
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Abstract—Hardware disaggregation decouples
resources (e.g., processors and memory) from monolithic
servers, potentially improving service reliability. However,
from another perspective, directly exposing resource
modules to a shared network may adversely affect service
reliability. In this paper, we study a reliable resource
allocation problem in disaggregated DCs (DDCs),
considering network impact and different disaggregation
scales. We provide a mixed-integer linear programming
formulation and a resource allocation framework named
Radar for this problem. Numerical results demonstrate that
the benefits of hardware disaggregation may be adversely
affected by an imperfect network. It also shows that both
the hardware backup and a proposed migration-based
restoration can be applied to overcome this potential
adverse effect.

Index Terms—Composable/disaggregated infrastructure,

hardware disaggregation, data center, reliability, network

I. INTRODUCTION
ITH the rapid growth of internet technology like big data
and cloud/fog/edge computing, vast amounts of data are

poured into the data center (DC), imposing a significant burden
on data centers [1], [2]. Considerable effort has been made to
ease this burden through various aspects, including resource
allocation [3-5], energy efficiency [6-9], and thermal issues
[10], [11], which are for server-based architecture. This
architecture has caused significant resource stranding,
hindering efficiency improvement [12].

Composable/disaggregated infrastructure (CDI), which
“uses an API to create physical systems from shared pools of
resources” [13], is an emerging computing infrastructure for
future data centers (DCs) to break through the boundary limits
of traditional servers [14], [15]. In its current early stage, CDI
has grown fast due to its high benefits, which is expected to
grow to $13.5 billion by 2027 with an annual growth rate of 21
percent [16]. This paper refers to a CDI-based DC as a
disaggregated DC (DDC), which represents a DC employing
hardware disaggregation. Hardware disaggregation decouples
resources (e.g., processors and memory) from integrated
servers and reassembles them into resource pools
interconnected through a fast network, converting a server-
based DC (SDC) into a DDC. New techniques like non-volatile
memory express [13], compute express link [13], computational

This work was supported by a grant from the City University of Hong
Kong, Hong Kong Special Administrative Region (CityU 9229020).
(Corresponding author: C. Guo.)

storage [17], and the advancement in optical interconnection
[18-20] provide diversified support for communication
solutions to hardware disaggregation. DDCs achieve resource
ef1ficiency and flexibility by reducing resource stranding in the
SDC [12], [21-25]. Hardware upgrades and resource expansion
become cost-efficient since they can be operated at the
component level instead of the server level [22].

In this paper, we focus on service reliability in DDCs.
Providing high service reliability is critical for DCs to provide
continuous operations, ensuring high quality of services, while
unreliable service may lead to severe economic loss [26].
Compared to SDCs, resource availability and reliability in
DDCs are potentially improved for two main reasons. Firstly,
improved flexibility expands the optimization regions [27], and
secondly, resource decoupling leads to a less harmful failure
pattern where failures among different resources may not
implicate each other as in SDCs [28]. However, disaggregation
may also adversely affect service reliability as resource
modules are now directly exposed to a shared network. The
failure of the shared network may lead to the unavailability of
many resource modules.

In addition, due to the strict latency and bandwidth
requirements of inter-resource communications, e.g., CPU-
memory communication, the scale of disaggregation is limited
[29]. Most efforts on resource disaggregation have considered
rack-scale, where a resource, e.g., CPU, can use a different
resource, e.g., memory, from the same rack but not from a
different rack. Although several publications considered
pod/DC-scale disaggregation [29], [30], their practical
application is limited to only a few cases.

In this paper, we study the reliability performances in DDCs
considering network impact and different disaggregation scales.
We summarize the key novelty and main contributions of this
paper as follows.
 We study the problem of reliable resource allocation for

DDCs considering network effects and different
disaggregation scales. In addressing this problem, we aim
to achieve both high resource efficiency and high
reliability. We consider both static and dynamic scenarios.
For the static scenario, the resources are allocated to a
batch of known requests. We aim to maximize the
reliability of each accepted request and the acceptance
ratio, defined as the ratio of the number of accepted
requests to the total number of requests. For the dynamic
scenario, where requests arrive and depart randomly,

The authors are with the Department of Electrical Engineering,
City University of Hong Kong, Hong Kong SAR. Email: chaoguo6-
c@my.cityu.edu.hk; moshezu@gmail.com; tianjwang6-
c@my.cityu.edu.hk;

Chao Guo, Moshe Zukerman, Life Fellow, IEEE, and Tianjiao Wang

Radar: Reliable Resource Scheduling for
Composable/Disaggregated Data Centers

W

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 2

resources are allocated to each request upon its arrival and
are released at its departure. In addition, hardware failures
occur over time, and each failure is fixed after a certain
time to repair. Hardware failures interrupt their hosted
requests, resulting in the requests failing to complete their
service. The objectives in the dynamic scenario are to
minimize the blocking probability (one minus the
acceptance ratio) and the number of accepted requests
failing to complete their service.

 We provide mixed-integer linear programming (MILP)
formulations to solve the multi-objective problem in the
static scenario by converting it into a single-objective
problem by the weighted sum approach. We first provide
a MILP formulation for a DC-scale DDC and then extend
it to MILP formulations for an SDC and a rack/pod-scale
DDC. We provide approximate Pareto fronts by solving
the MILP with varied weights in the objective function.

 We propose Radar, a framework for reliable resource
allocation in disaggregated data centers, which considers
both static and dynamic scenarios. We provide a heuristic
algorithm for the static scenario that can solve the problem
at a significantly lower complexity than the MILP. For the
dynamic scenario, two heuristic algorithms are provided,
with one applied for scheduling the arrival requests, and
the other applied when a failure occurs to restore the
interrupted requests by migrating them elsewhere.

 We provide extensive numerical results for the
performance analyses. These numerical results are
obtained by solving the MILP formulations and simulation
studies. Numerical results demonstrate that the
realistically imperfect network may significantly offset the
reliability improvement brought by hardware
disaggregation under the idealistic resilient assumption.
Then, we also demonstrate that backup or a proposed
migration-based restoration can overcome this weakness
of disaggregation.

Next, we present related work in Section II and introduce the
disaggregated architectures in Section III. Then, we describe
the reliable resource allocation problem in DDCs in Section IV.
Sections IV and V provide the MILP formulation and Radar
framework, respectively. The performance evaluation is
presented in Section VI, and Section VII concludes the paper.

II. RELATED WORK
Some publications are dedicated to resource allocation for

DDCs, though they do not consider reliability. Papaioannou et
al. [25] proposed a heuristic algorithm for virtual machine (VM)
placement for a rack-scale DDC to demonstrate that resource
utilization in DCs can be significantly improved with resource
disaggregation. They considered two specific resources, i.e.,
CPU and RAM. Similarly, Ali et al. [30] proposed a DC-scale
VM placement method for a DC-scale DDC to minimize energy
consumption. This paper considers CPU, memory, and IO
resources. Zervas et al. [18] proposed a dedicated architecture
for memory disaggregation, and they also provided VM
placement algorithms based on different strategies: first-fit,
best-fit, network-unaware locality-based, and network-aware
locality-based. Ajibola et al. [31] provided MILP formulation
for an energy-efficient workload scheduling, and they

considered both rack-scale and pod-scale DDC architectures.
They also considered specific resource types in their
formulation. Pagès et al. [20] studied the virtual data center
embedding problem for a rack-scale DDC to improve resource
utilization. There are also several other works related to
resource allocation or request scheduling for DDCs, e.g., [24],
[32], and [33]. However, none of these studies considered
reliability, and they considered a single objective mainly
focusing on utilization. Moreover, their methods are limited to
specific resources, e.g., CPU and memory.

Several publications are dedicated to reliability issues in
DDCs, though not to resource allocation. Shan et al. [12]
incorporated the RAID-style memory replication as the fault
tolerance mechanism in their proposed operating system (OS)
for the DDC. Carbonari et al. [28] analyzed four failure-sharing
models in the DDC and claimed that applications should be
allowed to choose their preferred recovery models. Based on
two attributes specific to the disaggregated architecture, namely,
the ability to reassign memory and failure independence, Angel
et al. [34] proposed several primitive operations for a potential
OS dedicated to DDCs.

In the literature, we found only two papers that consider
reliability or availability in resource allocation for DDCs, and
the first one is the work done by Ferreira et al. [35]. This work
aims to maximize the availability of the application and
minimize the total cost when allocating resources. However,
this work is different from our work. They considered that a
user requires a specific number of resource components of each
type, e.g., the requirement of three CPU chips and two memory
modules. By comparison, we allow one component to be used
by multiple requests, and each request comes with a given
resource demand, e.g., 10 GB of memory demand. The second
work was done by Guo et al. [27], who considered the resource
allocation form similar to ours. They provided a resource
allocation method for request scheduling to maximize the
acceptance ratio subject to meeting requests’ requirements.
However, both [27] and [35] assumed a resilient network and a
DC-scale disaggregation, which may be unrealistic, and a DC-
scale DDC may not be able to support some applications
because of latency and bandwidth requirements of inter-
resource communications. Different from them, we consider
different disaggregation scales and study the impact of a
network that is not resilient. We also consider the latency and
bandwidth requirement of inter-resource communications,
which they did not consider.

III. OVERVIEW OF SDC VS. DDC ARCHITECTURES
In this section, we introduce the DDC architectures we

consider for the reliable resource allocation problem (which is
defined in the next section). We also discuss the reliability
challenges of these DDC architectures.

Fig. 1 (a) shows an SDC architecture, where computing and
storage resources are packaged in server blades, each
containing different resources, and the onboard circuit provides
communications among different resources. These servers are
interconnected through a DC network (DCN). Traditional
DCNs are interconnected through wired links and are organized
in a tree-like topology, e.g., leaf-spine [36] topology, like the
one shown in Fig. 1(a). Recently, wireless communications

3 C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers

techniques have also been introduced to reduce the
reconfiguration complexity [37].

Fig. 1. Server-based and rack-scale disaggregated DC architectures.

