, where computing and 
storage resources are packaged in server blades, each 
containing different resources, and the onboard circuit provides 
communications among different resources. These servers are 
interconnected through a DC network (DCN). Traditional 
DCNs are interconnected through wired links and are organized 
in a tree-like topology, e.g., leaf-spine [36] topology, like the 
one shown in Fig. 1(a). Recently, wireless communications 
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techniques have also been introduced to reduce the 
reconfiguration complexity [37].  

 
Fig. 1. Server-based and rack-scale disaggregated DC architectures. 

Fig. 1(b) shows a rack-scale DDC architecture, where each 
blade contains homogeneous resources while a rack also 
contains heterogeneous resources [31], [32], [38]. A resource, 
e.g., CPU, can use a different resource, e.g., memory, from the 
same rack but not from a different rack. In DDCs, 
communications among different resources are completed 
through a network.  For a DDC with a larger disaggregation 
scale, e.g., pod- or DC-scale, a rack contains homogeneous 
resources, and the usage among different types of resources is 
no longer restricted within a rack but can be across racks and 
restricted within a pod or DC [31].  

Hardware disaggregation has reliability benefits but also 
challenges. In SDCs, resources in a server blade are 
interconnected through the motherboard, whose failure affects 
the blade itself but not other blades. While in a DDC, the failure 
of the shared network directly affects all the connected 
components. Also, resource pooling may become a challenge. 
Fig. 2 shows how the four workloads, W1-W4, are placed in 
two server blades (Fig. 2(a)) or two disaggregated resource 
blades (Fig. 2(b)). Each workload's CPU and memory demands 
can be satisfied by one server blade or two disaggregated 
resource blades. Therefore, each blade in the SDC hosts two 
workloads but four workloads in the DDC. When one blade 
fails, all workloads are interrupted in the DDC, but only two are 
interrupted in the SDC.  

 
Fig. 2. Placement of four workloads in SDC vs. DDC. 

To address the problem caused by resource pooling, we may 
disaggregate the resources thoroughly and make each hardware 
component a distinct node. However, this method shifts the 
reliability issue to the network and increases the number of 
nodes and network scale [39].  A more practical approach is 
needed through either hardware organization or software 
scheduling. Next, we provide detailed analyses and possible 
solutions through a novel resource allocation approach.  

IV. PROBLEM STATEMENT AND REQUEST RELIABILITY  

A. Problem Description 
We define the problem of resource allocation in DDCs as 

follows. We are given a DDC as an undirected graph consisting 
of nodes and links, and the nodes include switches and blades 
(See Fig. 1). We assume that DDCs employ optical circuit 
switches because they provide ultra-low and deterministic 
latency and guaranteed network bandwidth [18], [39], [40]. 
Each switch is characterized by a switching delay and reliability. 
Each blade contains a set of components, e.g., CPU components 
(See Fig. 1), and each component is characterized by its 
resource type, available capacity, and reliability. Like 
Carbonari et al. [28], we assume that different components in a 
blade fail independently. Each blade is also associated with 
delay and reliability, which are the delay between receiving and 
transmitting data and the reliability of the peripheral elements, 
such as interfaces and control circuits. Each link is 
characterized by available bandwidth, propagation delay, and 
reliability.  

We use the term request to represent a possible form of 
resource allocation requests, including requests for jobs/tasks 
[4], virtual machines [41], [42], and virtual containers [43]. We 
consider the static and dynamic scenarios of problems 
regarding whether the requests arrive at once or randomly. Each 
request arrives with a given service time and a resource demand 
for each resource type. The request’s inter-resource traffic 
demand and latency requirements are also given. As in  [25], 
[31], [32], we assume that a request can only use one blade for 
one resource, and the disaggregation scale determines whether 
it can obtain different resources from different blades. Consider 
the rack-scale DDC as an example, where a request can only 
use memory from one blade but obtains different resources 
from multiple blades within one rack. Existing work such as 
[25], [31], [32] regards a blade in a DDC as a single node but 
does not consider components in the blade. We also consider 
how the resources from these components are allocated because 
we need to consider the failure independence among different 
components. Nevertheless, a request can obtain one resource 
from multiple components in a blade in a DDC.  

The problem objectives and methodologies are different in 
the static and dynamic scenarios.  
1) Static Scenario  

In this scenario, all requests arrive at once. Our aim in this 
scenario is to maximize the acceptance ratio and each request’s 
reliability. We provide a MILP formulation and a scalable 
heuristic algorithm to address the problem. The MILP 
formulation translates the problem into precise mathematical 
language, and it can be solved using commercial solvers to 
provide optimal solutions. The optimal solutions can be further 
used to validate the efficiency of the proposed algorithm. 
2) Dynamic Scenario 

In this scenario, requests arrive and leave randomly and 
sequentially. A request is accepted if the available resources are 
sufficient upon arrival and blocked otherwise. We assume no 
waiting room, and a blocked request is rejected and leaves the 
system without re-attempting. One of our objectives is to 
minimize the blocking probability (or maximize the acceptance 
ratio), defined as the ratio of the number of blocked requests to 
the total number of arrivals during a specified period. An 

(a) Server-based DC architecture (b) Rack-scale disaggregated DC architecture
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accepted request may be interrupted by a hardware failure, 
failing to complete its service. Our other objective is to 
minimize the number of accepted requests failing to complete 
service. The blocking probability does not include the accepted 
requests interrupted by hardware failures. We provide a Radar 
framework to achieve the two objectives. 

B. The Reliability of a Service Request 
Assume that a request (denoted 𝑖𝑖) arrives, and denote the 

arrival and departure times of request 𝑖𝑖  as 𝑡𝑡𝑖𝑖𝑎𝑎 and 𝑡𝑡𝑖𝑖𝑑𝑑 , 
respectively. Also, assume that an element (denoted 𝑒𝑒) was last 
repaired at the time 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿. Let the random variable Δ𝑡𝑡 be the time 
between failures (TBF) of element 𝑒𝑒. As commonly used, TBF 
is the time from the moment the element is repaired until it fails 
again. The probability that 𝑒𝑒 does not fail during the service 
time of request 𝑖𝑖 (denoted 𝑃𝑃𝑒𝑒𝑖𝑖) can be obtained by: 

𝑃𝑃𝑒𝑒𝑖𝑖 = 𝑃𝑃�Δ𝑡𝑡 > 𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿|Δ𝑡𝑡 > 𝑡𝑡𝑖𝑖𝑎𝑎 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿�

=
ℛ𝑒𝑒�𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿�
ℛ𝑒𝑒(𝑡𝑡𝑖𝑖𝑎𝑎 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿) , (1)

 

where ℛ𝑒𝑒(𝑡𝑡) is the reliability of element 𝑒𝑒, i.e., the probability 
that the TBF of 𝑒𝑒 is not shorter than 𝑡𝑡.  

