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Abstract

Edge computing involves distributive computation resources deployed at the network edge, unlike cloud computing, which has
central computation resources in data centers. Edge computing is a complement of cloud computing because edge computing ef-
fectively reduces the computing response delay by processing computation tasks and data near terminals. Considering the dramatic
increase of terminals connected to networks and data generated by terminals, computation tasks from different applications may
require significantly different services with different computation requirements, storage requirements, and response delay require-
ments. Application-aware computation offloading and resource allocation in edge computation can provide efficient and guaranteed
computation services to terminals. In this paper, an application-aware computation offloading and resource allocation problem
is investigated in edge computing networks, where computation tasks from different applications have different requirements. A
non-convex optimization problem of energy consumption minimization is formulated, where terminals, edge nodes, and a cloud
are considered. We convert the original non-convex optimization problem into a lower-bound convex problem and an upper-bound
convex problem. Then, an algorithm based on the branch-and-bound method is proposed to force the lower- and upper-bound solu-
tions to approach the optimal solution. Finally, the performance of the algorithm is analyzed where the gap to the optimal solution
is provided. Numerical results show that the proposed algorithm can provide guaranteed services for tasks of different application
types, with improvements over application-unaware algorithms.
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1. Introduction

Cloud computing technology organizes computing, storage
and other resources centrally in data centers and shares these
huge resources among users of the entire network to increase
resource utilization and efficiently process user data [1]. With
rapidly increasing numbers of devices in the network, for ex-
ample, it is predicted that the number of terminal devices con-
nected to the Internet through the Internet of things will reach
34.2 billion in 2025, and will increase to 125 billion by 2030
[2, 3], cloud computing faces challenges to efficiently process
the computation task from terminals with guaranteed computa-
tion services. This is because terminals at network edges are
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usually far from data centers, causing long transmission delays
and network congestion and requiring a large amount of data
transmission to the cloud. For example, some delay-sensitive
applications, like VR/AR [4], smart grid system [5], and med-
ical health service systems [6], require critical computation re-
sponse delays that may be as low as a few milliseconds, whereas
data transmission to the cloud usually requires tens to hundreds
of milliseconds.

Figure 1: Edge computing with cloud.

Edge computing provides distributive computation and stor-
age resources at the network edge, e.g. base stations [7] and
access points [8], and extends cloud services to the network
edge, bringing computing, communication and storage services
close to end users, providing a complement for cloud comput-
ing [9, 10]. An example of edge computing is shown in Fig. 1.
Computation tasks with low delay requirements are processed
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by edge computing instead of sending them to the cloud, thus
avoiding data transmission to the cloud, and so reducing re-
sponse time and eliminating network congestion [11, 12, 13].
At the same time, the cloud can provide significant computa-
tion and storage resources for computation tasks that have high
computation requirements and high delay tolerances. Existing
works [14, 15, 16, 17, 18] discuss and describe efficient com-
putation offloading and resource allocations (computation of-
floading signifies the combination of computation offloading
and resource allocation in this paper) in edge computing sys-
tems that contain heterogeneous computation devices, i.e. ter-
minals, edge nodes and cloud, where terminals and edge nodes
provide limited distributed resources and the cloud provides a
significant amount of resources but with long service delays.
Most of these existing works consider homogeneous computa-
tion tasks and allocate dedicated resources to each task. How-
ever, considering that a significant number of terminals may be
connected to an edge computing network, the resource man-
agement of each individual computation task is a challenging
problem.

In an edge computing network, computation tasks are usu-
ally heterogeneous or from different applications with different
requirements: different computation requirements, storage re-
quirements, and response delays. For example, in the Inter-
net of Vehicles, computation tasks associated with collision-
avoidance systems have lower response delay requirements than
those for navigation applications. Another example arises in
VR/AR applications, where tasks require a large number of
computation resources for motion processing and low response
delays to avoid user dizziness; the tasks, in this case, are dif-
ferent from the computation tasks for collision-avoidance sys-
tems even though both have tight delay requirements. With all
these different tasks from different applications, one practical
and efficient way is to group the tasks of the same application
and process together with dedicated resources for each applica-
tion, which obtains a high resource efficiency and simplifies the
management of computation resources. Specifically, the task
processing in edge nodes can be grouped by application type,
where all tasks of the same application (from different termi-
nals) are processed together by the same software running in an
edge node. However, existing publications on task offloading
consider tasks with different computation, storage and/or delay
requirements, but these tasks are not categorized for process-
ing, leading to a totally different resource allocation and task
offloading design compared to the work in this paper. Accord-
ingly, the key novelty of the proposed approach is a new and
efficient way of processing computation tasks based on appli-
cation types in edge computing. It also provides an application-
aware computation offloading scheme that allocates resources
according to different application types, aiming to enhance sys-
tem performance and satisfy the QoS requirements of the rel-
evant applications. To our knowledge, there has been no pre-
vious work in edge computing that considers the processing
of computation tasks based on application types in this man-
ner. Specifically, we investigate the application-aware compu-
tation offloading problem in edge computing networks where
the resources of terminals, edge nodes, and cloud are consid-

ered, and the computation tasks of different application types
are processed accordingly. Without loss of generality, we use
the terms type of application and type of task interchangeably
in this paper.