Fig. 1(b) shows a rack-scale DDC architecture, where each
blade contains homogeneous resources while a rack also
contains heterogeneous resources [31], [32], [38]. A resource,
e.g., CPU, can use a different resource, e.g., memory, from the
same rack but not from a different rack. In DDCs,
communications among different resources are completed
through a network. For a DDC with a larger disaggregation
scale, e.g., pod- or DC-scale, a rack contains homogeneous
resources, and the usage among different types of resources is
no longer restricted within a rack but can be across racks and
restricted within a pod or DC [31].

Hardware disaggregation has reliability benefits but also
challenges. In SDCs, resources in a server blade are
interconnected through the motherboard, whose failure affects
the blade itself but not other blades. While in a DDC, the failure
of the shared network directly affects all the connected
components. Also, resource pooling may become a challenge.
Fig. 2 shows how the four workloads, W1-W4, are placed in
two server blades (Fig. 2(a)) or two disaggregated resource
blades (Fig. 2(b)). Each workload's CPU and memory demands
can be satisfied by one server blade or two disaggregated
resource blades. Therefore, each blade in the SDC hosts two
workloads but four workloads in the DDC. When one blade
fails, all workloads are interrupted in the DDC, but only two are
interrupted in the SDC.

Fig. 2. Placement of four workloads in SDC vs. DDC.

To address the problem caused by resource pooling, we may
disaggregate the resources thoroughly and make each hardware
component a distinct node. However, this method shifts the
reliability issue to the network and increases the number of
nodes and network scale [39]. A more practical approach is
needed through either hardware organization or software
scheduling. Next, we provide detailed analyses and possible
solutions through a novel resource allocation approach.

IV. PROBLEM STATEMENT AND REQUEST RELIABILITY

A. Problem Description
We define the problem of resource allocation in DDCs as

follows. We are given a DDC as an undirected graph consisting
of nodes and links, and the nodes include switches and blades
(See Fig. 1). We assume that DDCs employ optical circuit
switches because they provide ultra-low and deterministic
latency and guaranteed network bandwidth [18], [39], [40].
Each switch is characterized by a switching delay and reliability.
Each blade contains a set of components, e.g., CPU components
(See Fig. 1), and each component is characterized by its
resource type, available capacity, and reliability. Like
Carbonari et al. [28], we assume that different components in a
blade fail independently. Each blade is also associated with
delay and reliability, which are the delay between receiving and
transmitting data and the reliability of the peripheral elements,
such as interfaces and control circuits. Each link is
characterized by available bandwidth, propagation delay, and
reliability.

We use the term request to represent a possible form of
resource allocation requests, including requests for jobs/tasks
[4], virtual machines [41], [42], and virtual containers [43]. We
consider the static and dynamic scenarios of problems
regarding whether the requests arrive at once or randomly. Each
request arrives with a given service time and a resource demand
for each resource type. The request’s inter-resource traffic
demand and latency requirements are also given. As in [25],
[31], [32], we assume that a request can only use one blade for
one resource, and the disaggregation scale determines whether
it can obtain different resources from different blades. Consider
the rack-scale DDC as an example, where a request can only
use memory from one blade but obtains different resources
from multiple blades within one rack. Existing work such as
[25], [31], [32] regards a blade in a DDC as a single node but
does not consider components in the blade. We also consider
how the resources from these components are allocated because
we need to consider the failure independence among different
components. Nevertheless, a request can obtain one resource
from multiple components in a blade in a DDC.

The problem objectives and methodologies are different in
the static and dynamic scenarios.
1) Static Scenario

In this scenario, all requests arrive at once. Our aim in this
scenario is to maximize the acceptance ratio and each request’s
reliability. We provide a MILP formulation and a scalable
heuristic algorithm to address the problem. The MILP
formulation translates the problem into precise mathematical
language, and it can be solved using commercial solvers to
provide optimal solutions. The optimal solutions can be further
used to validate the efficiency of the proposed algorithm.
2) Dynamic Scenario

In this scenario, requests arrive and leave randomly and
sequentially. A request is accepted if the available resources are
sufficient upon arrival and blocked otherwise. We assume no
waiting room, and a blocked request is rejected and leaves the
system without re-attempting. One of our objectives is to
minimize the blocking probability (or maximize the acceptance
ratio), defined as the ratio of the number of blocked requests to
the total number of arrivals during a specified period. An

(a) Server-based DC architecture (b) Rack-scale disaggregated DC architecture

Server
blade CPU RAM GPU SSDCPU RAM GPU SSD

rack

...

... ...
CPU CPU CPU CPUCPU CPU CPU CPU

rack

16 U

1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U

1 U
1 U

1 U

16 U

1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U

1 U
1 U

1 U

16 U

1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U
1 U

1 U
1 U

1 U

CPU Blade

CPU Blade

RAM Blade

RAM Blade GPU Blade SSD Blade

GPU Blade SSD Blade

W2
W1

W2
W1 W3

W4
W3
W4

CPU Memory Blade

W2
W1 W3

W4
W3
W4W2

W1

(a) Server blades
(SDC)

(b) Resource blades
(DDC)

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 4

accepted request may be interrupted by a hardware failure,
failing to complete its service. Our other objective is to
minimize the number of accepted requests failing to complete
service. The blocking probability does not include the accepted
requests interrupted by hardware failures. We provide a Radar
framework to achieve the two objectives.

B. The Reliability of a Service Request
Assume that a request (denoted 𝑖𝑖) arrives, and denote the

arrival and departure times of request 𝑖𝑖 as 𝑡𝑡𝑖𝑖𝑎𝑎 and 𝑡𝑡𝑖𝑖𝑑𝑑 ,
respectively. Also, assume that an element (denoted 𝑒𝑒) was last
repaired at the time 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿. Let the random variable Δ𝑡𝑡 be the time
between failures (TBF) of element 𝑒𝑒. As commonly used, TBF
is the time from the moment the element is repaired until it fails
again. The probability that 𝑒𝑒 does not fail during the service
time of request 𝑖𝑖 (denoted 𝑃𝑃𝑒𝑒𝑖𝑖) can be obtained by:

𝑃𝑃𝑒𝑒𝑖𝑖 = 𝑃𝑃�Δ𝑡𝑡 > 𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿|Δ𝑡𝑡 > 𝑡𝑡𝑖𝑖𝑎𝑎 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿�

=
ℛ𝑒𝑒�𝑡𝑡𝑖𝑖𝑑𝑑 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿�
ℛ𝑒𝑒(𝑡𝑡𝑖𝑖𝑎𝑎 − 𝑡𝑡𝑒𝑒𝐿𝐿𝐿𝐿) , (1)

where ℛ𝑒𝑒(𝑡𝑡) is the reliability of element 𝑒𝑒, i.e., the probability
that the TBF of 𝑒𝑒 is not shorter than 𝑡𝑡.

We consider the reliability of request 𝑖𝑖, denoted by ℛ𝑖𝑖, as the
probability that request 𝑖𝑖 encounters no hardware failure during
its service time. This is equal to the probability that no element
that serves it fails during its service time. Assuming
independence of failures among different elements, we obtain,

ℛ𝑖𝑖 = � 𝑃𝑃𝑒𝑒𝑖𝑖
𝑒𝑒∈𝓔𝓔𝒊𝒊

, (2)

where 𝓔𝓔𝒊𝒊 denotes the set of elements used by request 𝑖𝑖.

V. THE MILP FORMULATION

A. MILP Formulation for a DC-Scale DDC
We first introduce the MILP for a DDC of DC-scale and later

extend it to other scales. Table Ⅰ provides our used notations.
TABLE Ⅰ

LIST OF NOTATIONS
Notation Explanation
𝑹𝑹 Set of resource types, e.g., CPU and memory
𝑵𝑵 Set of blades
𝑿𝑿 Set of switches
𝑵𝑵𝑵𝑵𝒏𝒏 Set of nodes neighboring to node 𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿
𝓒𝓒𝒏𝒏 Set of (resource) components in blade 𝑛𝑛
𝑰𝑰 Set of requests
𝜃𝜃𝑛𝑛𝑛𝑛𝑟𝑟 Binary parameter indicating whether component 𝑐𝑐 in blade 𝑛𝑛

is of resource type 𝑟𝑟 ∈ 𝑹𝑹
𝐴𝐴𝑛𝑛𝑛𝑛 Available capacity of component 𝑐𝑐 in blade 𝑛𝑛
𝐵𝐵𝑚𝑚𝑚𝑚 Available bandwidth of the link (𝑚𝑚,𝑛𝑛)
𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 Delay of blade 𝑛𝑛
𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠 Switching delay of switch 𝑛𝑛
𝜏𝜏𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝 Propagation delay of the link (𝑚𝑚,𝑛𝑛)
𝜉𝜉𝑚𝑚𝑚𝑚
𝑟𝑟1𝑟𝑟2 Binary parameter denoting whether the traffic of (𝑟𝑟1, 𝑟𝑟2),

𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 is allowed to traverse the link (𝑚𝑚,𝑛𝑛)
𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖 The probability that component 𝑐𝑐 in blade 𝑛𝑛 ∈ 𝑵𝑵 does not fail

during the service time of request 𝑖𝑖
𝑃𝑃𝑛𝑛𝑖𝑖 The probability that the blade or switch 𝑛𝑛 does not fail during

the service time of request 𝑖𝑖
𝑃𝑃𝑚𝑚𝑚𝑚
𝑖𝑖 The probability that link (𝑚𝑚,𝑛𝑛) does not fail during the service

time of request 𝑖𝑖
𝐷𝐷𝑖𝑖𝑖𝑖 Resource demand of request 𝑖𝑖 for resource 𝑟𝑟
𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 Traffic demand of resource pair (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖
Δ𝜏𝜏𝑟𝑟1𝑟𝑟2

𝑖𝑖 Latency requirement of traffic (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖
Note that the requirement is for the extra latency traversing the

network relative to the onboard latency in a server
∇ A large value
𝛼𝛼 A weight factor
Decision Variables
𝜋𝜋𝑖𝑖 (Binary) Equal one if request 𝑖𝑖 is accepted; zero otherwise
𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 (Binary) Equal one if request 𝑖𝑖 gets resource 𝑟𝑟 from the blade