We consider the reliability of request 𝑖𝑖, denoted by ℛ𝑖𝑖, as the 
probability that request 𝑖𝑖 encounters no hardware failure during 
its service time. This is equal to the probability that no element 
that serves it fails during its service time. Assuming 
independence of failures among different elements, we obtain, 

ℛ𝑖𝑖 = � 𝑃𝑃𝑒𝑒𝑖𝑖
𝑒𝑒∈𝓔𝓔𝒊𝒊

, (2) 

where 𝓔𝓔𝒊𝒊 denotes the set of elements used by request 𝑖𝑖.  

V. THE MILP FORMULATION 

A. MILP Formulation for a DC-Scale DDC 
We first introduce the MILP for a DDC of DC-scale and later 

extend it to other scales. Table Ⅰ provides our used notations.  
TABLE Ⅰ  

LIST OF NOTATIONS 
Notation Explanation 
𝑹𝑹  Set of resource types, e.g., CPU and memory 
𝑵𝑵  Set of blades 
𝑿𝑿  Set of switches 
𝑵𝑵𝑵𝑵𝒏𝒏  Set of nodes neighboring to node 𝑛𝑛 ∈  𝑵𝑵 ∪ 𝑿𝑿 
𝓒𝓒𝒏𝒏  Set of (resource) components in blade 𝑛𝑛 
𝑰𝑰  Set of requests  
𝜃𝜃𝑛𝑛𝑛𝑛𝑟𝑟   Binary parameter indicating whether component 𝑐𝑐 in blade 𝑛𝑛 

is of resource type 𝑟𝑟 ∈ 𝑹𝑹 
𝐴𝐴𝑛𝑛𝑛𝑛  Available capacity of component 𝑐𝑐 in blade 𝑛𝑛 
𝐵𝐵𝑚𝑚𝑚𝑚  Available bandwidth of the link (𝑚𝑚,𝑛𝑛) 
𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏  Delay of blade 𝑛𝑛  
𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠  Switching delay of switch 𝑛𝑛  
𝜏𝜏𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝  Propagation delay of the link (𝑚𝑚,𝑛𝑛) 
𝜉𝜉𝑚𝑚𝑚𝑚
𝑟𝑟1𝑟𝑟2  Binary parameter denoting whether the traffic of ( 𝑟𝑟1, 𝑟𝑟2 ), 

𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 is allowed to traverse the link (𝑚𝑚,𝑛𝑛) 
𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖   The probability that component 𝑐𝑐 in blade 𝑛𝑛 ∈ 𝑵𝑵 does not fail 

during the service time of request 𝑖𝑖  
𝑃𝑃𝑛𝑛𝑖𝑖  The probability that the blade or switch 𝑛𝑛 does not fail during 

the service time of request 𝑖𝑖  
𝑃𝑃𝑚𝑚𝑚𝑚
𝑖𝑖   The probability that link (𝑚𝑚,𝑛𝑛) does not fail during the service 

time of request 𝑖𝑖 
𝐷𝐷𝑖𝑖𝑖𝑖  Resource demand of request 𝑖𝑖 for resource 𝑟𝑟 
𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖   Traffic demand of resource pair (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖 
Δ𝜏𝜏𝑟𝑟1𝑟𝑟2

𝑖𝑖   Latency requirement of traffic (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖 
Note that the requirement is for the extra latency traversing the 

network relative to the onboard latency in a server   
∇  A large value 
𝛼𝛼  A weight factor 
Decision Variables 
𝜋𝜋𝑖𝑖  (Binary) Equal one if request 𝑖𝑖 is accepted; zero otherwise 
𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖  (Binary) Equal one if request 𝑖𝑖 gets resource 𝑟𝑟 from the blade 

𝑛𝑛; zero otherwise 
𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2  (Binary) Equal one if request 𝑖𝑖 gets both resources 𝑟𝑟1 and 𝑟𝑟2 

from blade 𝑛𝑛; zero otherwise 
𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖   (Real) The amount of resource 𝑟𝑟  that request 𝑖𝑖  gets from 

component 𝑐𝑐 in blade 𝑛𝑛 
𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2  (Binary) Equal one if the traffic of (𝑟𝑟1, 𝑟𝑟2)  in request 𝑖𝑖 

traverses link (𝑚𝑚,𝑛𝑛); zero otherwise 
𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2  (Binary) Equal one if the traffic of (𝑟𝑟1, 𝑟𝑟2)  in request 𝑖𝑖 

traverses switch 𝑛𝑛; zero otherwise 
𝜌𝜌𝑛𝑛𝑖𝑖   (Binary) Equal one if request 𝑖𝑖 uses switch or blade node 𝑛𝑛 

(𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿); zero otherwise 
𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖   (Binary) Equal one if request 𝑖𝑖 uses component 𝑐𝑐 in blade 𝑛𝑛 

(𝑛𝑛 ∈ 𝑵𝑵);  zero otherwise 
𝜒𝜒𝑚𝑚𝑚𝑚
𝑖𝑖   (Binary) Equal one if request 𝑖𝑖  uses link (𝑚𝑚,𝑛𝑛) ; zero, 

otherwise 
Λ𝑖𝑖  (Real) The logarithm of the reliability of request 𝑖𝑖, i.e., Λ𝑖𝑖 =

log(ℛ𝑖𝑖), where ℛ𝑖𝑖 is the reliability of the request 
Λ𝑚𝑚𝑚𝑚𝑚𝑚  (Real) The minimum value of all Λ𝑖𝑖 , 𝑖𝑖 ∈ 𝑰𝑰 

Our objective is to maximize the weighted sum of the 
minimum request reliability and acceptance ratio, formulated as: 

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌: (1 − 𝛼𝛼) ∙
∑ 𝜋𝜋𝑖𝑖𝑖𝑖∈𝑰𝑰

|𝑰𝑰| +  𝛼𝛼 ∙ Λ𝑚𝑚𝑚𝑚𝑚𝑚. (3) 

The decision variables in (3) are defined in Table I. Note that 
some decision variables in the table are not included in the 
objective function but are included in the constraints. 