The terminals in edge computing networks are usually mo-
bile devices, such as smartphones and tablets. These mobile
devices are typically powered by batteries and, because of their
small sizes and limited energy batteries, these mobile devices
are limited by their energy consumption. Furthermore, mo-
bile devices continue to evolve with more powerful processors,
making battery life an ongoing challenge for user applications.
As a result, energy consumption optimization has become an in-
creasingly important consideration in the computation offload-
ing design in edge computing networks. In this paper, we focus
on the energy consumption minimization problem under com-
putation and storage resources constraints, while at the same
time, limiting the response delay of computation tasks by a
threshold for each relevant application type. The main contri-
butions of this paper are as follows.

1. A mathematical model for the application-aware com-
putation offloading problem with terminals, edge nodes
and cloud is provided, where the energy consumption is
minimized under resources and application response de-
lay constraints. The mathematical model is a non-convex
optimization problem, and the problem is converted into
lower- and upper-bound convex problems based on vari-
able relaxations.

2. An algorithm based on the branch-and-bound method is
proposed, where the lower- and upper-bound convex prob-
lems are solved to provide lower- and upper-bound solu-
tions of the original problem, and the two solutions iter-
atively approach the final optimal solution during algo-
rithm execution.

3. We analyze the gap between the solution from the pro-
posed algorithm and the solution of the original problem.
We also analyze the convergence of the algorithm.

4. The performance of the proposed algorithm is evaluated
and we demonstrate that the proposed algorithm guaran-
tees the requirements of applications, and achieves the
required performance.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. In Section III, we provide a sys-
tem model and problem formulation for the application-aware
computation offloading problem in edge computing. In Sec-
tion IV, we analyze the original non-convex problem, convert
the problem into lower- and upper-bound convex problems, and
a new algorithm is provided to solve problems. Section V nu-
merically evaluates the proposed algorithm. Section VI pro-
vides conclusions.

2. Related Work

In an edge computing network, terminals, edge nodes and
cloud provide significantly different computation services, and
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a number of existing works focus on efficient computation of-
floading, taking account of resources from computation devices
with different characteristics. Some existing work considers
computation offloading problems in scenarios with both termi-
nals and edge nodes. For example, Li et al. [19] investigated
collaborative task offloading in edge computing and provided
an online incentive mechanism, where smartphone users and a
base station integrating edge servers were considered in the sys-
tem, and nearby smartphones can collaborate with the base sta-
tion for task processing. Similarly, He et al. [20] provided a col-
laborative task offloading method, where neighboring terminals
help execute tasks and obtain certain momentary rewards. Dinh
et al. [21] provided a new computation task offloading method
where a computation task may be offloaded to more than one
edge node, and the task execution latency and the energy con-
sumption of the terminal are improved. Cao et al. [22] mini-
mized the energy consumption of computation offloading in an
edge computing network where only one user node, one helper
node, and one edge node are considered. The helper node can
relay data to the edge node and process tasks from the user
node. Qian et al. [23] minimized the response delay by jointly
optimizing wireless communications and computation resource
allocation, where the nonorthogonal multiple access (NOMA)
technology was applied to enable multiple terminals simultane-
ously to offload data to the edge node through an uplink. Li et
al. [24] proposed a new task offloading strategy to offload a task
to more than one edge node, then a task was repetitively pro-
cessed by edge nodes simultaneously, thereby reducing down-
link latency. Gao et al. [25] proposed a two-stage comput-
ing offloading strategy to minimize the task processing delay.
Their first stage was to optimally offload workloads to the MEC
server, and the second stage was to arrange the processing or-
der of offloading tasks at the server. Tang et al. [26] proposed
a deep reinforcement learning-based distributed offloading al-
gorithm that enabled mobile devices to make their offloading
decisions in a decentralized manner; the algorithm turned out
to be efficient in scenarios where the tasks were delay sensi-
tive or the load levels at the edge nodes were high. In addition,
in our previous work [27, 28], we investigated computation of-
floading problems where terminals and edge nodes were con-
sidered, and the long-term performance was optimized. Lya-
punov optimization was applied to convert the long-term opti-
mization problem into a conventional optimization problem that
provided an upper bound to the original one. Wang et al. [29]
investigated the computation offloading problem in an intelli-
gent surveillance application, where some captured surveillance
video frames were offloaded to nearby edge servers to enhance
the overall recognition accuracy. However, the work in [29] is
only applicable to intelligent surveillance applications. There
are publications on computation offloading and resource alloca-
tion in vehicular edge computing networks, where edge servers,
like Road Side Units (RSUs), provide computation resources to
improve the QoS of vehicular applications. Zeng et al. [30] in-
vestigated a computation offloading problem in vehicular edge
computing networks, where volunteer vehicles can handle the
overloaded tasks from servers to obtain rewards. A Stackelberg
game was applied to model the interactions between requesting