𝑛𝑛; zero otherwise
𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 (Binary) Equal one if request 𝑖𝑖 gets both resources 𝑟𝑟1 and 𝑟𝑟2

from blade 𝑛𝑛; zero otherwise
𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 (Real) The amount of resource 𝑟𝑟 that request 𝑖𝑖 gets from

component 𝑐𝑐 in blade 𝑛𝑛
𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 (Binary) Equal one if the traffic of (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖

traverses link (𝑚𝑚,𝑛𝑛); zero otherwise
𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 (Binary) Equal one if the traffic of (𝑟𝑟1, 𝑟𝑟2) in request 𝑖𝑖

traverses switch 𝑛𝑛; zero otherwise
𝜌𝜌𝑛𝑛𝑖𝑖 (Binary) Equal one if request 𝑖𝑖 uses switch or blade node 𝑛𝑛

(𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿); zero otherwise
𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 (Binary) Equal one if request 𝑖𝑖 uses component 𝑐𝑐 in blade 𝑛𝑛

(𝑛𝑛 ∈ 𝑵𝑵); zero otherwise
𝜒𝜒𝑚𝑚𝑚𝑚
𝑖𝑖 (Binary) Equal one if request 𝑖𝑖 uses link (𝑚𝑚,𝑛𝑛) ; zero,

otherwise
Λ𝑖𝑖 (Real) The logarithm of the reliability of request 𝑖𝑖, i.e., Λ𝑖𝑖 =

log(ℛ𝑖𝑖), where ℛ𝑖𝑖 is the reliability of the request
Λ𝑚𝑚𝑚𝑚𝑚𝑚 (Real) The minimum value of all Λ𝑖𝑖 , 𝑖𝑖 ∈ 𝑰𝑰

Our objective is to maximize the weighted sum of the
minimum request reliability and acceptance ratio, formulated as:

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌: (1 − 𝛼𝛼) ∙
∑ 𝜋𝜋𝑖𝑖𝑖𝑖∈𝑰𝑰

|𝑰𝑰| + 𝛼𝛼 ∙ Λ𝑚𝑚𝑚𝑚𝑚𝑚. (3)

The decision variables in (3) are defined in Table I. Note that
some decision variables in the table are not included in the
objective function but are included in the constraints.

- Blade and component allocation constraints

𝜋𝜋𝑖𝑖 = � 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑵𝑵

 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (4)

∇ ∙ 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ≥ 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏 (5)
𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ≤ ∇ ⋅� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖

𝑐𝑐∈𝓒𝓒𝒏𝒏
 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵 (6)

� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛∈𝑵𝑵,𝑐𝑐∈𝓒𝓒𝒏𝒏

= 𝐷𝐷𝑖𝑖𝑖𝑖 ⋅ 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (7)

� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑰𝑰

≤ 𝐴𝐴𝑛𝑛𝑛𝑛 ⋅ 𝜃𝜃𝑛𝑛𝑛𝑛𝑟𝑟 ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏, 𝑟𝑟 ∈ 𝑹𝑹 (8)

- Traffic scheduling constraints

� 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2

𝑖𝑖

𝑖𝑖∈𝑰𝑰,𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2

≤ 𝐵𝐵𝑚𝑚𝑚𝑚

∀𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 (9)

� 𝛾𝛾𝑛𝑛𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2

𝑖𝑖

𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎
−� 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖

𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎
=

�𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ⋅ �𝛿𝛿𝑚𝑚

𝑖𝑖𝑟𝑟2 − 𝛿𝛿𝑚𝑚
𝑖𝑖𝑟𝑟1�,𝑚𝑚 ∈ 𝑵𝑵

0, 𝑚𝑚 ∈ 𝑿𝑿
 ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹: 𝑟𝑟1 ≠ 𝑟𝑟2 (10)

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝜉𝜉𝑚𝑚𝑚𝑚

𝑟𝑟1𝑟𝑟2 ∀𝑚𝑚 ∈ 𝑿𝑿 ∪ 𝑵𝑵,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 , 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (11)

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟2𝑟𝑟1 ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑬𝑬𝒎𝒎 (12)

𝛾𝛾𝑛𝑛𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 + 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 1∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑵𝑵𝒏𝒏
(13)

𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2 ∀𝑛𝑛 ∈ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (14)

𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2 ∀𝑛𝑛 ∈ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (15)

5 C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers

𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤� �𝛾𝛾𝑛𝑛𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2 + 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2�

𝑚𝑚∈𝑵𝑵𝑬𝑬𝒏𝒏
∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰,

𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (16)

𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ⋅

⎝

⎜
⎛

� 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝

𝑚𝑚∈𝑵𝑵∪𝑿𝑿,𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎

+ �𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∙ 𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠

𝑛𝑛∈𝑿𝑿

+� �𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟2 − 2 ⋅ 𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 � ⋅ 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏

𝑛𝑛∈𝑵𝑵 ⎠

⎟
⎞

≤ 𝜆𝜆𝑟𝑟1𝑟𝑟2
𝑖𝑖 ∙ Δ𝜏𝜏𝑟𝑟1𝑟𝑟2

𝑖𝑖 ,∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹: 𝑟𝑟1 ≠ 𝑟𝑟2 (17)

�
𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≤ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟2

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ≥ 𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟2 − 1

∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (18)

- Reliability-related constraints

Λ𝑖𝑖 = ∑ 𝜌𝜌𝑛𝑛𝑖𝑖 ∙ log𝑃𝑃𝑛𝑛𝑖𝑖𝑛𝑛∈𝑵𝑵∪𝑿𝑿 + ∑ 𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ∙ log𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛∈𝑵𝑵,𝑐𝑐∈𝓒𝓒𝒏𝒏 +
∑ 𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ∙ log𝑃𝑃𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚∈𝑵𝑵∪𝑿𝑿,𝑛𝑛∈𝑵𝑵𝑬𝑬𝒎𝒎 + (𝜋𝜋𝑖𝑖 − 1) ∙ ∇ ∀𝑖𝑖 ∈ 𝑰𝑰 (19)

Λ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝜋𝜋𝑖𝑖 ⋅ Λ𝑖𝑖 + (1 − 𝜋𝜋𝑖𝑖) ⋅ ∇ ∀𝑖𝑖 ∈ 𝑰𝑰 (20)

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ≥ 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∀𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (21)

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 ≤ � 𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2

𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2

 ∀𝑛𝑛 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑚𝑚 ∈ 𝑵𝑵𝑬𝑬𝒏𝒏, 𝑖𝑖 ∈ 𝑰𝑰 (22)

𝜌𝜌𝑛𝑛𝑖𝑖 ≥ 𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 ∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹 (23)

𝜌𝜌𝑛𝑛𝑖𝑖 ≤ ∑ 𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2

𝑟𝑟1,𝑟𝑟2∈𝑹𝑹:𝑟𝑟1≠𝑟𝑟2 ∀𝑛𝑛 ∈ 𝑿𝑿, 𝑖𝑖 ∈ 𝑰𝑰 (24)

𝜌𝜌𝑛𝑛𝑖𝑖 ≥ 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖 ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹 (25)

𝜌𝜌𝑛𝑛𝑖𝑖 ≤� 𝛿𝛿𝑛𝑛𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑹𝑹

 ∀𝑛𝑛 ∈ 𝑵𝑵, 𝑖𝑖 ∈ 𝑰𝑰 (26)

𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ⋅ ∇≥ 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏 (27)

𝜚𝜚𝑛𝑛𝑛𝑛𝑖𝑖 ≤ ∇ ⋅� 𝜇𝜇𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖
𝑟𝑟∈𝑹𝑹

∀𝑖𝑖 ∈ 𝑰𝑰,𝑛𝑛 ∈ 𝑵𝑵, 𝑐𝑐 ∈ 𝓒𝓒𝒏𝒏. (28)

Explanations:
Blade and component allocation constraints: Constraint (4)

ensures that every resource that serves a request is from only
one blade. Constraints (5) and (6) ensure that a blade is used by
request 𝑖𝑖 as long as a component hosted by this blade is used by
request 𝑖𝑖. Constraint (7) ensures that the amount of resources
required by an accepted request is equal to the amount of
resources allocated to it. Constraint (8) ensures no violation of
the component capacity restriction.

Traffic scheduling constraints: Constraint (9) ensures that the
link capacity restriction is not violated. Constraint (10) is the
flow-conservation constraint for routing the traffic between
each resource pair for each request. Constraint (11) ensures that
traffic cannot traverse an unpermitted link. This constraint is
used for the case when some links are for dedicated
communications as required by some architectures [25].
Constraint (12) ensures that the links are bidirectional.
Constraint (13) ensures that each traffic stream can only use one
direction but cannot use both directions of a link to avoid
wastage of communication resources (e.g., creating an
unnecessary cycle). Constraints (14) - (16) ensure that a switch
is used by a resource pair if any link connected to this switch

carries the traffic. Constraint (17) ensures no violation of the
traffic latency requirement, where the left-hand side is the
traffic latency which is the summation of propagation,
switching, and blade delays. The blade delay is ∑ 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 ⋅𝑛𝑛∈𝑵𝑵
�𝛿𝛿𝑛𝑛

𝑖𝑖𝑟𝑟1 + 𝛿𝛿𝑛𝑛
𝑖𝑖𝑟𝑟2 − 2 ⋅ 𝜁𝜁𝑛𝑛

𝑖𝑖𝑟𝑟1𝑟𝑟2 � . Notice that if the source and
destination share the same blade, the blade latency equals zero.
Constraint (18) ensures that when a blade allocates 𝑟𝑟1 and 𝑟𝑟2 to
a request, the two resources in the request share the blade.

Reliability-related constraints: Constraint (19) ensures that
the reliability of each accepted request is correctly calculated.
The last term on the right-hand side of (19) is to avoid the
reliability of a rejected request being 1, which may distort
output information. Constraint (20) ensures that the minimum
reliability (log form) is no larger than that of each accepted
request. Constraints (21) – (22) ensure that a link is used by a
request when it carries the traffic of the request. Constraints (23)
– (24) ensure that a switch node is used by a request when it
switches the requested traffic. Constraints (25) – (26) ensure
that a blade is used by a request when it provisions resources to
this request. Constraints (27) – (28) ensure that a component is
used by a request when it provisions resources to this request.