- Blade and component allocation constraints 

𝜋𝜋𝑖𝑖 = � 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑵𝑵

 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (4) 

∇ ∙ 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ≥ 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖  ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏 (5) 
𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ≤ ∇ ⋅� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖

𝑐𝑐∈𝓒𝓒𝒏𝒏
 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵 (6) 

� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑵𝑵,𝑐𝑐∈𝓒𝓒𝒏𝒏

= 𝐷𝐷𝑖𝑖𝑖𝑖 ⋅ 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (7) 

� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑰𝑰

≤ 𝐴𝐴𝑛𝑛𝑛𝑛 ⋅ 𝜃𝜃𝑛𝑛𝑛𝑛𝑟𝑟  ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏, 𝑟𝑟 ∈ 𝑹𝑹 (8) 

- Traffic scheduling constraints 

� 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2  ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2

𝑖𝑖

𝑖𝑖∈𝑰𝑰,𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2

≤ 𝐵𝐵𝑚𝑚𝑚𝑚 

∀𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 (9)
 

� 𝛾𝛾𝑛𝑛𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2

𝑖𝑖

𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎
−� 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖

𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎
=

�𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ⋅ �𝛿𝛿𝑚𝑚

𝑖𝑖𝑟𝑟2 − 𝛿𝛿𝑚𝑚
𝑖𝑖𝑟𝑟1�,𝑚𝑚 ∈ 𝑵𝑵

0,                                  𝑚𝑚 ∈ 𝑿𝑿
 ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹: 𝑟𝑟1 ≠ 𝑟𝑟2 (10)

 

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝜉𝜉𝑚𝑚𝑚𝑚

𝑟𝑟1𝑟𝑟2  ∀𝑚𝑚 ∈ 𝑿𝑿 ∪ 𝑵𝑵,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 , 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (11) 

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟2𝑟𝑟1  ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 (12) 

𝛾𝛾𝑛𝑛𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 + 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 1∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑵𝑵𝒏𝒏
(13)

 

𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2  ∀𝑛𝑛 ∈ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (14) 

𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2  ∀𝑛𝑛 ∈ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (15) 
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𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤� �𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2 + 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2�

𝑚𝑚∈𝑵𝑵𝑬𝑬𝒏𝒏
∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰,

𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (16)
 

𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ⋅

⎝

⎜
⎛

� 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝

𝑚𝑚∈𝑵𝑵∪𝑿𝑿,𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎

+ �𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠

𝑛𝑛∈𝑿𝑿

+� �𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟2 − 2 ⋅ 𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2  � ⋅ 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏

𝑛𝑛∈𝑵𝑵 ⎠

⎟
⎞

≤ 𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ∙ Δ𝜏𝜏𝑟𝑟1𝑟𝑟2

𝑖𝑖 ,∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹: 𝑟𝑟1 ≠ 𝑟𝑟2 (17)

 

�
𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟2

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟2 − 1

∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (18) 

- Reliability-related constraints 

Λ𝑖𝑖 = ∑ 𝜌𝜌𝑛𝑛𝑖𝑖 ∙ log𝑃𝑃𝑛𝑛𝑖𝑖𝑛𝑛∈𝑵𝑵∪𝑿𝑿 + ∑ 𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ∙ log𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛∈𝑵𝑵,𝑐𝑐∈𝓒𝓒𝒏𝒏 +
∑ 𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ∙ log𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚∈𝑵𝑵∪𝑿𝑿,𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎 + (𝜋𝜋𝑖𝑖 − 1) ∙ ∇ ∀𝑖𝑖 ∈ 𝑰𝑰 (19)

  

Λ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜋𝜋𝑖𝑖 ⋅ Λ𝑖𝑖 + (1 − 𝜋𝜋𝑖𝑖) ⋅ ∇ ∀𝑖𝑖 ∈ 𝑰𝑰 (20) 

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ≥ 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2  ∀𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (21) 

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ≤ � 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2

𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2

 ∀𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰 (22) 

𝜌𝜌𝑛𝑛𝑖𝑖 ≥ 𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2  ∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (23) 

𝜌𝜌𝑛𝑛𝑖𝑖 ≤ ∑ 𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2

𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2  ∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰 (24)  

𝜌𝜌𝑛𝑛𝑖𝑖 ≥ 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (25) 

𝜌𝜌𝑛𝑛𝑖𝑖 ≤� 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑹𝑹

 ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰 (26) 

𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ⋅ ∇≥ 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖  ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏 (27) 

𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ≤ ∇ ⋅� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑹𝑹

∀𝑖𝑖 ∈ 𝑰𝑰,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏. (28) 

Explanations:  
Blade and component allocation constraints: Constraint (4) 

ensures that every resource that serves a request is from only 
one blade. Constraints (5) and (6) ensure that a blade is used by 
request 𝑖𝑖 as long as a component hosted by this blade is used by 
request 𝑖𝑖. Constraint (7) ensures that the amount of resources 
required by an accepted request is equal to the amount of 
resources allocated to it. Constraint (8) ensures no violation of 
the component capacity restriction. 

Traffic scheduling constraints: Constraint (9) ensures that the 
link capacity restriction is not violated. Constraint (10) is the 
flow-conservation constraint for routing the traffic between 
each resource pair for each request. Constraint (11) ensures that 
traffic cannot traverse an unpermitted link. This constraint is 
used for the case when some links are for dedicated 
communications as required by some architectures [25]. 
Constraint (12) ensures that the links are bidirectional. 
Constraint (13) ensures that each traffic stream can only use one 
direction but cannot use both directions of a link to avoid 
wastage of communication resources (e.g., creating an 
unnecessary cycle). Constraints (14) - (16) ensure that a switch 
is used by a resource pair if any link connected to this switch 

carries the traffic. Constraint (17) ensures no violation of the 
traffic latency requirement, where the left-hand side is the 
traffic latency which is the summation of propagation, 
switching, and blade delays. The blade delay is ∑ 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 ⋅𝑛𝑛∈𝑵𝑵
�𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟2 − 2 ⋅ 𝜁𝜁𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2  � .  Notice that if the source and 
destination share the same blade, the blade latency equals zero. 
Constraint (18) ensures that when a blade allocates 𝑟𝑟1  and 𝑟𝑟2 to 
a request, the two resources in the request share the blade.  

Reliability-related constraints: Constraint (19) ensures that 
the reliability of each accepted request is correctly calculated. 
The last term on the right-hand side of (19) is to avoid the 
reliability of a rejected request being 1, which may distort 
output information. Constraint (20) ensures that the minimum 
reliability (log form) is no larger than that of each accepted 
request. Constraints (21) – (22) ensure that a link is used by a 
request when it carries the traffic of the request. Constraints (23) 
– (24) ensure that a switch node is used by a request when it 
switches the requested traffic. Constraints (25) – (26) ensure 
that a blade is used by a request when it provisions resources to 
this request. Constraints (27) – (28) ensure that a component is 
used by a request when it provisions resources to this request.  

The complexity of both the number of dominant variables 
(𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2) and the dominant number of constraints (11) is given 
by 𝑂𝑂(|𝑰𝑰| ⋅ |𝑹𝑹|2 ∙ |𝑵𝑵∪ 𝑿𝑿|2). 

B. MILP Formulation for a Blade-Scale DDC (SDC)  
The following constraints are added to extend the DC-scale 

DDC to a blade-scale DDC. 
� 𝜌𝜌𝑛𝑛𝑖𝑖

𝑛𝑛∈𝑵𝑵
= 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰 (29) 

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 𝜌𝜌𝑛𝑛𝑖𝑖  ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵: 𝑟𝑟1 ≠ 𝑟𝑟2 (30) 

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 0 ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑵𝑵𝒎𝒎 (31) 

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑰𝑰,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑵𝑵𝒎𝒎 (32) 
𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 0 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑿𝑿: 𝑟𝑟1 ≠ 𝑟𝑟2. (33) 

Constraint (29) ensures that each accepted request can only 
use resources from a single blade, and constraint (30) ensures 
that all the resources required by a request share one blade. 
Constraint (31) ensures that, in an SDC, each traffic stream does 
not use network links as it is done locally. Constraints (32) – 
(33) ensure that an entire request does not use links or switches 
in an SDC.  