vehicles and servers. Wang et al. [31] investigated the delay of
task processing in a computation offloading problem in vehic-
ular edge computing networks, and the Walrasian equilibrium
was derived for the optimization problem considering compu-
tation offloading and resource allocation. Zeng et al. [32] in-
vestigated a caching collaboration problem between servers in
vehicular edge computing networks, and proposed a collabora-
tive caching strategy that is able to optimally cache supporting
data for computation tasks.

Some existing work considers the computation offloading
problem in scenarios where terminals, edge nodes and the cloud
together provide computation resources to terminals. For ex-
ample, Guo et al. [14] investigated the computation offload-
ing problem where terminals had hybrid fiber–wireless (FiWi)
multi-access networks to the edge computing system, and ter-
minals, edge nodes and central cloud were considered. Hong et
al. [15] investigated the computation offloading problem with
terminals of the industrial Internet of things (IIoT), and a dis-
tributed method based on game theory was proposed for the
IIoT-edge-cloud computing system. Kai et al. [16] investigated
the computation offloading problem with the sum latency of
all mobile devices as the minimization objective function. Hu
et al. [33] considered a heterogeneous cellular network (Het-
Net) where small base stations (SBSs) were equipped with edge
clouds and a macro base station (MBS) was connected to a cen-
tral cloud. Guo et al. [34] investigated the computation offload-
ing problem in densely deployed small cell networks, where
SBSs and an MBS were equipped with edge computing servers.
Mobile terminals were able to connect to SBSs or the MBS, and
offload computation tasks through different wireless channels.
Wang et al. [35] investigated the computation offloading prob-
lem in a multi-layer edge computing (HetMEC) network where
tasks were allowed to be offloaded to upper layer edge comput-
ing servers with more computation resources, and could finally
go to the cloud. Kiani et al. [36] investigated a hierarchical
computation offloading problem by introducing the concept of
hierarchical computational resource levels. Peng et al. [37] in-
vestigated a constrained multi-objective computation offloading
problem taking into account delay and energy consumption in a
collaborative mobile edge computing network, where multiple
terminals, multiple edge nodes and multiple cloud servers were
included. Vakilian et al. [38] investigated a multi-objective
offloading problem that considered the response time, energy
cost, and rental cost of cloud resources in a fog computing
network, where the multi-objective problem was transformed
into a single-objective problem and solved by a distributed al-
gorithm for a tradeoff among those objectives.

Although existing works on task offloading in edge com-
puting consider homogeneous or heterogeneous tasks with var-
ious computation, storage and/or delay requirements, there are
no considerations to resource isolation and optimal resource al-
locations for different applications. For practical resource ef-
ficiency purposes, tasks from different applications should be
categorized for processing, and the resource allocation and the
task offloading should be optimized taking into account appli-
cation requirements and network resources. In this paper, we
investigate an application-aware computation offloading prob-

3



lem, where terminals, edge nodes and cloud jointly provide
computing resources for tasks from different applications that
have different computation, storage and delay requirements. We
provide a non-convex optimization problem for the application-
aware computation offloading problem and change the non- con-
vex problem into lower- and upper-bound convex problems with
the relaxation method, then an algorithm based on branch-and-
bound is designed to push the solutions of the lower- and upper-
bound problems to approach the optimal solution.

3. System Model and Problem Formulation

We investigate the computation offloading from terminals to
edge nodes and further computation offloading from edge nodes
to the cloud as shown in Fig. 1. We consider a network with a
set of terminals denoted by N , and a set of edge nodes denoted
by M. In the network, user terminals can be smartphones or
other smart devices wirelessly connected to an edge node for
computation services. Edge nodes, such as WiFi access points,
or base stations, have limited computing and storage capaci-
ties that provide distributive computation services for terminals.
The edge nodes can further offload computation tasks to the
cloud if they lack the computation resources needed to meet the
requirements and the computation delay is within the tolerance
of the application delay. If the computation task is offloaded
to the cloud from an edge node, the required data is transmit-
ted from the edge nodes to the cloud. We also assume that the
computation and storage capacities of the cloud are infinite.