The complexity of both the number of dominant variables
(𝛾𝛾𝑚𝑚𝑚𝑚

𝑖𝑖𝑟𝑟1𝑟𝑟2) and the dominant number of constraints (11) is given
by 𝑂𝑂(|𝑰𝑰| ⋅ |𝑹𝑹|2 ∙ |𝑵𝑵∪ 𝑿𝑿|2).

B. MILP Formulation for a Blade-Scale DDC (SDC)
The following constraints are added to extend the DC-scale

DDC to a blade-scale DDC.
� 𝜌𝜌𝑛𝑛𝑖𝑖

𝑛𝑛∈𝑵𝑵
= 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰 (29)

𝜁𝜁𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 𝜌𝜌𝑛𝑛𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑵𝑵: 𝑟𝑟1 ≠ 𝑟𝑟2 (30)

𝛾𝛾𝑚𝑚𝑚𝑚
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 0 ∀ 𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑵𝑵𝒎𝒎 (31)

𝜒𝜒𝑚𝑚𝑚𝑚𝑖𝑖 = 0 ∀ 𝑖𝑖 ∈ 𝑰𝑰,𝑚𝑚 ∈ 𝑵𝑵 ∪ 𝑿𝑿,𝑛𝑛 ∈ 𝑵𝑵𝑵𝑵𝒎𝒎 (32)
𝜔𝜔𝑛𝑛
𝑖𝑖𝑟𝑟1𝑟𝑟2 = 0 ∀𝑖𝑖 ∈ 𝑰𝑰, 𝑟𝑟1, 𝑟𝑟2 ∈ 𝑹𝑹,𝑛𝑛 ∈ 𝑿𝑿: 𝑟𝑟1 ≠ 𝑟𝑟2. (33)

Constraint (29) ensures that each accepted request can only
use resources from a single blade, and constraint (30) ensures
that all the resources required by a request share one blade.
Constraint (31) ensures that, in an SDC, each traffic stream does
not use network links as it is done locally. Constraints (32) –
(33) ensure that an entire request does not use links or switches
in an SDC.

C. MILP Formulation for a Rack- or Pod-Scale DDC
Here, a request can only use resources from a single rack (or

pod, same as below) in a rack-scale DDC but cannot use
resources from different racks. Let Γ be the set of racks and 𝜍𝜍𝑛𝑛𝑛𝑛
be a binary parameter indicating whether the blade 𝑛𝑛 is in rack
𝑘𝑘. Define a binary variable 𝛽𝛽𝑘𝑘𝑖𝑖 that equals one if request 𝑖𝑖 uses
blade in rack 𝑘𝑘 ; otherwise, zero. The following constraints
should be added to extend the MILP for DC-scale DDC to the
rack-scale DDC.

� 𝛽𝛽𝑘𝑘𝑖𝑖
𝑘𝑘∈Γ

= 𝜋𝜋𝑖𝑖 ∀𝑖𝑖 ∈ 𝑰𝑰 (34)

𝛽𝛽𝑘𝑘𝑖𝑖 ≥ 𝜌𝜌𝑛𝑛𝑖𝑖 ⋅ 𝜍𝜍𝑛𝑛𝑛𝑛 ∀𝑖𝑖 ∈ 𝑰𝑰,𝑛𝑛 ∈ 𝑵𝑵,𝑘𝑘 ∈ Γ (35)
𝛽𝛽𝑘𝑘𝑖𝑖 ≤� 𝜌𝜌𝑛𝑛𝑖𝑖 ⋅ 𝜍𝜍𝑛𝑛𝑛𝑛

𝑛𝑛∈𝑵𝑵
 ∀𝑖𝑖 ∈ 𝑰𝑰,𝑘𝑘 ∈ Γ. (36)

Constraint (34) ensures that each accepted request can only
use resources from a single rack. Constraints (35) – (36) ensure

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 6

that a rack is used by request 𝑖𝑖 as long as request 𝑖𝑖 uses blades
in the rack.

VI. FRAMEWORK OVERVIEW AND HEURISTIC ALGORITHMS

A. Framework Description
As shown in Fig. 3, the Radar framework consists of a

scheduler, monitor, and physical resource modules. The
monitor module detects topology and load changes as well as
hardware failures and repairs and periodically reports the
information to the scheduler module to assist in decision-
making. The scheduler module executes appropriate algorithms
based on the requests and hardware information to make a
decision and finally sends the decision information to the
physical DDC for further operation.

Fig. 3. Radar structure.

As noted in Fig. 3, the framework addresses both static and
dynamic scenarios. As the dynamic scenario is characterized by
individual requests that arrive over time, the scheduler assumes
that it is a dynamic scenario if the first arrival batch comprises
a single request. If the first (and only) batch comprises multiple
arrivals, the scheduler assumes it is the static scenario.

B. Resource Allocation Policy
We design indices to quantitatively assess the performance

of our resource allocation policies, representing preferences
when selecting hardware. We consider different disaggregation
scales, where the SDC is regarded as a special case of DDC, i.e.,
a blade-scale DDC.
1) Blade-Scale DDC

The policy here is to select a feasible blade with the highest
value of a blade index (𝜂𝜂𝑛𝑛𝐵𝐵𝐵𝐵) defined as:

𝜂𝜂𝑛𝑛𝐵𝐵𝐵𝐵 = 𝜀𝜀 ⋅ 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 + (1 − 𝜀𝜀) ⋅ 𝜂𝜂𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 ∀𝑛𝑛 ∈ 𝑵𝑵, (37)

where 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 and 𝜂𝜂𝑛𝑛
𝑒𝑒𝑒𝑒𝑒𝑒 are the reliability and efficiency indices

associated with blade 𝑛𝑛 , respectively, and 𝜀𝜀 ∈ [0,1] is the
weighting coefficient. The reliability index 𝜂𝜂𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 is the
probability that blade 𝑛𝑛 does not fail during the service time of
the request, and the efficiency index 𝜂𝜂𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑈𝑈�𝑛𝑛 =
∑ 𝑈𝑈𝑛𝑛𝑟𝑟𝑟𝑟∈𝑹𝑹 |𝑹𝑹|⁄ , where 𝑈𝑈𝑛𝑛𝑟𝑟 is the utilization of resource 𝑟𝑟 in blade
𝑛𝑛. The efficiency index is set according to the well-known best-
fit (BF) bin-packing scheme, which selects a feasible bin with
the least remaining capacity [44].
2) Rack- or Pod-Scale DDC

Since the rack- and pod-scale DDCs are similar, we next
consider only the rack-scale DDC. The allocation in a rack-
scale DDC is to select a rack and then choose a blade for each
type of resource, which involves rack and blade indices.

Similar to (37), the blade index is also the weighted sum of
efficiency and reliability indices. The efficiency index is the
utilization of the blade. Since a DDC blade has multiple
components of the same resource type, the utilization of the
blade is calculated by ∑ 𝐿𝐿𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏 ∑ 𝐴𝐴𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏⁄ , where 𝐿𝐿𝑛𝑛𝑛𝑛 and

𝐴𝐴𝑛𝑛𝑛𝑛 are the load and available capacity of component 𝑐𝑐 in blade
𝑛𝑛, respectively. The reliability index of a blade is 𝑃𝑃𝑛𝑛𝑖𝑖 ⋅ ∏ 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖𝑐𝑐∈𝓒𝓒𝒏𝒏𝒊𝒊 ,
where 𝓒𝓒𝒏𝒏𝒊𝒊 is the set of components in blade 𝑛𝑛 used by request 𝑖𝑖.
Note that the reliability index here only considers the
components used by the request because components are
independent and do not interfere with each other. Overall, the
blade index (𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅) is:

𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅 = 𝜀𝜀 ⋅ 𝑃𝑃𝑛𝑛𝑖𝑖 ⋅� 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖
𝑐𝑐∈𝓒𝓒𝒏𝒏𝒊𝒊

+ (1 − 𝜀𝜀) ⋅
∑ 𝐿𝐿𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏
∑ 𝐴𝐴𝑛𝑛𝑛𝑛𝑐𝑐∈𝓒𝓒𝒏𝒏

. (38)

The rack index is also the weighted sum of a reliability index
and an efficiency index. The reliability index of a rack is the
request’s reliability when allocated with the selected blades in
the rack and the required switches and links. The efficiency
index is defined as the average utilization of the |𝑹𝑹| selected
blades in the rack. Finally, the rack (or pod) with the highest
rack index is chosen.

C. The Algorithm for One Request in a Rack-Scale DDC
1) Algorithm’s Overview

Fig. 4 provides the algorithm pseudocode, named ARRIVAL-
ALLOC, for allocating resources to a request. It takes two inputs,
i.e., the request 𝑖𝑖 and the rack-scale DDC graph 𝐺𝐺 . The
algorithm first sorts the resource types in 𝑹𝑹 in descending order
of competitive ratio [18], defined as the ratio of the requested
resource amount to the capacity per component for each
resource type 𝑟𝑟 ∈ 𝑹𝑹 . This operation prioritizes intensive
resources, e.g., for 𝑟𝑟 = CPU, a CPU-intensive request has the
largest competitive ratio. If components have different
capacities, the denominator of the competitive ratio is the
average component capacity.

ARRIVAL-ALLOC (𝑖𝑖,𝐺𝐺) //𝑖𝑖 - request, 𝐺𝐺 - rack-scale DDC
1: SORT-DES�𝑹𝑹, 𝐷𝐷𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑟𝑟
�; // sort 𝑹𝑹 in descending order of 𝐷𝐷𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑟𝑟

2: maxRackIndex = -1;
3: 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; // initialize the best solution as empty
4: for (𝑘𝑘 ∈ Γ)
5: for (𝑟𝑟 ∈ 𝑹𝑹)
6: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 = ∅; // storing feasible blades with 𝑟𝑟 in 𝑘𝑘
7: for (each blade 𝑛𝑛 with resource 𝑟𝑟 in rack 𝑘𝑘)
8: if (FRAGMENTABLE-BIN-PAC(𝑛𝑛,𝐷𝐷𝑖𝑖𝑖𝑖) == TRUE)
9: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 . add(𝑛𝑛); // record feasible blade

10: if (𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 == ∅)
11: go to line 4; // no feasible solution, try the next rack
12: SORT-DES(𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 ,𝜂𝜂𝑛𝑛𝑅𝑅𝑅𝑅); // descending order of blade index
13: 𝐿𝐿𝑘𝑘𝐵𝐵 = (𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 : 𝑟𝑟 ∈ 𝑹𝑹); // storing these lists in one set
14: 𝑝𝑝 = 1; // index the first resource (type) in 𝑹𝑹
15: 𝜙𝜙𝑘𝑘 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; // storing solution in rack 𝑘𝑘
16: if (BLADE-SELEC-TRAFFIC-SCHED(𝑟𝑟,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘) == TRUE)
17: if (RACK-INDEX(𝜙𝜙𝑘𝑘) > maxRackIndex)
18: max = RACK-INDEX(𝜙𝜙𝑘𝑘);
19: 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏= 𝜙𝜙𝑘𝑘; //update the best solution
20: if (𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)
21: FINAL-ALLOC(𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏);
22: return TRUE;
23: return FALSE;
Fig. 4. Pseudocode of the algorithm for allocating resources to a
request.