C. MILP Formulation for a Rack- or Pod-Scale DDC 
Here, a request can only use resources from a single rack (or 

pod, same as below) in a rack-scale DDC but cannot use 
resources from different racks. Let  Γ be the set of racks and 𝜍𝜍𝑛𝑛𝑛𝑛 
be a binary parameter indicating whether the blade 𝑛𝑛 is in rack 
𝑘𝑘. Define a binary variable 𝛽𝛽𝑘𝑘𝑖𝑖  that equals one if request 𝑖𝑖 uses 
blade in rack 𝑘𝑘 ; otherwise, zero. The following constraints 
should be added to extend the MILP for DC-scale DDC to the 
rack-scale DDC.  

� 𝛽𝛽𝑘𝑘𝑖𝑖
𝑘𝑘∈Γ

= 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰 (34) 

𝛽𝛽𝑘𝑘𝑖𝑖 ≥ 𝜌𝜌𝑛𝑛𝑖𝑖 ⋅ 𝜍𝜍𝑛𝑛𝑛𝑛 ∀𝑖𝑖 ∈ 𝑰𝑰,𝑛𝑛 ∈ 𝑵𝑵,𝑘𝑘 ∈ Γ (35) 
𝛽𝛽𝑘𝑘𝑖𝑖 ≤� 𝜌𝜌𝑛𝑛𝑖𝑖 ⋅ 𝜍𝜍𝑛𝑛𝑛𝑛

𝑛𝑛∈𝑵𝑵
 ∀𝑖𝑖 ∈ 𝑰𝑰,𝑘𝑘 ∈ Γ. (36) 

Constraint (34) ensures that each accepted request can only 
use resources from a single rack. Constraints (35) – (36) ensure 
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that a rack is used by request 𝑖𝑖 as long as request 𝑖𝑖 uses blades 
in the rack.  

VI. FRAMEWORK OVERVIEW AND HEURISTIC ALGORITHMS 

A. Framework Description 
As shown in Fig. 3, the Radar framework consists of a 

scheduler, monitor, and physical resource modules. The 
monitor module detects topology and load changes as well as 
hardware failures and repairs and periodically reports the 
information to the scheduler module to assist in decision-
making. The scheduler module executes appropriate algorithms 
based on the requests and hardware information to make a 
decision and finally sends the decision information to the 
physical DDC for further operation.  

 

Fig. 3. Radar structure. 

As noted in Fig. 3, the framework addresses both static and 
dynamic scenarios. As the dynamic scenario is characterized by 
individual requests that arrive over time, the scheduler assumes 
that it is a dynamic scenario if the first arrival batch comprises 
a single request. If the first (and only) batch comprises multiple 
arrivals, the scheduler assumes it is the static scenario. 

B. Resource Allocation Policy 
We design indices to quantitatively assess the performance 

of our resource allocation policies, representing preferences 
when selecting hardware. We consider different disaggregation 
scales, where the SDC is regarded as a special case of DDC, i.e., 
a blade-scale DDC.  
1) Blade-Scale DDC 

The policy here is to select a feasible blade with the highest 
value of a blade index (𝜂𝜂𝑛𝑛𝐵𝐵𝐵𝐵) defined as: 

𝜂𝜂𝑛𝑛𝐵𝐵𝐵𝐵 = 𝜀𝜀 ⋅ 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 + (1 − 𝜀𝜀) ⋅ 𝜂𝜂𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 ∀𝑛𝑛 ∈ 𝑵𝑵, (37) 

where 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟  and 𝜂𝜂𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒  are the reliability and efficiency indices 

associated with blade 𝑛𝑛 , respectively, and 𝜀𝜀 ∈ [0,1]  is the 
weighting coefficient. The reliability index 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟  is the 
probability that blade 𝑛𝑛 does not fail during the service time of 
the request, and the efficiency index 𝜂𝜂𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑈𝑈�𝑛𝑛 =
∑ 𝑈𝑈𝑛𝑛𝑟𝑟𝑟𝑟∈𝑹𝑹 |𝑹𝑹|⁄ , where 𝑈𝑈𝑛𝑛𝑟𝑟 is the utilization of resource 𝑟𝑟 in blade 
𝑛𝑛. The efficiency index is set according to the well-known best-
fit (BF) bin-packing scheme, which selects a feasible bin with 
the least remaining capacity [44].  
2) Rack- or Pod-Scale DDC 

Since the rack- and pod-scale DDCs are similar, we next 
consider only the rack-scale DDC. The allocation in a rack-
scale DDC is to select a rack and then choose a blade for each 
type of resource, which involves rack and blade indices. 

Similar to (37), the blade index is also the weighted sum of 
efficiency and reliability indices. The efficiency index is the 
utilization of the blade. Since a DDC blade has multiple 
components of the same resource type, the utilization of the 
blade is calculated by ∑ 𝐿𝐿𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏 ∑ 𝐴𝐴𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏⁄ , where 𝐿𝐿𝑛𝑛𝑛𝑛  and 

𝐴𝐴𝑛𝑛𝑛𝑛 are the load and available capacity of component 𝑐𝑐 in blade 
𝑛𝑛, respectively. The reliability index of a blade is 𝑃𝑃𝑛𝑛𝑖𝑖 ⋅ ∏ 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑐𝑐∈𝓒𝓒𝒏𝒏𝒊𝒊 , 
where 𝓒𝓒𝒏𝒏𝒊𝒊  is the set of components in blade 𝑛𝑛 used by request 𝑖𝑖. 
Note that the reliability index here only considers the 
components used by the request because components are 
independent and do not interfere with each other. Overall, the 
blade index (𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅) is:   

𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅 = 𝜀𝜀 ⋅ 𝑃𝑃𝑛𝑛𝑖𝑖 ⋅� 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖
𝑐𝑐∈𝓒𝓒𝒏𝒏𝒊𝒊

+ (1 − 𝜀𝜀) ⋅
∑ 𝐿𝐿𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏
∑ 𝐴𝐴𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏

. (38) 

The rack index is also the weighted sum of a reliability index 
and an efficiency index. The reliability index of a rack is the 
request’s reliability when allocated with the selected blades in 
the rack and the required switches and links. The efficiency 
index is defined as the average utilization of the |𝑹𝑹| selected 
blades in the rack. Finally, the rack (or pod) with the highest 
rack index is chosen. 