We assume that each terminal generates one type of com-
putation task, and computation tasks of type τi from terminal
i ∈ N arrive according to a Poisson process with arrival rate λi.
Different types of computation tasks have different computation
requirements, storage requirements and data sizes; for a com-
putation task of terminal i these are denoted by {Rτi ,Zτi , S τi },
where Rτi is the computation requirement (number of CPU cy-
cles), Zτi is the data size and S τi is the storage requirement as-
sociated with the computation task type τi. For simplicity, the
data size of a task and the storage requirement to process this
computation task are dictated by the task according to its type
of application. It is noted that different terminals may have the
same type of computation tasks, i.e. τi = τ j, i , j. In this
problem, a set of application types J is considered that asso-
ciates a set of computation task type J accordingly, and we
have τi ∈ J , ∀i ∈ N .

The computation tasks can be processed by local comput-
ing at terminals, edge computing at edge nodes, and/or cloud
computing at the cloud with computation offloading strategies.
We define αim to be the fraction of the offloaded tasks from ter-
minal i to edge node m ∈ {0,M}, so that αimλi the computation
workload offloaded. When m = 0, αi0 is the fraction of the
computation workload processed by local computing, and αi0λi

is the computation workload locally processed. It is noted that
an individual computation task is processed solely at the termi-
nal, or at the edge node, or in the cloud, and there is no splitting
of a task. An edge node may serve multiple terminals and these
terminals may generate different types of computation tasks; the
edge node processes the computation tasks at the edge node or

further offloads to the cloud for processing, introducing a large
transmission delay. The notations used are listed in Table I.

Table 1: Summary of used notations

Notation Description

N Terminal set
M Edge node set
J Application type set
N Number of terminals
M Number of edge nodes
J Number of application types
Mi Edge nodes that serve terminal i
Nm Terminals that are served by edge node m
N j

m Terminals with type j tasks and served by edge node m
R j Computation requirement of a type j computation task
Z j Data size associated with a type j computation task
S j Storage requirement to process a type j computation task
T j Delay threshold of type j computation tasks
Fi Computation capacity of terminal i
FEm Computation capacity of edge node m
S Em Storage capacity of edge node m
S Li Storage capacity of terminal i
ei Energy consumption of terminal i
κ Energy consumption coefficient
Λ

j
m Type j workload at edge node m

ϑ
j
mc Transmission delay of type j task from node m to cloud
ηim Energy of transmitting a unit data from terminal i to node m
Ciτi Transmission rate from terminal i to edge node τi
λi Computation task arrival rate of terminal i
αi0 Proportion of tasks processed locally at terminal i
αim Offloaded task proportion of terminal i to node m
β

j
m0 Proportion of type j tasks processed at node m
β

j
mc Offloaded proportion of type j tasks from node m to cloud

f j
m Computation resource usage at node m for type j tasks

3.1. Local Computing

Local computing at a terminal is limited compared to edge
computing and cloud computing because of very limited com-
putation resources and energy storage, but local computing can
provide computation services without data transmission delay.
Fi is used to denote the number of computation resources (CPU
cycles per second) of terminal i, and we assume that task pro-
cessing at the terminal uses all of the computation resources of
the terminal, so that the processing time of the non-offloaded
task is

DLi =
Rτi

Fi
. (1)

Following [39, 40], the energy consumption of the terminal
for the computation task processed is

ei = κF3
i DLi = κF2

i Rτi , (2)

where κ is the energy consumption coefficient.

3.2. Edge Computing

Edge computing processes the offloaded computation task
using data associated with the task. The uplink transmission
from the terminal to each edge node is assumed to be an M/M/1
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queuing system for simplicity, so that the delay including queu-
ing and transmission delay is

DUim =
1

Cim
Zτi
− αimλi

, (3)

where Cim is the assumed constant transmission rate. The en-
ergy consumption for the data transmission is simply assumed
to be

eim = ηimZτi , (4)

where ηim is the energy to transmit a unit of data.
An edge node provides connection services for multiple ter-

minals and may process the offloaded tasks from multiple ter-
minals. An edge node m may receive workload with the same
application type j from different terminals; this workload is
merged as

Λ
j
m =

∑
i∈N j

m

αimλi,

where N j
m is the set of terminals with type j tasks and served

by edge node m, and Λ
j
m is the merged workload (a merged

Poisson process) with application type j at edge node m. We
assume an M/M/1 queuing system is applied in the processing
of the offloaded computation workloads at the edge node for
simplicity. Two tandem M/M/1 queues (the first being uplink
transmission and the second computation processing at the edge
node) are traversed by the offloaded tasks. The output process
of the first M/M/1 queue is Poisson justifying Poisson arrivals
for the second queue. The delay (including queuing delay and
computing delay) of type j offloaded tasks at edge node m is

DS j
m =

1
f j
m

R j
− β

j
m0Λ

j
m

, (5)

where f j
m is the computation resource (in terms of CPU cycles/s)

allocated to process the type j offloaded tasks at edge node m,
and β j

m0 is the proportion of type j offloaded tasks being pro-
cessed locally at edge node m. The remaining type j offloaded
tasks (β j

mcΛ
j
m) are conveyed to the cloud for processing.