Subsequently, the algorithm scans the racks to find the best
solution, i.e., the rack with the maximum rack index. The
variable 𝜙𝜙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in line 3 is a global variable recording the best
solution. This variable has a self-defined data structure that
records the information on which components, blades, links,
and switches are used for providing the resource to request 𝑖𝑖.
The algorithm updates the current optimal solution when a new

Resource Allocation
 √Static Scenario
 √Dynamic Scenario
Live Migration

Scheduler

Resource Demand
Latency & Bandwidth
Service Time

Disaggregated Data Center

Topology
Load
Failure or Fixed Event

MonitorSubmission

Scheduler Decision

Report

Report Information

7 C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers

solution with a higher rack index is found (lines 16 – 19). The
algorithm iterates until all racks are checked, and finally, the
one with the highest rack index is selected (line 21).

In a candidate rack and for each resource type, the algorithm
filters the blades with sufficient remaining capacity by calling
the procedure named FRAGMENTABLE-BIN-PAC (line 8). This
procedure addresses the problem of allocating resources from
the components in the given blade and outputs TRUE when the
blade is feasible to host the request. Afterward, the feasible
blades are sorted in descending order of the blade index (line
12) to prioritize those with high blade indices. Next, the
algorithm calls the procedure BLADE-SELEC-TRAFFIC-SCHED to
find the solution in this rack (line 16), i.e., select blades and
schedule the traffic.
2) Allocating Components Resources in a Given Blade

This corresponds to the procedure FRAGMENTABLE-BIN-PAC
in Fig. 4. This procedure is based on the algorithm proposed by
LeCun et al. [45] to solve the bin-packing problem where the
items are splittable. Here, the item to be packed is the resource
demand 𝐷𝐷𝑖𝑖𝑖𝑖, and the bins are the components in blade 𝑛𝑛. This
procedure operates as follows. Firstly, sort the components in
the given blade in decreasing order of 𝑃𝑃𝑛𝑛𝑛𝑛𝑖𝑖 (a probability term
defined in Table Ⅰ), prioritizing high reliable components.
Secondly, try to find out a perfect component [45], i.e., the
component whose remaining capacity is precisely equal to 𝐷𝐷𝑖𝑖𝑖𝑖.
If the perfect component exists (e.g., Request 3 in Fig. 5), assign
it to the request and terminate the procedure. Otherwise, check
the components one by one. When the remaining capacity of a
candidate component is larger than the demand (e.g., Request 1
in Fig. 5), allocate resources from this component. Otherwise,
allocate all its remaining capacity to the request and use
subsequent components to fulfill the remaining demand (e.g.,
Request 2 in Fig. 5).

Fig. 5. Three requests on a blade with three memory components,
where the three requests arrive in the order of Requests 1, 2, and 3.

3) Blade Selection and Traffic Scheduling in a Given Rack
BLADE-SELEC-TRAFFIC-SCHED(𝑝𝑝,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘)
1: 𝑟𝑟 = 𝑹𝑹[𝑝𝑝];
2: 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 = 𝐿𝐿𝑘𝑘𝐵𝐵 . get(𝑟𝑟); // the list of blades of resource 𝑟𝑟
3: for (𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 ∈ 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵)
4: if (TRAFFIC-SCHED(𝜙𝜙𝑘𝑘 ,𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐) == FALSE)
5: continue;
6: 𝜙𝜙𝑘𝑘 . add(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐); // record the feasible blade
7: if (𝑝𝑝 == |𝑹𝑹|) // this is the last resource (type)
8: return TRUE;
9: else

10: 𝑝𝑝 + +; // index the resource (type) next to 𝑟𝑟
11: res = BLADE-SELEC-TRAFFIC-SCHED(𝑝𝑝,𝑹𝑹, 𝐿𝐿𝑘𝑘𝐵𝐵 ,𝜙𝜙𝑘𝑘)
12: if (res == FALSE)
13: 𝜙𝜙𝑘𝑘 . remove(𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐); // failure in resources after 𝑟𝑟
14: else
15: return TRUE
16: return FALSE
Fig. 6. Pseudocode of blade selection and traffic scheduling in a
rack.

This part corresponds to the procedure BLADE-SELEC-
TRAFFIC-SCHED in Fig. 4, and Fig. 6 gives the pseudocode of
the procedure. The general idea of this procedure is as follows.

In the beginning, we select a blade for the first resource type
(𝑟𝑟1𝑠𝑠𝑠𝑠). When selecting a blade for the second resource type
(𝑟𝑟2𝑛𝑛𝑛𝑛), we also try to schedule the traffic (𝑟𝑟1𝑠𝑠𝑠𝑠 , 𝑟𝑟2𝑛𝑛𝑛𝑛). If the
traffic scheduling fails, meaning that this blade is not suitable
for 𝑟𝑟2𝑛𝑛𝑛𝑛 , we try the next blade. Similarly, when selecting a
blade for the third resource type (𝑟𝑟3𝑟𝑟𝑟𝑟), we also need to schedule
the traffic (𝑟𝑟1𝑠𝑠𝑠𝑠, 𝑟𝑟3𝑟𝑟𝑟𝑟) and (𝑟𝑟2𝑛𝑛𝑛𝑛 , 𝑟𝑟3𝑟𝑟𝑟𝑟). This process is repeated
for each of the remaining resource types.

The procedure takes the input 𝑝𝑝 = 1, … , |𝑹𝑹|, to index the
current resource type 𝑟𝑟, i.e., 𝑹𝑹[𝑝𝑝] is the 𝑝𝑝𝑡𝑡ℎ element in 𝑹𝑹. Note
that input 𝑹𝑹 is an ordered set that has been sorted previously
(see line 12 in Fig. 4). The procedure is executed recursively,
starting from the first resource type, i.e., 𝑝𝑝 = 1. Each time a
resource type temporarily determines its host, the procedure
goes to the next resource type by incrementing 𝑝𝑝 (line 10). The
termination condition is that the procedure finds a feasible blade
for the last resource type (lines 7-8).

For a current resource type 𝑟𝑟 indexed by 𝑝𝑝, the procedure
scans blades in 𝐿𝐿𝑘𝑘𝑘𝑘𝐵𝐵 to look for the first blad that satisfies the
traffic requirement (line 4). Here, another procedure named
TRAFFIC-SCHED is called to schedule the traffic between the
current resource type 𝑟𝑟 and the previous resource types 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑹𝑹�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1, … ,𝑝𝑝 − 1. If the traffic scheduling succeeds,
the procedure temporarily records the current blade 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 as the
host for 𝑟𝑟 (line 6), and go for the next resource type 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑹𝑹[𝑝𝑝 + 1] (line 10). Then, the procedure recursively calls the
algorithm itself (line 11) to find a feasible blade for 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. If the
next resource type cannot find a feasible blade satisfying the
traffic requirement, it abandons blade 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 (line 13), then tries
the next blade for resource type 𝑟𝑟.

The traffic scheduling procedure TRAFFIC-SCHED searches
for a path for each resource pair, which is operated as follows.
Firstly, it excludes links with insufficient capacity. Then, it runs
the shortest path algorithm with the weight of each link setting
as 𝑤𝑤𝑚𝑚𝑚𝑚 = 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝 + 0.5 ⋅ 𝜏𝜏𝑚𝑚 + 0.5 ⋅ 𝜏𝜏𝑛𝑛 , where, 𝜏𝜏𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝 , 𝜏𝜏𝑚𝑚 , and 𝜏𝜏𝑛𝑛

are the propagation delay of link (𝑚𝑚,𝑛𝑛) and the delays at the
endpoints 𝑚𝑚 and 𝑛𝑛, respectively. If the path exists, it further
checks whether the latency meets the requirement and
schedules the traffic along this path if it does.

Fig. 7. Example of the blade selection procedure.