C. The Algorithm for One Request in a Rack-Scale DDC 
1) Algorithm’s Overview 

Fig. 4 provides the algorithm pseudocode, named ARRIVAL-
ALLOC, for allocating resources to a request. It takes two inputs, 
i.e., the request 𝑖𝑖  and the rack-scale DDC graph 𝐺𝐺 . The 
algorithm first sorts the resource types in 𝑹𝑹 in descending order 
of competitive ratio [18], defined as the ratio of the requested 
resource amount to the capacity per component for each 
resource type 𝑟𝑟 ∈ 𝑹𝑹 . This operation prioritizes intensive 
resources, e.g., for 𝑟𝑟 = CPU, a CPU-intensive request has the 
largest competitive ratio. If components have different 
capacities, the denominator of the competitive ratio is the 
average component capacity.   

ARRIVAL-ALLOC (𝑖𝑖,𝐺𝐺)                  //𝑖𝑖 - request, 𝐺𝐺 - rack-scale DDC 
1: SORT-DES�𝑹𝑹, 𝐷𝐷𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑟𝑟
�;     // sort 𝑹𝑹 in descending order of 𝐷𝐷𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑟𝑟
 

2: maxRackIndex = -1;  
3: 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁;                       // initialize the best solution as empty 
4: for (𝑘𝑘 ∈ Γ)  
5: for (𝑟𝑟 ∈ 𝑹𝑹) 
6: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 = ∅;                   // storing feasible blades with 𝑟𝑟 in 𝑘𝑘 
7: for (each blade 𝑛𝑛 with resource 𝑟𝑟 in rack 𝑘𝑘)   
8: if (FRAGMENTABLE-BIN-PAC(𝑛𝑛,𝐷𝐷𝑖𝑖𝑖𝑖) == TRUE)  
9: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 . add(𝑛𝑛);                    // record feasible blade 

10: if (𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 == ∅) 
11: go to line 4;       // no feasible solution, try the next rack  
12: SORT-DES(𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 ,𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅); // descending order of blade index 
13: 𝐿𝐿𝑘𝑘𝐵𝐵 = (𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 : 𝑟𝑟 ∈ 𝑹𝑹);          // storing these lists in one set 
14: 𝑝𝑝 = 1;                             // index the first resource (type) in 𝑹𝑹 
15: 𝜙𝜙𝑘𝑘 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁;                     // storing solution in rack 𝑘𝑘 
16: if (BLADE-SELEC-TRAFFIC-SCHED(𝑟𝑟,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘) == TRUE) 
17: if (RACK-INDEX(𝜙𝜙𝑘𝑘) > maxRackIndex) 
18: max = RACK-INDEX(𝜙𝜙𝑘𝑘);  
19: 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= 𝜙𝜙𝑘𝑘;                           //update the best solution 
20: if (𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)   
21: FINAL-ALLOC(𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏); 
22: return TRUE; 
23: return FALSE; 
Fig. 4. Pseudocode of the algorithm for allocating resources to a 
request.  

Subsequently, the algorithm scans the racks to find the best 
solution, i.e., the rack with the maximum rack index. The 
variable 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in line 3 is a global variable recording the best 
solution. This variable has a self-defined data structure that 
records the information on which components, blades, links, 
and switches are used for providing the resource to request 𝑖𝑖. 
The algorithm updates the current optimal solution when a new 
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solution with a higher rack index is found (lines 16 – 19). The 
algorithm iterates until all racks are checked, and finally, the 
one with the highest rack index is selected (line 21). 

In a candidate rack and for each resource type, the algorithm 
filters the blades with sufficient remaining capacity by calling 
the procedure named FRAGMENTABLE-BIN-PAC (line 8). This 
procedure addresses the problem of allocating resources from 
the components in the given blade and outputs TRUE when the 
blade is feasible to host the request. Afterward, the feasible 
blades are sorted in descending order of the blade index (line 
12) to prioritize those with high blade indices. Next, the 
algorithm calls the procedure BLADE-SELEC-TRAFFIC-SCHED to 
find the solution in this rack (line 16), i.e., select blades and 
schedule the traffic.  
2) Allocating Components Resources in a Given Blade   

This corresponds to the procedure FRAGMENTABLE-BIN-PAC 
in Fig. 4. This procedure is based on the algorithm proposed by 
LeCun et al. [45] to solve the bin-packing problem where the 
items are splittable. Here, the item to be packed is the resource 
demand 𝐷𝐷𝑖𝑖𝑖𝑖, and the bins are the components in blade 𝑛𝑛. This 
procedure operates as follows. Firstly, sort the components in 
the given blade in decreasing order of 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖  (a probability term 
defined in Table Ⅰ), prioritizing high reliable components. 
Secondly, try to find out a perfect component [45], i.e., the 
component  whose remaining capacity is precisely equal to 𝐷𝐷𝑖𝑖𝑖𝑖. 
If the perfect component exists (e.g., Request 3 in Fig. 5), assign 
it to the request and terminate the procedure. Otherwise, check 
the components one by one. When the remaining capacity of a 
candidate component is larger than the demand (e.g., Request 1 
in Fig. 5), allocate resources from this component. Otherwise, 
allocate all its remaining capacity to the request and use 
subsequent components to fulfill the remaining demand (e.g., 
Request 2 in Fig. 5). 

 
Fig. 5. Three requests on a blade with three memory components, 
where the three requests arrive in the order of Requests 1, 2, and 3.  

3) Blade Selection and Traffic Scheduling in a Given Rack 
BLADE-SELEC-TRAFFIC-SCHED(𝑝𝑝,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘) 
1: 𝑟𝑟 = 𝑹𝑹[𝑝𝑝]; 
2: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 = 𝐿𝐿𝑘𝑘𝐵𝐵 . get(𝑟𝑟);                 // the list of blades of resource 𝑟𝑟 
3: for (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 ) 
4: if (TRAFFIC-SCHED(𝜙𝜙𝑘𝑘 ,𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐) == FALSE)  
5: continue; 
6: 𝜙𝜙𝑘𝑘 . add(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐);             // record the feasible blade  
7: if (𝑝𝑝 == |𝑹𝑹|)               // this is the last resource (type) 
8: return TRUE; 
9: else 

10: 𝑝𝑝 + +;                   // index the resource (type) next to 𝑟𝑟 
11: res = BLADE-SELEC-TRAFFIC-SCHED(𝑝𝑝,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘) 
12: if (res == FALSE) 
13: 𝜙𝜙𝑘𝑘 . remove(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐); // failure in resources after 𝑟𝑟    
14: else 
15: return TRUE 
16: return FALSE 
Fig. 6. Pseudocode of blade selection and traffic scheduling in a 
rack. 

This part corresponds to the procedure BLADE-SELEC-
TRAFFIC-SCHED in Fig. 4, and Fig. 6 gives the pseudocode of 
the procedure. The general idea of this procedure is as follows. 