3.3. Cloud Computing
The amount of type j offloaded tasks processed by the cloud

is β j
mcΛ

j
m, and we assume the computation resource at the cloud

is sufficiently large for us to ignore the processing delay in the
cloud [33]. We assume also that the transmission delay of the
data associated with the type j task from edge node m to the
cloud is a constant, ϑ j

mc.

3.4. Storage Usage
We assume that a computation task needs both computa-

tion resources and storage spaces to carry out the processing,
whereas terminals and edge nodes have limited storage resources.
Accordingly, the storage usage in the terminal i for local com-
puting is αi0λiS τi . At an edge node, offloaded tasks from dif-
ferent terminals are merged together according to application
types, and the edge node allocates computation resources and
storage space for each type of task. The storage usage for type
j tasks in edge node m is β j

m0Λ
j
mS j.

3.5. Problem Formulation

From a terminal perspective, the entire average task delay is
formulated as follows:

Di = αi0DLi +
∑

m∈Mi

αim(DUim + βτi
m0DS τi

m + βτi
mcϑ

τi
mc)

=
αi0Rτi

Fi
+

∑
m∈Mi

αim

(
1

Cim
Zτi
− αimλi

+
βτi

m0
f τi
m

Rτi
− βτi

m0Λ
τi
m

+ βτi
mcϑ

τi
mc

)
.

The optimization problem is expressed as follows

P1: min
∑
i∈N

αi0ei +
∑

m∈Mi

αimeim

 (6)

s.t. αi0 +
∑

m∈Mi

αim = 1 ∀i ∈ N , (7)

βτi
m0αim + βτi

mcαim = αim ∀m ∈ Mi, i ∈ N , (8)

αi0λiS τi ≤ S Li ∀i ∈ N , (9)

∑
j∈J

β
j
m0Λ

j
mS j ≤ S Em ∀m ∈ M, (10)

∑
j∈J

f j
m ≤ FEm ∀m ∈ M, (11)

αi0Rτi

Fi
+

∑
m∈Mi

αim

(
1

Cim
Zτi
− αimλi

+
βτi

m0
f τi
m

Rτi
− βτi

m0Λ
τi
m

+ βτi
mcϑ

τi
mc

)
≤ Tτi ∀i ∈ N ,

(12)

0 ≤ αim ≤ 1 ∀m ∈ {0} ∪ Mi, i ∈ N , (13)

0 ≤ β j
mt ≤ 1 ∀ j ∈ J ,m ∈ M, t ∈ {0} ∪ {c}, (14)

0 ≤ f j
m ≤ FEm ∀ j ∈ J ,m ∈ M. (15)

In Problem P1, the decision variables are αim, β j
mt, f j

m. Usu-
ally, terminals in an edge computing network are mobile de-
vices, with limited energy storage. Minimizing energy con-
sumption becomes a critical way to extend the lifetimes of ter-
minals in the network. In this problem, the average energy con-
sumption of terminals (average energy usage of data transmis-
sion and local computing) is the minimized objective function.
Constraint (7) implies that the computation tasks are processed
completely, where the summation of computation tasks allo-
cated to local computing and for offloading is equal to the total
workload. Constraint (8) implies that the computation tasks of-
floaded to an edge node are processed by the edge node and/or
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the cloud, and the number of offloaded tasks is equal to the sum-
mation of the tasks processed by edge computing and by cloud
computing. Constraint (8) also indicates that if no computation
task of terminal i is offloaded to the edge node m (αim = 0),
this constraint has no effect. Constraints (9) and (10) entail that
the storage usage at the terminal and the edge node is limited
by the storage capacities of the terminal and the edge node, re-
spectively. Constraint (11) ensures that computation resource
usage does not exceed the capacity of edge node m, where f j

m
represents the number of computation resources to process type
j tasks at edge node m. Constraint (12) enforces that the task
delay of each terminal does not exceed the threshold associated
with the task type, which is decided by the application hosted
by the terminals. Constraints (13) to (15) give the ranges of the
variables in this formulation.

4. Problem Analysis and Algorithm Design

The original problem P1 is a non-convex optimization prob-
lem, because Constraints (8), (10) and (12) are non-convex. In
this section, we provide strategies to change the non-convex
optimization problem into new convex optimization problems,
where the non-convex constraints of the original problem are
converted into linear constraints by relaxations to obtain upper-
and lower-bound solutions of the original problem. From (12),
for a given i and m, we let

βτi
m0αim

f τi
m

Rτi
− βτi

m0
∑

k∈Nτi
m
αkmλk

=
1

vim
,

then we have

f τi
m = vimβ

τi
m0αimRτi + βτi

m0Rτi

∑
k∈Nτi

m

αkmλk,

which is re-expressed as

f j
m = vimβ

j
m0αimR j + β

j
m0R j

∑
k∈N j

m

αkmλk,

where i ∈ N j
m.