 Fig. 7 illustrates the procedure by an example, which
includes three resource types, sorted in the order of CPU,
memory, and GPU. It starts from the first resource type, i.e.,
CPU, and checks whether the first CPU blade (C1) is feasible.
As it is the first resource type, there are no previous resource
types, so no traffic needs to be scheduled, and C1 is directly

Memory 1 Memory 2 Memory 3

Reques t 1
Reques t 2
Reques t 3

Memory
blade

ϕk={}

ϕk={C1}

ϕk={C1, M2}

M1 M2 M3 M4

G1 G2

C1 C2 C3 C4

ϕk={C1} ϕk.remove(M2)
G1 G2

ϕk={C1, M4} ϕk={C1, M4, G2}

p==|R|

ϕk={C1, M4, G2}

 TRAFFIC-SCHED()

S E
p=1,r=CPU

(G1×M2) (G2×M2)

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 8

recorded as the candidate blade (recorded in 𝜙𝜙𝑘𝑘). Then, it goes
for the second resource type, i.e., memory, and needs to
schedule the traffic between memory and CPU. However,
selecting M1 as the candidate leads to failure in traffic
scheduling, so M1 is not feasible, and M2 is recorded as a
temporary host for the memory. When it comes to the last
resource type, GPU, the procedure can not find a feasible blade
when scheduling the traffic between memory and GPU. It
returns to the memory blade selection step and abandons M2
but tries M3 and M4. Finally, C1, M4, and G2 are selected, and
traffic scheduling is also complete.
4) Algorithm’s Complexity

We first analyze the algorithm's time complexity of the
algorithm provided in Fig. 4. We consider it takes 𝑂𝑂(𝑛𝑛log𝑛𝑛) to
sort a list with 𝑛𝑛 elements, as many sorting algorithms have this
complexity. In addition, we assume the number of resource
types and the number of components in each blade are constant.
Accordingly, lines 4, 8, and 12 take the time of 𝑂𝑂(1) ,
𝑂𝑂(|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘|), and 𝑂𝑂(|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘| ⋅ log|𝑁𝑁𝑘𝑘𝑘𝑘|), respectively. Here
|𝑁𝑁𝑘𝑘𝑘𝑘| is the number of blades of each resource type per rack.
The most time-consuming execution is the blade selection
procedure, which is to select one blade for each resource type
from a rack. Since the total number of blade combinations is
|𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹| , the complexity of the blade selection procedure is
𝑂𝑂�|𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. Thus, line 16 takes the time of 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. In
total, the time complexity of the algorithm is 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘| ⋅
log|𝑁𝑁𝑘𝑘𝑘𝑘| + |Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|�. It is equal to 𝑂𝑂�|Γ| ⋅ |𝑁𝑁𝑘𝑘𝑘𝑘||𝑹𝑹|� since
|𝑹𝑹| > 1. Since |𝑹𝑹| has a typical value of 3 to 4, the complexity
is very high. Fortunately, the DDC architectures are basically
rack-scale, where the base term |𝑁𝑁𝑘𝑘𝑘𝑘| does not have a high
value, at most a dozen.

The space complexity of this algorithm is 𝑂𝑂(|𝑹𝑹|). The extra
space is needed mainly to recursively call the BLADE-SELEC-
TRAFFIC-SCHED procedure.

D. Batch Allocation for the Static Scenario
For this scenario, we introduce the SHUFFLE-AND-UPDATE

procedure as follows. Given a set of requests 𝑰𝑰 , we first
randomize the order of requests in 𝑰𝑰 , then apply the algorithm
shown in Fig. 4 to each request according to the order and
calculate the objective function, recorded as 𝐹𝐹𝑚𝑚. Nextly, we set
an integer number which we refer to as an epoch size. We then
repeat the randomize-and-try to find a better solution, i.e., a
solution with the objective 𝐹𝐹1, and 𝐹𝐹1 > 𝐹𝐹𝑚𝑚. If a better solution
can be found after repeating the random-and-try 𝐾𝐾 times, such
that 𝐾𝐾 < epoch size, we update the optimal solution with 𝐹𝐹1.
We call this process one epoch of the SHUFFLE-AND-UPDATE
optimization process. The above optimization process is further
repeated until no better solution is found in any epoch.

E. Migration for the Dynamic Scenario
In order to reduce the number of accepted requests failing to

complete their service, we propose a migration mechanism to
restore the interrupted requests. Fig. 8 gives the pseudocode of
this procedure. The procedure first excludes the failed element
from the DDC graph, then, for each interrupted request, calls
the procedure ARRIVAL-ALLOC (See Fig. 4) based on the
residual graph and re-allocates resources to this request if it

succeeds. It should be noted that the failed element can be
repaired and can serve other requests after being repaired.

MIGRATION-BASED-RESTORATION(𝑒𝑒,𝐺𝐺) // 𝑒𝑒 – the failed element
1: 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 = HOSTED-REQUESTS(𝑒𝑒); // get the set of interrupted requests
2: 𝐺𝐺. remove(𝑒𝑒); // remove failed element from 𝐺𝐺
3: failNum = 0; // number of failing restored requests
4: for (𝑖𝑖 ∈ 𝑰𝑰𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊)
5: success = ARRIVAL-ALLOC(𝑖𝑖,𝐺𝐺)
6: if (success == FALSE) // fail migration
7: failNum ++; // fail to complete service
8: return failNum;
Fig. 8. Pseudocode of the migration-based restoration when 𝑒𝑒
fails.

F. Discussion on Implementation
The implementation of our proposed resource management

framework needs the support of operating systems (OSes) for
DDCs, e.g., LegoOS [12] and GiantVM [46] LegoOS is based
on a new OS model, named splitkernel, where each resource
component maintains an independent manager (or monitor).
LegoOS provides the capability that allows an application to
use multiple components of the same resource type, which can
be combined with our proposed components allocation
procedure. In addition, LegoOS provides fault-tolerance
mechanisms, which can be combined with the migration-based
restoration algorithm to resume interrupted services. GiantVM
is a hypervisor system that can create a VM spanning multiple
components and machines (i.e., blades), which may also be
used to implement our proposed framework.

VII. EVALUATION
This section presents the numerical results for validating the

performance of the DDC against the SDC. Both the static
scenario and dynamic scenario are considered.

A. Static Scenario
1) Parameter settings

The MILP can only find optimal solutions for small-size
problems due to its high computational complexity. We
consider only one pod consisting of one spine switch and 3
racks with one leaf switch, 3 blades per rack, and 3 components
per blade. Three types of resources are considered: 𝑹𝑹 =
(𝐶𝐶𝐶𝐶𝐶𝐶,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), with a per component capacity
of 100 units. The age of each hardware element is U(102,104)
time units, where U(a, b) is a random value uniformly
distributed within the interval (a, b). Henceforth, we do not add
units to simulation time measures, which are understood to be
time units. All the requests are assumed to be given at time 𝑡𝑡 =
0, and the service time of each request is U(1,100). Four kinds
of requests are considered: CPU-intensive, memory-intensive,
accelerator-intensive, and random. If request 𝑖𝑖 is of 𝑟𝑟1 -
intensive (𝑟𝑟1 ∈ 𝑹𝑹), i.e., the first three kinds of requests, its
demand is set as

𝐷𝐷𝑖𝑖𝑖𝑖 = �𝑈𝑈
(40,80), 𝑟𝑟 = 𝑟𝑟1

𝑈𝑈(10,40), 𝑟𝑟 ≠ 𝑟𝑟1
.

For a random request, its demand is 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝑈𝑈(10,80) ∀𝑟𝑟 ∈ 𝑹𝑹.
We consider four test cases considering the settings for

reliability and network latency/bandwidth, namely, S1 – S4. In
S1, all hardware elements except the resource components are
resilient, and we assume that requests have no latency and
bandwidth requirements. Each component’s reliability follows

9 C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers

the Weibull distribution with scale parameter 𝜂𝜂𝑒𝑒 = 106 and
shape parameter 𝛽𝛽𝑒𝑒 = 𝑈𝑈(1,2) . This setting ensures that the
hardware mean TBF (MTBF) is far longer than the request
service time by four to five orders of magnitude. S2 is extended
from S1, where blades become not resilient, whose reliability
also follows the above Weibull distribution. Similarly, S3 is
extended from S2, where each switch's reliability also follows
the above Weibull distribution. Lastly, S4 further considers the
latency constraints based on S3. With reference to the literature
(e.g., [18], [40]), we set the latency-related parameters as
follows. Hardware delays are set as: 𝜏𝜏𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 = U(50,60) ns, 𝜏𝜏𝑛𝑛𝑠𝑠𝑠𝑠=
U(100,150) ns, 𝜏𝜏𝑚𝑚𝑚𝑚

𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑑𝑑 × 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝, where 𝐿𝐿𝑝𝑝𝑝𝑝𝑝𝑝 = 5 ns/m and 𝑑𝑑 =
2m for each intra-rack link while U(10, 30) m for each inter-
rack link. The latency requirement for the traffic between CPU
and memory is U(500, 900) ns; U(1, 100) µs otherwise.

We use the commercial solver AMPL/Gurobi to solve the
MILP formulations to provide solutions with respect to the
objective function (3). The simulation environment for the
heuristic algorithms is built through Java.
2) Results

Fig. 9. Pareto fronts in terms of minimum request reliability vs.
acceptance ratio for four different cases (S1 – S4) (obtained by
MILP).

We first evaluate the performance of different disaggregation
scales using the MILP. Fig. 9 presents the results of the
minimum requests reliability vs. the acceptance ratio in S1 – S4.
Here, the number of requests is 30. In the figure, “BS”, “RS”,
and “PS” correspond to the blade-scale, rack-scale, and pod-
scale DDCs, respectively. We use dashed lines to connect the
results to approximate the Pareto fronts [47]. Each approximate
Pareto front provides a set of optimal solutions in terms of
acceptance ratio and minimum request reliability based on
given preferences. It is obtained by solving the MILP with
varied weight factors [47]. The ordinate intervals in S1 – S4 are
the same in Fig. 9 so that the differences between the Pareto
fronts in S1-S4 can be clearly observed. We observe that PS
performs the best in S1 and S2 while performing significantly
worse in S3 and S4. This can be explained by the fact that PS
has a larger disaggregation scale than RS and BS, so it can
achieve higher minimum request reliability and acceptance
ratio. However, a request in PS uses more network elements
than in BS and RS. Therefore, when the switches are not

resilient and latency requirements are considered, the
performance of PS sharply decreases.

We also observe that RS performs better than BS in S1, while
in S2 – S4, the performance of RS drops faster than BS. The
reason is as follows. RS has higher flexibility and efficiency
than BS, so RS outperforms BS in S1. However, service
reliability in RS is significantly influenced by the network, so
the performance of RS decreases sharply when blades and
switches are not resilient (S2 – S3). In S4, the approximate
Pareto fronts of RS and BS cross at (0.999955, 0.73).
Accordingly, if setting a reliability threshold higher than
0.999955 (corresponding to the left side of the intersection), the
acceptance ratio of RS is lower than BS while higher than BS
otherwise. This is because requests in RS require more switches
and blades than in BS, so their achievable reliability in RS may
not be as high as in BS, and more requests in RS will be rejected
if the reliability threshold is very high. On the contrary, when
relaxing the threshold, the benefits of resource disaggregation
manifest, where resource stranding in BS is significantly
avoided in RS so that RS can achieve a higher acceptance ratio
than BS. Overall, the performance difference of RS and BS on
both sides of the intersection again demonstrates that resource
disaggregation can improve resource efficiency, while the
benefit will be offset if the network is not resilient.