In the beginning, we select a blade for the first resource type 
(𝑟𝑟1𝑠𝑠𝑠𝑠 ). When selecting a blade for the second resource type 
(𝑟𝑟2𝑛𝑛𝑛𝑛 ), we also try to schedule the traffic (𝑟𝑟1𝑠𝑠𝑠𝑠 , 𝑟𝑟2𝑛𝑛𝑛𝑛). If the 
traffic scheduling fails, meaning that this blade is not suitable 
for 𝑟𝑟2𝑛𝑛𝑛𝑛 , we try the next blade. Similarly, when selecting a 
blade for the third resource type (𝑟𝑟3𝑟𝑟𝑟𝑟), we also need to schedule 
the traffic (𝑟𝑟1𝑠𝑠𝑠𝑠, 𝑟𝑟3𝑟𝑟𝑟𝑟) and (𝑟𝑟2𝑛𝑛𝑛𝑛 , 𝑟𝑟3𝑟𝑟𝑟𝑟). This process is repeated 
for each of the remaining resource types.  

The procedure takes the input 𝑝𝑝 = 1, … , |𝑹𝑹|,  to index the 
current resource type 𝑟𝑟, i.e., 𝑹𝑹[𝑝𝑝] is the 𝑝𝑝𝑡𝑡ℎ element in 𝑹𝑹. Note 
that input 𝑹𝑹 is an ordered set that has been sorted previously 
(see line 12 in Fig. 4). The procedure is executed recursively, 
starting from the first resource type, i.e., 𝑝𝑝 = 1. Each time a 
resource type temporarily determines its host, the procedure 
goes to the next resource type by incrementing 𝑝𝑝 (line 10). The 
termination condition is that the procedure finds a feasible blade 
for the last resource type (lines 7-8).  

For a current resource type 𝑟𝑟 indexed by 𝑝𝑝, the procedure 
scans blades in 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵  to look for the first blad that satisfies the 
traffic requirement (line 4). Here, another procedure named 
TRAFFIC-SCHED is called to schedule the traffic between the 
current resource type 𝑟𝑟 and the previous resource types 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑹𝑹�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1, … ,𝑝𝑝 − 1. If the traffic scheduling succeeds, 
the procedure temporarily records the current blade 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 as the 
host for 𝑟𝑟 (line 6), and go for the next resource type 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑹𝑹[𝑝𝑝 + 1] (line 10). Then, the procedure recursively calls the 
algorithm itself (line 11) to find a feasible blade for 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. If the 
next resource type cannot find a feasible blade satisfying the 
traffic requirement, it abandons blade 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 (line 13), then tries 
the next blade for resource type 𝑟𝑟.  

The traffic scheduling procedure TRAFFIC-SCHED searches 
for a path for each resource pair, which is operated as follows. 
Firstly, it excludes links with insufficient capacity. Then, it runs 
the shortest path algorithm with the weight of each link setting 
as 𝑤𝑤𝑚𝑚𝑚𝑚 = 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝 + 0.5 ⋅ 𝜏𝜏𝑚𝑚 + 0.5 ⋅ 𝜏𝜏𝑛𝑛 , where, 𝜏𝜏𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜏𝜏𝑚𝑚 , and 𝜏𝜏𝑛𝑛 

are the propagation delay of link (𝑚𝑚,𝑛𝑛) and the delays at the 
endpoints 𝑚𝑚 and 𝑛𝑛, respectively. If the path exists, it further 
checks whether the latency meets the requirement and 
schedules the traffic along this path if it does.   

 
Fig. 7. Example of the blade selection procedure. 

 Fig. 7 illustrates the procedure by an example, which 
includes three resource types, sorted in the order of CPU, 
memory, and GPU. It starts from the first resource type, i.e., 
CPU, and checks whether the first CPU blade (C1) is feasible. 
As it is the first resource type, there are no previous resource 
types, so no traffic needs to be scheduled, and C1 is directly 
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recorded as the candidate blade (recorded in 𝜙𝜙𝑘𝑘). Then, it goes 
for the second resource type, i.e., memory, and needs to 
schedule the traffic between memory and CPU. However, 
selecting M1 as the candidate leads to failure in traffic 
scheduling, so M1 is not feasible, and M2 is recorded as a 
temporary host for the memory. When it comes to the last 
resource type, GPU, the procedure can not find a feasible blade 
when scheduling the traffic between memory and GPU. It 
returns to the memory blade selection step and abandons M2 
but tries M3 and M4. Finally, C1, M4, and G2 are selected, and 
traffic scheduling is also complete. 
4) Algorithm’s Complexity 

We first analyze the algorithm's time complexity of the 
algorithm provided in Fig. 4. We consider it takes 𝑂𝑂(𝑛𝑛log𝑛𝑛) to 
sort a list with 𝑛𝑛 elements, as many sorting algorithms have this 
complexity. In addition, we assume the number of resource 
types and the number of components in each blade are constant. 
Accordingly, lines 4, 8, and 12 take the time of 𝑂𝑂(1) , 
𝑂𝑂(|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘|), and 𝑂𝑂(|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘| ⋅ log|𝑁𝑁𝑘𝑘𝑘𝑘|), respectively. Here 
|𝑁𝑁𝑘𝑘𝑘𝑘| is the number of blades of each resource type per rack. 
The most time-consuming execution is the blade selection 
procedure, which is to select one blade for each resource type 
from a rack. Since the total number of blade combinations is 
|𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹| , the complexity of the blade selection procedure is 
𝑂𝑂�|𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. Thus, line 16 takes the time of 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. In 
total, the time complexity of the algorithm is 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘| ⋅
log|𝑁𝑁𝑘𝑘𝑘𝑘| + |Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. It is equal to 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|� since 
|𝑹𝑹| > 1. Since |𝑹𝑹| has a typical value of 3 to 4, the complexity 
is very high. Fortunately, the DDC architectures are basically 
rack-scale, where the base term |𝑁𝑁𝑘𝑘𝑘𝑘|  does not have a high 
value, at most a dozen.  

The space complexity of this algorithm is 𝑂𝑂(|𝑹𝑹|). The extra 
space is needed mainly to recursively call the BLADE-SELEC-
TRAFFIC-SCHED procedure.  

D. Batch Allocation for the Static Scenario 
For this scenario, we introduce the SHUFFLE-AND-UPDATE 

procedure as follows.  Given a set of requests 𝑰𝑰 , we first 
randomize the order of requests in 𝑰𝑰 , then apply the algorithm 
shown in Fig. 4 to each request according to the order and 
calculate the objective function, recorded as 𝐹𝐹𝑚𝑚. Nextly, we set 
an integer number which we refer to as an epoch size. We then 
repeat the randomize-and-try to find a better solution, i.e., a 
solution with the objective 𝐹𝐹1, and 𝐹𝐹1 > 𝐹𝐹𝑚𝑚. If a better solution 
can be found after repeating the random-and-try 𝐾𝐾 times, such 
that 𝐾𝐾 < epoch size, we update the optimal solution with 𝐹𝐹1. 
We call this process one epoch of the SHUFFLE-AND-UPDATE 
optimization process. The above optimization process is further 
repeated until no better solution is found in any epoch.  