To equivalently convert Problem P1 into a new problem P2,
the product terms of the decision variables in the equations are
all replaced with dummy variables ω0

im and ωc
im, where ω0

im =

βτi
m0αim, and ωc

im = βτi
mcαim. The equivalent problem for P2 is

P2: min
∑
i∈N

αi0κF2
i Rτi +

∑
m∈Mi

αimηimZτi

 (16)

s.t. αi0 +
∑

m∈Mi

αim = 1 ∀i ∈ N , (17)

ω0
im + ωc

im = αim ∀m ∈ Mi, i ∈ N , (18)

αi0λiS τi ≤ S Li ∀i ∈ N , (19)

∑
j∈J

∑
i∈N j

m

ω0
imλiS j ≤ S Em ∀m ∈ M, (20)

∑
j∈J

vimω
0
imR j +

∑
j∈J

∑
k∈N j

m

ω0
kmλkR j ≤ FEm

∃i ∈ N j
m,∀m ∈ M,

(21)

αi0Rτi

Fi
+

∑
m∈Mi

(
αim

Cim
Zτi
− αimλi

+
1

vim
+ ωc

imϑ
τi
mc

)
≤ Tτi

∀i ∈ N ,

(22)

Cim

Zτi

− αimλi > 0 ∀m ∈ {0} ∪ Mi, i ∈ N , (23)

0 ≤ αim ≤ 1 ∀m ∈ {0} ∪ Mi, i ∈ N , (24)

0 ≤ ω0
im ≤ 1 ∀m ∈ Mi, i ∈ N , (25)

0 ≤ ωc
im ≤ 1 ∀m ∈ Mi, i ∈ N , (26)

vim > 0 ∀m ∈ Mi, i ∈ N , (27)

In Problem P2, the decision variables are αi0, αim, ω0
im, ωc

im,
vim. We observe that, with the exception of Constraint (21), all
other constraints and the objective function are linear or convex.
The term vimω

0
im in Constraint (21) leads to non-convexity, and

so we relax this term to make the problem convex while achiev-
ing upper and lower bounds. If the range of vim is [v̌im, v̂im], we
have

v̌imω
0
im ≤ vimω

0
im ≤ v̂imω

0
im.

Then, accordingly, we propose two new convex optimization
problems P3 and P4 to provide the lower- and upper-bound so-
lutions, respectively, for Problem P2. Problem P3 is

P3: min
∑
i∈N

αi0κF2
i Rτi +

∑
m∈Mi

αimηimZτi

 (28)

s.t.
∑
j∈J

v̌imω
0
imR j +

∑
j∈J

∑
k∈N j

m

ω0
kmλkR j ≤ FEm

∃i ∈ N j
m,∀m ∈ M,

(29)

(17) − (20), (22) − (27), (30)

where the objective function and all constraints are the same as
in P2, except Constraint (21) of P2 which is relaxed as Con-
straint (29) of P3 to have a larger search area. Accordingly, the
solution of Problem P3 will be a lower bound for the solution
of Problem P2. Similarly, Problem P4 is formulated as

P4: min
∑
i∈N

αi0κF2
i Rτi +

∑
m∈Mi

αimηimZτi

 (31)
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s.t.
∑
j∈J

v̂imω
0
imR j +

∑
j∈J

∑
k∈N j

m

ω0
kmλkR j ≤ FEm

∃i ∈ N j
m,∀m ∈ M,

(32)

(17) − (20), (22) − (27), (33)

and this problem provides the upper-bound solution of Prob-
lem P2, because the search area is shrunk by the relaxation.

We note that the two problems P3 and P4 are convex, and
can be easily solved by optimization solvers. However, the so-
lution of Problem P3 may be infeasible for problem P2, because
the relaxation may result in the solution being outside the fea-
sible region of Problem P2. On the other hand, the solution of
Problem P4 is feasible for Problem P2, because the shrunken
search area is contained by the original feasible region. How-
ever, the upper-bound result obtained by Problem P4 may be
much larger than the optimal value of problem P2. Based on
the branch-and-bound method, we propose Algorithm 1 to de-
rive the solution of Problem P2. According to the branch-and-
bound method, the ranges of variables are iteratively divided
into small ranges. As the ranges of the variables reduce, the
difference between the lower bound obtained by Problem P3
and the upper bound obtained by Problem P4 becomes smaller,
and both upper and lower bounds gradually approach the opti-
mal result of Problem P2.