Fig. 10. Minimum request reliability vs. acceptance ratio obtained by
Radar in S1 for BS and S3 for RS.

Fig. 10 provides the results of Radar in S1 for BS and S3 for
RS, and for comparison, we also show the Pareto fronts and
other 10000 random solutions. The results of Radar are
obtained with varied weighting coefficients in the blade and
rack indices (See Section IV.B). We can observe that Radar
performs close to the approximate Pareto fronts and
outperforms all random solutions, demonstrating that Radar has
high efficiency. In addition, Radar consistently maintains a high
acceptance ratio. For example, in RS-S3, the acceptance ratio
obtained by Radar is consistently larger than 0.8, also
demonstrating its high efficiency. Note that in Fig. 10, we aim
to show all the results obtained by Radar and Random, not only
the optimal solutions. There are some solutions with the same
acceptance ratio but different minimum request reliability
obtained by Radar and Random, e.g., the two data points that
have been circled in RS-S3. Clearly, having such two solutions,
we will not choose the inferior one (the lower of the two). We
only aim to illustrate such solutions and explain how they are
obtained. This is explained through the 12th line of the algorithm
in Fig. 4, which is the operation that sorts the blades in
descending order of the blade index. Increasing the weighting
coefficients of the blade index prioritizes highly reliable blades.
However, the acceptance ratio may remain unchanged since the
capacity does not change.

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 10

The above results demonstrate that an imperfect network will
offset the benefits of hardware disaggregation. Backup is an
intuitive way to improve reliability performance, and Fig. 11
gives the results for the case extended from S3, where every
blade and switch has a backup. We observe from Fig. 11 that
the results are very close to those in S1. This is reasonable as
backup dramatically increases the reliability of switches and
blades, making the performance very close to when the
switches and blades are resilient. However, backup is not an
efficient approach, and it leads to increased costs. Next, the
results in the dynamic scenario show that improved
performance is achievable without backup.

Fig. 11. Pareto fronts for a new case extended from S3 by applying
backup to every hardware element.

B. Dynamic Scenario
1) Parameter settings

We consider one pod consisting of 10 spine switches and 9
racks with 2 leaf switches, 48 blades per rack, and 3
components per blade. Other settings, like the hardware
capacity and request resource demand, are the same as in the
static scenario. Here we do not consider the latency and
bandwidth restrictions. We simulate a dynamic system,
including the events of request arrival, request departure,
hardware (components, blades, and switches) failure, and
hardware repair. The request arrival follows a Poisson process
with an arrival rate of 1.5, and service time follows an
exponential distribution with a mean of 1000. The TBF of each
element follows the Weibull distribution with parameters the
same as in the static scenario. The time to repair follows another
exponential distribution with a mean of 1. With this setting,
hardware availability ranges from 99.999% to 99.9999%,
which is consistent with hardware availability in real-world
DCs [48]. In the simulation, we assume that the interrupted
requests are immediately restored after the scheduler decides
where to migrate the service. The simulation time is 106.
2) Results

Fig. 12 gives the simulation results with varied weight
coefficients. The first two subfigures give the results when
migration is not applied. We observe that the blocking
probability of PS and RS is significantly lower than that of BS.
This is because of the significant efficiency benefit of hardware
disaggregation. However, the second subfigure shows that, in
terms of the number of accepted requests failing to complete
service, PS has the highest value, second by RS and last by BS.
The results further demonstrate that a vulnerable network may
offset the benefits of disaggregation. The last two subfigures
give the results when the migration is applied. We observe that
PS and RS outperform BS in both blocking probability and the
number of accepted requests failing to complete service. The
results demonstrate that our proposed Radar framework can

overcome the challenges created when the network is not
resilient. Notice that in the static scenario, we have
demonstrated that the performance of PS is significantly
affected by latency. Therefore, only the RS can overcome the
challenges caused by an imperfect network when considering
latency.

Fig. 12. Blocking probability and the number of requests failing to
complete service with varying coefficients.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
We have studied service reliability in DDCs, considering

network impact and different disaggregation scales. A MILP
formulation and the Radar framework have been proposed for
the resource allocation in DDCs, considering both reliability
and utilization aspects. We have demonstrated that an imperfect
network significantly offsets the improvement of resource
efficiency and service reliability brought by hardware
disaggregation. The results also demonstrate that hardware
backup helps overcome such offset, which, however, may lead
to increased cost. The proposed Radar framework employs a
migration-based restoration, which can also overcome the
offset without backup. Numerical results have shown that the
rack-scale architecture is currently the best option, as a larger
disaggregation scale faces latency challenges, which may lead
to severe performance deterioration.

DDC is a relatively new research area that gives rise to many
research opportunities. In the following, we consider the
limitations of this work that lead to potential extensions and
future research directions. Firstly, we have assumed that the
demand required by a request is always additive from multiple
resource components. This may not be the case in certain
applications, e.g., a task/process should be executed on a single
CPU component [12]. Secondly, the service request we have
considered is like a VM or a task, which requires multiple
different resources to form one VM or complete one task.
However, there are some applications, such as parallel
computing, where multiple VMs are required to jointly
complete multiple tasks for a single job. Such applications have
not been considered in this paper. Thirdly, as discussed, we
have assumed no waiting room, and blocked requests are
rejected without a re-allocation attempt. Finally, in response to

11 C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers

“the trends of AI for cloud, fog, edge, serverless, and quantum
computing” to improve automation in DCs [49], we can study
how to integrate AI tools like reinforcement learning with
resource allocation in DDCs.

REFERENCES

[1] D. Mourtzis, Design and operation of production networks for mass
personalization in the era of cloud technology. Elsevier, 2022.

[2] F. Psarommatis, P. A. Dreyfus, and D. Kiritsis, “The role of big data
analytics in the context of modeling design and operation of
manufacturing systems,” in Design and operation of production networks
for mass personalization in the era of cloud technology: Elsevier, 2022,
pp. 243-275.

[3] X. Sun, N. Ansari, and R. Wang, “Optimizing resource utilization of a data
center,” IEEE Communications Surveys & Tutorials, vol. 18, no. 4, pp.
2822-2846, Fourthquarter 2016.

[4] L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4712-4721,
Oct. 2018.

[5] D. Fernández-Cerero, J. A. Troyano, A. Jakóbik, and A. Fernández-
Montes, “Machine learning regression to boost scheduling performance in
hyper-scale cloud-computing data centres,” Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 6, pp. 3191-
3203, Jun. 2022.

[6] W. Zhang, R. Yadav, Y.-C. Tian, S. K. K. S. Tyagi, I. A. Eelgendy, and
O. Kaiwartya, “Two-phase industrial manufacturing service management
for energy efficiency of data centers,” IEEE Transactions on Industrial
Informatics, 2022.

[7] K. Kaur, S. Garg, G. Kaddoum, E. Bou-Harb, and K.-K. R. Choo, “A big
data-enabled consolidated framework for energy efficient software
defined data centers in iot setups,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 4, pp. 2687-2697, Apr. 2020.

[8] N. Kumar, G. S. Aujla, S. Garg, K. Kaur, R. Ranjan, and S. K. Garg,
“Renewable energy-based multi-indexed job classification and container
management scheme for sustainability of cloud data centers,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 5, pp. 2947-2957, May
2019.

[9] N. Gholipour, E. Arianyan, and R. Buyya, “A novel energy-aware
resource management technique using joint VM and container
consolidation approach for green computing in cloud data centers,”
Simulation Modelling Practice and Theory, vol. 104, p. 102127, Nov.
2020.

[10] Q. Fang, J. Wang, Q. Gong, and M. Song, “Thermal-aware energy
management of an HPC data center via two-time-scale control,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2260-2269, Oct.
2017.

[11] C. Guo, K. Xu, G. Shen, and M. Zukerman, “Temperature-aware virtual
data center embedding to avoid hot spots in data centers,” IEEE
Transactions on Green Communications and Networking, vol. 5, no. 1, pp.
497-511, 2020.

[12] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,
distributed {OS} for hardware resource disaggregation,” in Proc.
Symposium on Operating Systems Design and Implementation, 2018, pp.
69-87.

[13] T. Harvey, “Hype cycle for compute infrastructure, 2021,” Gartner, 2021.
[14] A. Moskovsky and P. Lavrenko, “Composable disaggregated

environments for HPC workloads,” in Proc. CEUR Workshop, 2020, pp.
43-51.

[15] A. S. Al-Harrasi and S. Ali, “Investigating the challenges facing
composable/disaggregated infrastructure implementation: A literature
review,” in Proc. International Arab Conference on Information
Technology, 2021, pp. 1-5.

[16] ResearchAndMarkets.com, “The worldwide composable infrastructure
industry is expected to grow at a CAGR of 21% between 2021 to 2027.”
[Online]. Available: https://www.globenewswire.com/news-
release/2021/10/13/2313556/28124/en/The-Worldwide-Composable-
Infrastructure-Industry-is-Expected-to-Grow-at-a-CAGR-of-21-
Between-2021-to-2027.html. [Accessed: 6-Apr-2022].

[17] T. Coughlin, “Digital storage and memory,” Computer, IEEE, vol. 55, no.
1, pp. 20-29, Jan. 2022.

[18] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Optically
disaggregated data centers with minimal remote memory latency:

Technologies, architectures, and resource allocation,” Journal of Optical
Communications and Networking, vol. 10, no. 2, pp. A270-A285, Feb.
2018.

[19] X. Guo, X. Xue, F. Yan, B. Pan, G. Exarchakos, and N. Calabretta,
“DACON: A reconfigurable application-centric optical network for
disaggregated data center infrastructures,” Journal of Optical
Communications and Networking, vol. 14, no. 1, pp. A69-A80, Jan. 2022.

[20] A. Pagès, F. Agraz, and S. Spadaro, “On the impact of IT resources
disaggregation in optically interconnected data centres,” in Proc. ECOC,
2019, pp. 1-4.

[21] O. O. Ajibola, T. E. El-Gorashi, and J. M. Elmirghani, “Network
topologies for composable data centers,” IEEE Access, vol. 9, pp. 120955-
120984, Sep. 2021.