E. Migration for the Dynamic Scenario  
In order to reduce the number of accepted requests failing to 

complete their service, we propose a migration mechanism to 
restore the interrupted requests. Fig. 8 gives the pseudocode of 
this procedure. The procedure first excludes the failed element 
from the DDC graph, then, for each interrupted request, calls 
the procedure ARRIVAL-ALLOC (See Fig. 4) based on the 
residual graph and re-allocates resources to this request if it 

succeeds. It should be noted that the failed element can be 
repaired and can serve other requests after being repaired.  

MIGRATION-BASED-RESTORATION(𝑒𝑒,𝐺𝐺)         // 𝑒𝑒 – the failed element 
1: 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = HOSTED-REQUESTS(𝑒𝑒);      // get the set of interrupted requests 
2: 𝐺𝐺. remove(𝑒𝑒);                               // remove failed element from 𝐺𝐺 
3: failNum = 0;                       // number of failing restored requests 
4: for (𝑖𝑖 ∈ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊) 
5: success =  ARRIVAL-ALLOC(𝑖𝑖,𝐺𝐺)  
6: if (success == FALSE)                      // fail migration 
7: failNum ++;                               // fail to complete service 
8: return failNum; 
Fig. 8. Pseudocode of the migration-based restoration when 𝑒𝑒 
fails. 

F. Discussion on Implementation 
The implementation of our proposed resource management 

framework needs the support of operating systems (OSes) for 
DDCs, e.g., LegoOS [12] and GiantVM [46] LegoOS is based 
on a new OS model, named splitkernel, where each resource 
component maintains an independent manager (or monitor). 
LegoOS provides the capability that allows an application to 
use multiple components of the same resource type, which can 
be combined with our proposed components allocation 
procedure. In addition, LegoOS provides fault-tolerance 
mechanisms, which can be combined with the migration-based 
restoration algorithm to resume interrupted services. GiantVM 
is a hypervisor system that can create a VM spanning multiple 
components and machines (i.e., blades), which may also be 
used to implement our proposed framework.  

VII. EVALUATION 
This section presents the numerical results for validating the 

performance of the DDC against the SDC. Both the static 
scenario and dynamic scenario are considered.  

A. Static Scenario 
1) Parameter settings 

The MILP can only find optimal solutions for small-size 
problems due to its high computational complexity. We 
consider only one pod consisting of one spine switch and 3 
racks with one leaf switch, 3 blades per rack, and 3 components 
per blade. Three types of resources are considered: 𝑹𝑹 =
(𝐶𝐶𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), with a per component capacity 
of 100 units. The age of each hardware element is U(102,104) 
time units, where U(a, b) is a random value uniformly 
distributed within the interval (a, b). Henceforth, we do not add 
units to simulation time measures, which are understood to be 
time units. All the requests are assumed to be given at time 𝑡𝑡 =
0, and the service time of each request is U(1,100). Four kinds 
of requests are considered: CPU-intensive, memory-intensive, 
accelerator-intensive, and random. If request 𝑖𝑖  is of  𝑟𝑟1 -
intensive (𝑟𝑟1 ∈ 𝑹𝑹), i.e., the first three kinds of requests, its 
demand is set as 

𝐷𝐷𝑖𝑖𝑖𝑖 = �𝑈𝑈
(40,80), 𝑟𝑟 = 𝑟𝑟1

𝑈𝑈(10,40), 𝑟𝑟 ≠ 𝑟𝑟1
. 

For a random request, its demand is 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑈𝑈(10,80) ∀𝑟𝑟 ∈ 𝑹𝑹. 
We consider four test cases considering the settings for 

reliability and network latency/bandwidth, namely, S1 – S4. In 
S1, all hardware elements except the resource components are 
resilient, and we assume that requests have no latency and 
bandwidth requirements. Each component’s reliability follows 
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the Weibull distribution with scale parameter 𝜂𝜂𝑒𝑒 = 106  and 
shape parameter 𝛽𝛽𝑒𝑒 = 𝑈𝑈(1,2) . This setting ensures that the 
hardware mean TBF (MTBF) is far longer than the request 
service time by four to five orders of magnitude. S2 is extended 
from S1, where blades become not resilient, whose reliability 
also follows the above Weibull distribution. Similarly, S3 is 
extended from S2, where each switch's reliability also follows 
the above Weibull distribution. Lastly, S4 further considers the 
latency constraints based on S3. With reference to the literature 
(e.g., [18], [40]), we set the latency-related parameters as 
follows. Hardware delays are set as: 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 = U(50,60) ns, 𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠= 
U(100,150) ns, 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑 × 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝, where 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 = 5 ns/m and 𝑑𝑑 = 
2m for each intra-rack link while U(10, 30) m for each inter-
rack link. The latency requirement for the traffic between CPU 
and memory is U(500, 900) ns; U(1, 100) µs otherwise.   

We use the commercial solver AMPL/Gurobi to solve the 
MILP formulations to provide solutions with respect to the 
objective function (3). The simulation environment for the 
heuristic algorithms is built through Java.  
2) Results 

 
Fig. 9. Pareto fronts in terms of minimum request reliability vs. 
acceptance ratio for four different cases (S1 – S4) (obtained by 
MILP). 

We first evaluate the performance of different disaggregation 
scales using the MILP. Fig. 9 presents the results of the 
minimum requests reliability vs. the acceptance ratio in S1 – S4. 
Here, the number of requests is 30. In the figure, “BS”, “RS”, 
and “PS” correspond to the blade-scale, rack-scale, and pod-
scale DDCs, respectively.  We use dashed lines to connect the 
results to approximate the Pareto fronts [47]. Each approximate 
Pareto front provides a set of optimal solutions in terms of 
acceptance ratio and minimum request reliability based on 
given preferences. It is obtained by solving the MILP with 
varied weight factors [47]. The ordinate intervals in S1 – S4 are 
the same in Fig. 9 so that the differences between the Pareto 
fronts in S1-S4 can be clearly observed. We observe that PS 
performs the best in S1 and S2 while performing significantly 
worse in S3 and S4. This can be explained by the fact that PS 
has a larger disaggregation scale than RS and BS, so it can 
achieve higher minimum request reliability and acceptance 
ratio. However, a request in PS uses more network elements 
than in BS and RS. Therefore, when the switches are not 

resilient and latency requirements are considered, the 
performance of PS sharply decreases.  