In the lower-bound case, considering the potential infeasi-
bility of the solution provided by Problem P3 for Problem P2,
we verify during the branch-and-bound procedure that the so-
lution obtained by Problem P3 to be feasible for Problem P2.
If the solution is feasible for Problem P2, the solution must be
optimal for Problem P2 within that variable range. This is be-
cause the solution is lower bound and feasible. When the differ-
ence between the minimal upper bound and the maximal lower
bound in all variable ranges is less than a given value, the al-
gorithm stops. The minimal upper-bound value is output as the
final result, and we are ensured that the solution of the minimal
upper bound satisfies the feasibility of Problem P2. The details
of the algorithm is shown in Algorithm 1.

In Algorithm 1, we use a sufficiently large constant value C
to bound the variable v without loss of generality. In Lines 3
and 4, Problem P3 and Problem P4 are solved within the ini-
tial variable range, the lower-bound value and the upper-bound
value in this step are the lowest and highest values, respectively,
during the algorithm. If the lower-bound solution is feasible for
Problem P2, this solution is the optimal solution of the origi-
nal problem, so the algorithm stops here. In the while loop, the
procedure is based on the branch-and-bound method. In Line 7,
a variable range is divided equally into two ranges, and Prob-
lem P3 and Problem P4 are solved in Line 8 accordingly. Then
the minimal upper-bound value U is updated to save the best
feasible solution so far. Feasibilities of solutions of Problem P3
are verified at Lines 9 and 12; if feasible, the lower-bound value
is compared to the minimal upper-bound value, where the min-
imal upper-bound value may be updated, and the new variable
range will not be further divided. The bound operations are
in Lines 15 to 17, and all the variable ranges to be further di-
vided are checked, where the ones that have the lower-bound
value higher than the minimal upper-bound value are deleted.

Algorithm 1: Application-aware algorithm for com-
putation offloading

Input: Computation request arrival rate λi of terminal
i, terminal computation capacity Fi, terminal storage
limitation S Li, computation capacity FEm of edge
node m, edge node storage limitation S Ei, delay
threshold T j of type j computation tasks, accuracy
parameter ξ.

Output: Solution S = {α,ω, v}, objective function
value U.

1 H ← ∅.
2 H0 = {α,ω, v|0 ≤ α ≤ 1, 0 ≤ ω ≤ 1, 0 ≤ v ≤ C}.
3 Solve problem P3 and problem P4 with variable range

H0. The obtained objective values are LB(H0) and
UB(H0), and the solutions are LBS (H0) and
UBS (H0), respectively.

4 Check the feasibility of LBS (H0) for problem P2, if
feasible, S = LBS (H0), U = LB(H0), Return.

5 Set the lower and upper bounds as L = LB(H0),
U = UB(H0), S = UBS (H0)

6 while (U − L) > ξ do
7 Choose one of the variables {α,ω, v} in H0 and

maintain the other two variable ranges, then
divide the selected variable range equally into two
variable ranges H1 and H2.

8 Solve problem P3 and problem P4 twice with the
variable ranges H1 and H2, respectively. The
obtained objective values are LB(H1), UB(H1),
LB(H2), UB(H2) and the solutions are LBS (H1),
UBS (H1), LBS (H2), UBS (H2) accordingly.

9 If LBS (H1) is feasible for problem P2
10 U = min{U, LB(H1)}, updata S = LBS (H1) if U

is updated as LB(H1).
11 else H = H ∪ H1, U = min{U,UB(H1)}.
12 If LBS (H2) is feasible for problem P2
13 U = min{U, LB(H2)}, updata S = LBS (H2) if U

is updated as LB(H2).
14 else H = H ∪ H2, U = min{U,UB(H2)}.
15 For Θ ∈ H
16 If U ≤ LB(Θ)
17 Delete Θ from H.
18 L = min{LB(Θ)|Θ ∈ H}.
19 H0 = arg min{LB(Θ)|Θ ∈ H}.
20 Delete H0 in H.

21 Return.

This is because these ranges do not contain any better solutions
than the best one of those already obtained. At Line 19, a new
variable range that has the smallest lower-bound value is se-
lected for branching (divided equally into two ranges) in the
next loop. The minimal upper-bound value U and the maximal
lower-bound value L are predicted to approach each other. Fi-
nally, the algorithm stops when the difference between them is
less than the given accuracy parameter ξ. The following two
theorems indicate the convergence and the performance of Al-
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gorithm 1.
Theorem 1: Algorithm 1 is convergent, when ξ ≥ 0.
Proof: With the progress of the algorithm, the variable ranges

become smaller and smaller, and the difference approaches 0.
The three constraints (21), (29) and (32) become identical in
the limit because the variables have the same value; the solu-
tions are then the same. In addition, Problems P3 and P4 have
the same objective function, so that the difference between the
minimal upper bound from Problem P4 and the maximal lower
bound from Problem P3 approaches 0. Therefore, (U − L) ≤ ξ
can be achieved, which guarantees the convergency of Algo-
rithm 1. �

Theorem 2: The difference between the result U of Algo-
rithm 1 and the optimal result P∗ of Problem P2 is no larger
than ξ.