[22] Intel.com, “Intel® rack scale design (Intel® RSD) architecture
specification (software v2.5).” [Online]. Available:
https://www.intel.com/content/www/us/en/architecture-and-
technology/rack-scale-design/architecture-spec-v2-5.html. [Accessed:
29-Jul-2021].

[23] A. Pagès, R. Serrano, J. Perelló, and S. Spadaro, “On the benefits of
resource disaggregation for virtual data centre provisioning in optical data
centres,” Computer Communications, vol. 107, pp. 60-74, Jul. 2017.

[24] X. Guo, F. Yan, G. Exarchakos, X. Xue, B. Pan, and N. Calabretta, “On
the workload deployment, resource utilization and operational cost of fast
optical switch based rack-scale disaggregated data center network,” in
Proc. OFC, 2020, pp. 1-3.

[25] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits of a
disaggregated data centre: A resource allocation approach,” in Proc.
GLOBECOM, 2016, pp. 1-7.

[26] C. Zhang, P. Zhang, S. Zheng, Z. Yang, R. Liu, and K. Huang, “An
efficient self-healing architecture for improving the RAS characteristics
of RISC-V server and its quantitative evaluation method,” IEEE
Embedded Systems Letters, to appear, 2022.

[27] C. Guo, X. Wang, G. Shen, S. Bose, J. Xu, and M. Zukerman, “Exploring
the benefits of resource disaggregation for service reliability in data
centers,” IEEE Transactions on Cloud Computing, (to appear).

[28] A. Carbonari and I. Beschasnikh, “Tolerating faults in disaggregated
datacenters,” in Proc. HotNets Workshop, 2017, pp. 164-170.

[29] P. X. Gao et al., “Network requirements for resource disaggregation,” in
Proc. Symposium on Operating Systems Design and Implementation,
2016, pp. 249-264.

[30] H. M. M. Ali, T. E. El-Gorashi, A. Q. Lawey, and J. M. Elmirghani,
“Future energy efficient data centers with disaggregated servers,” Journal
of Lightwave Technology, vol. 35, no. 24, pp. 5361-5380, Dec. 2017.

[31] O. O. Ajibola, T. E. El-Gorashi, and J. M. Elmirghani, “Energy efficient
placement of workloads in composable data center networks,” Journal of
Lightwave Technology, vol. 39, no. 10, pp. 3037-3063, May 2021.

[32] R. Lin, Y. Cheng, M. De Andrade, L. Wosinska, and J. Chen,
“Disaggregated data centers: Challenges and trade-offs,” IEEE
Communications Magazine, vol. 58, no. 2, pp. 20-26, 2020.

[33] M. Amaral et al., “DRMaestro: Orchestrating disaggregated resources on
virtualized data-centers,” Journal of Cloud Computing, vol. 10, no. 1, pp.
1-20, Mar. 2021.

[34] S. Angel, M. Nanavati, and S. Sen, “Disaggregation and the application,”
in Proc. HotCloud, 2020.

[35] L. Ferreira et al., “Optimizing resource availability in composable data
center infrastructures,” in Proc. Latin-American Symposium on
Dependable Computing, 2019, pp. 1-10.

[36] M. Alizadeh and T. Edsall, “On the data path performance of leaf-spine
datacenter fabrics,” in Proc. IEEE Annual Symposium on High-
Performance Interconnects, 2013, pp. 71-74.

[37] B. Cao et al., “Multiobjective 3-D topology optimization of next-
generation wireless data center network,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 5, pp. 3597-3605, May 2019.

[38] C.-S. Li, H. Franke, C. Parris, B. Abali, M. Kesavan, and V. Chang,
“Composable architecture for rack scale big data computing,” Future
Generation Computer Systems, vol. 67, pp. 180-193, Feb. 2017.

[39] V. Shrivastav et al., “Shoal: A network architecture for disaggregated
racks,” in Proc. Symposium on Networked Systems Design and
Implementation, 2019, pp. 255-270.

[40] V. Mishra, J. L. Benjamin, and G. Zervas, “MONet: Heterogeneous
memory over optical network for large-scale data center resource
disaggregation,” Journal of Optical Communications and Networking, vol.
13, no. 5, pp. 126-139, May 2021.

[41] Z. Ding, Y.-C. Tian, M. Tang, Y. Li, Y.-G. Wang, and C. Zhou, “Profile-
guided three-phase virtual resource management for energy efficiency of

https://www.globenewswire.com/news-release/2021/10/13/2313556/28124/en/The-Worldwide-Composable-Infrastructure-Industry-is-Expected-to-Grow-at-a-CAGR-of-21-Between-2021-to-2027.html
https://www.globenewswire.com/news-release/2021/10/13/2313556/28124/en/The-Worldwide-Composable-Infrastructure-Industry-is-Expected-to-Grow-at-a-CAGR-of-21-Between-2021-to-2027.html
https://www.globenewswire.com/news-release/2021/10/13/2313556/28124/en/The-Worldwide-Composable-Infrastructure-Industry-is-Expected-to-Grow-at-a-CAGR-of-21-Between-2021-to-2027.html
https://www.globenewswire.com/news-release/2021/10/13/2313556/28124/en/The-Worldwide-Composable-Infrastructure-Industry-is-Expected-to-Grow-at-a-CAGR-of-21-Between-2021-to-2027.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design/architecture-spec-v2-5.html
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design/architecture-spec-v2-5.html

C. Guo et al: Radar: Reliable Resource Scheduling for Composable/Disaggregated Data Centers 12

data centers,” IEEE Transactions on Industrial Electronics, vol. 67, no. 3,
pp. 2460-2468, Mar. 2019.

[42] D. Wang, W. Zhang, H. He, and Y.-C. Tian, “Efficient hybrid central
processing unit/input–output resource scheduling for virtual machines,”
IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2714-2724,
Mar. 2021.

[43] L. Liu, Y. Ding, X. Li, H. Wu, and L. Xing, “A container-driven service
architecture to minimize the upgrading requirements of user-side smart
meters in distribution grids,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 1, pp. 719-728, Jan. 2021.

[44] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on Computing, vol. 3, no. 4, pp. 299-325, Dec.
1974.

[45] B. LeCun, T. Mautor, F. Quessette, and M.-A. Weisser, “Bin packing with
fragmentable items: Presentation and approximations,” Theoretical
Computer Science, vol. 602, pp. 50-59, Oct. 2015.

[46] X. Jia, J. Zhang, B. Yu, X. Qian, Z. Qi, and H. Guan, “GiantVM: A novel
distributed hypervisor for resource aggregation with DSM-aware
optimizations,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 19, no. 2, pp. 1-27, Jun. 2022.

[47] S. Smale, “Global analysis and economics I: Pareto optimum and a
generalization of morse theory,” in Dynamical systems: Elsevier, 1973, pp.
531-544.

[48] PaloAltoNetworks.com, “What is a data center?” [Online]. Available:
https://www.paloaltonetworks.com/cyberpedia/what-is-a-data-center.
[Accessed: 6-Aug-2022].

[49] S. S. Gill et al., “AI for next generation computing: Emerging trends and
future directions,” Internet of Things, vol. 19, p. 100514, Aug. 2022.

Chao Guo received his Master degree in information
and communication engineering from Soochow
University, Suzhou, China. He is currently working
toward a Ph.D. degree with the Department of
Electrical Engineering, City University of Hong Kong,
Hong Kong. His research interests include the areas
of data center resouce scheduling and network
optimization, network slicing, and cable path
planning.

Moshe Zukerman (M’87–SM’91–F’07–LF’20)
received the B.Sc. degree in industrial
engineering and management, the M.Sc.
degree in operations research from the
Technion – Israel Institute of Technology, Haifa,
Israel, and the Ph.D. degree in engineering from
University of California, Los Angeles, in 1985.
He was an independent consultant with the IRI
Corporation and a Postdoctoral Fellow with the
University of California, Los Angeles, in 1985–
1986. In 1986–1997, he was with Telstra

Research Laboratories (TRL), first as a Research Engineer and, in
1988–1997, as a Project Leader. He also taught and supervised
graduate students at Monash University in 1990–2001. During 1997-
2008, he was with The University of Melbourne, Victoria, Australia. In
2008 he joined City University of Hong Kong as a Chair Professor of
Information Engineering, and a team leader. He has over 300
publications in scientific journals and conference proceedings. He has
served on various editorial boards such as Computer Networks, IEEE
Communications Magazine, IEEE Journal of Selected Areas in
Communications, IEEE/ACM Transactions on Networking and
Computer Communications.

Tianjiao Wang received a B.Sc. degree in
electronic and communication engineering from
Qufu Normal University, Shandong, China, and
an M.Sc. degree in electronic and
communication engineering from Beihang
University, Beijing, China, in 2015 and 2018,
respectively. She is currently working toward a
Ph.D. degree with the Department of Electrical
Engineering, City University of Hong Kong, Hong
Kong. Her research interests include the areas of
popularity prediction and cable network topology
optimization.

https://www.paloaltonetworks.com/cyberpedia/what-is-a-data-center

	I. INTRODUCTION
	II. Related Work
	III. Overview of SDC vs. DDC Architectures
	IV. Problem Statement and Request Reliability
	A. Problem Description
	1) Static Scenario
	2) Dynamic Scenario

	B. The Reliability of a Service Request

	V. The MILP Formulation
	A. MILP Formulation for a DC-Scale DDC
	B. MILP Formulation for a Blade-Scale DDC (SDC)
	C. MILP Formulation for a Rack- or Pod-Scale DDC

	VI. Framework Overview and Heuristic Algorithms
	A. Framework Description
	B. Resource Allocation Policy
	1) Blade-Scale DDC
	2) Rack- or Pod-Scale DDC

	C. The Algorithm for One Request in a Rack-Scale DDC
	1) Algorithm’s Overview
	2) Allocating Components Resources in a Given Blade
	3) Blade Selection and Traffic Scheduling in a Given Rack
	4) Algorithm’s Complexity

	D. Batch Allocation for the Static Scenario
	E. Migration for the Dynamic Scenario
	F. Discussion on Implementation

	VII. Evaluation
	A. Static Scenario
	1) Parameter settings
	2) Results

	B. Dynamic Scenario
	1) Parameter settings
	2) Results

	VIII. Conclusion and Future Research Directions
	References