We also observe that RS performs better than BS in S1, while 
in S2 – S4, the performance of RS drops faster than BS. The 
reason is as follows. RS has higher flexibility and efficiency 
than BS, so RS outperforms BS in S1. However, service 
reliability in RS is significantly influenced by the network, so 
the performance of RS decreases sharply when blades and 
switches are not resilient (S2 – S3). In S4, the approximate 
Pareto fronts of RS and BS cross at (0.999955, 0.73). 
Accordingly, if setting a reliability threshold higher than 
0.999955 (corresponding to the left side of the intersection), the 
acceptance ratio of RS is lower than BS while higher than BS 
otherwise. This is because requests in RS require more switches 
and blades than in BS, so their achievable reliability in RS may 
not be as high as in BS, and more requests in RS will be rejected 
if the reliability threshold is very high. On the contrary, when 
relaxing the threshold, the benefits of resource disaggregation 
manifest, where resource stranding in BS is significantly 
avoided in RS so that RS can achieve a higher acceptance ratio 
than BS. Overall, the performance difference of RS and BS on 
both sides of the intersection again demonstrates that resource 
disaggregation can improve resource efficiency, while the 
benefit will be offset if the network is not resilient. 

 
Fig. 10. Minimum request reliability vs. acceptance ratio obtained by 
Radar in S1 for BS and S3 for RS.  

Fig. 10 provides the results of Radar in S1 for BS and S3 for 
RS, and for comparison, we also show the Pareto fronts and 
other 10000 random solutions. The results of Radar are 
obtained with varied weighting coefficients in the blade and 
rack indices (See Section IV.B). We can observe that Radar 
performs close to the approximate Pareto fronts and 
outperforms all random solutions, demonstrating that Radar has 
high efficiency. In addition, Radar consistently maintains a high 
acceptance ratio. For example, in RS-S3, the acceptance ratio 
obtained by Radar is consistently larger than 0.8, also 
demonstrating its high efficiency. Note that in Fig. 10, we aim 
to show all the results obtained by Radar and Random, not only 
the optimal solutions. There are some solutions with the same 
acceptance ratio but different minimum request reliability 
obtained by Radar and Random, e.g., the two data points that 
have been circled in RS-S3. Clearly, having such two solutions, 
we will not choose the inferior one (the lower of the two). We 
only aim to illustrate such solutions and explain how they are 
obtained. This is explained through the 12th line of the algorithm 
in Fig. 4, which is the operation that sorts the blades in 
descending order of the blade index. Increasing the weighting 
coefficients of the blade index prioritizes highly reliable blades. 
However, the acceptance ratio may remain unchanged since the 
capacity does not change.     
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The above results demonstrate that an imperfect network will 
offset the benefits of hardware disaggregation. Backup is an 
intuitive way to improve reliability performance, and Fig. 11 
gives the results for the case extended from S3, where every 
blade and switch has a backup. We observe from Fig. 11 that 
the results are very close to those in S1. This is reasonable as 
backup dramatically increases the reliability of switches and 
blades, making the performance very close to when the 
switches and blades are resilient. However, backup is not an 
efficient approach, and it leads to increased costs. Next, the 
results in the dynamic scenario show that improved 
performance is achievable without backup.  

  
Fig. 11. Pareto fronts for a new case extended from S3 by applying 
backup to every hardware element. 

B. Dynamic Scenario 
1) Parameter settings  

We consider one pod consisting of 10 spine switches and 9 
racks with 2 leaf switches, 48 blades per rack, and 3 
components per blade. Other settings, like the hardware 
capacity and request resource demand, are the same as in the 
static scenario. Here we do not consider the latency and 
bandwidth restrictions. We simulate a dynamic system, 
including the events of request arrival, request departure, 
hardware (components, blades, and switches) failure, and 
hardware repair. The request arrival follows a Poisson process 
with an arrival rate of 1.5, and service time follows an 
exponential distribution with a mean of 1000. The TBF of each 
element follows the Weibull distribution with parameters the 
same as in the static scenario. The time to repair follows another 
exponential distribution with a mean of 1. With this setting, 
hardware availability ranges from 99.999% to 99.9999%, 
which is consistent with hardware availability in real-world 
DCs [48]. In the simulation, we assume that the interrupted 
requests are immediately restored after the scheduler decides 
where to migrate the service. The simulation time is 106. 
2) Results  

Fig. 12 gives the simulation results with varied weight 
coefficients. The first two subfigures give the results when 
migration is not applied. We observe that the blocking 
probability of PS and RS is significantly lower than that of BS. 
This is because of the significant efficiency benefit of hardware 
disaggregation. However, the second subfigure shows that, in 
terms of the number of accepted requests failing to complete 
service, PS has the highest value, second by RS and last by BS. 
The results further demonstrate that a vulnerable network may 
offset the benefits of disaggregation.  The last two subfigures 
give the results when the migration is applied. We observe that 
PS and RS outperform BS in both blocking probability and the 
number of accepted requests failing to complete service. The 
results demonstrate that our proposed Radar framework can 

overcome the challenges created when the network is not 
resilient. Notice that in the static scenario, we have 
demonstrated that the performance of PS is significantly 
affected by latency. Therefore, only the RS can overcome the 
challenges caused by an imperfect network when considering 
latency. 

 
Fig. 12. Blocking probability and the number of requests failing to 
complete service with varying coefficients. 

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS 
We have studied service reliability in DDCs, considering 

network impact and different disaggregation scales. A MILP 
formulation and the Radar framework have been proposed for 
the resource allocation in DDCs, considering both reliability 
and utilization aspects. We have demonstrated that an imperfect 
network significantly offsets the improvement of resource 
efficiency and service reliability brought by hardware 
disaggregation. The results also demonstrate that hardware 
backup helps overcome such offset, which, however, may lead 
to increased cost. The proposed Radar framework employs a 
migration-based restoration, which can also overcome the 
offset without backup. Numerical results have shown that the 
rack-scale architecture is currently the best option, as a larger 
disaggregation scale faces latency challenges, which may lead 
to severe performance deterioration.   

DDC is a relatively new research area that gives rise to many 
research opportunities. In the following, we consider the 
limitations of this work that lead to potential extensions and 
future research directions. Firstly, we have assumed that the 
demand required by a request is always additive from multiple 
resource components. This may not be the case in certain 
applications, e.g., a task/process should be executed on a single 
CPU component [12]. Secondly, the service request we have 
considered is like a VM or a task, which requires multiple 
different resources to form one VM or complete one task. 
However, there are some applications, such as parallel 
computing, where multiple VMs are required to jointly 
complete multiple tasks for a single job. Such applications have 
not been considered in this paper. Thirdly, as discussed, we 
have assumed no waiting room, and blocked requests are 
rejected without a re-allocation attempt. Finally, in response to 



11                                                                                                             C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 

“the trends of AI for cloud, fog, edge, serverless, and quantum 
computing” to improve automation in DCs [49], we can study 
how to integrate AI tools like reinforcement learning with 
resource allocation in DDCs.  
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