Proof: When the algorithm stops, we have U−L ≤ ξ, where
U is the minimal upper bound and L is the maximal lower
bound. Suppose P∗ is the optimal result of problem P2, and
we have L ≤ P∗ ≤ U, therefore, we have U − P∗ ≤ ξ. This
completes the proof. �

When Algorithm 1 stops; that is, the difference between
the minimal upper-bound, U, and the maximal lower bound,
L, does not exceed ξ (U − L ≤ ξ), the bound solution S is taken
to be the final solution of the original problem. We note that
this solution cannot be guaranteed to be optimal for the origi-
nal problem. It is still close to optimal, however, because the
optimal solution must lie between the two bounds and they are
separated by less than ξ (Theorem 2).

5. Numerical Results

The performance of the proposed application-aware algo-
rithm is evaluated in different experimental scenarios. In the
experimental scenarios, terminals are randomly located in the
network. The parameter settings are listed in Table 2.

Table 2: Parameter settings

Parameter Value

N 40 ∼ 60
M 10
J 2, 3, 5
R j unif[0.45, 0.55], unif[1.0, 1.2] Giga CPU cycles
Z j unif[0.2, 0.3] Mbit
S j unif[0.9, 1.1], unif[1.9, 2.1] MBtye
T j 150, 200, 300 ms
Fi unif[4.5, 5.5], unif[9.5, 10.5] GHz
FEm unif[19.5, 20.5] GHz
S Li unif[1.4, 1.6] MBtye
S Em unif[5.5, 6.5] MBtye
Ciτi unif[4.5, 5.5] Mbit/s
ηim 0.25 J/Mbit
ϑ

j
mc 400 ms
κ 1 × 10−28

λi 1

5.1. Comparison to Application-Unaware Algorithms

To demonstrate the performance advantages of the application-
aware algorithm over application-unaware methods, we con-
sider two situations that can be viewed as application-unaware.
The first is a situation where all computation tasks are treated
as having the same application, and there is only one applica-
tion type in the network, then all tasks share the same compu-
tation resources. This is the shared single server in the queu-
ing system and has the largest stochastic gain. We name this
method the shared-computation algorithm here. However, this
single server sharing only provides an unrealistic lower-bound
benchmark for practical situations where, in practice, the com-
putation task processing is stratified by application types. An-
other application-unaware situation is where each terminal has
its own application type, and all application types are different.
This involves a dedicated computation resource for each termi-
nal, and no computation resource is shared. In queuing terms,
it has the lowest stochastic gain. We name this method the
dedicated-computation algorithm here. Dedicated computation
resource allocation is also impractical since tasks of the same
application (from different terminals) ought to be processed to-
gether by shared computation resources for higher stochastic
gain. In this subsection, the performances are compared for
the three methods of considering application types of tasks:
the shared-computation algorithm, the dedicated-computation
algorithm, and the proposed application-aware algorithm, re-
spectively.

Fig. 2 shows the performance comparison of the three algo-
rithms with different numbers of terminals. The shared-computation
algorithm considers only one application type, the dedicated-
computation algorithm considers N application types, and the
application-aware algorithm considers three application types.
In Fig. 2(a), the average energy consumptions per terminal of
the three algorithms are compared: the shared-computation al-
gorithm has the lowest energy consumption, followed by the
application-aware algorithm and the dedicated-computation al-
gorithm. Fig. 2(b) shows the average offloading ratio per termi-
nal; in this case, the shared-computation algorithm has the high-
est offloading ratio, followed by the application-aware algo-
rithm and the dedicated-computation algorithm. The trends in
Fig. 2(a) and (b) are because the shared-computation algorithm
has the highest stochastic gain, followed by the application-
aware algorithm and the dedicated-computation algorithm. The
algorithm with the high stochastic gain can increase computa-
tion resource utilization, so that edge nodes can accommodate
more tasks, which increases the offloading ratio and reduces
energy consumption at terminals. As the number of terminals
increases, energy consumption increases, and the offloading ra-
tio decreases. This is because the limited edge computing re-
source is shared by more terminals, which leads to more tasks
being processed at terminals. The energy consumption and the
offloading ratios of the three algorithms are almost the same
when the number of terminals reaches 60. This is because the
edge nodes are heavily loaded with 60 terminals and a large por-
tion of tasks are processed at terminals, incurring high energy
consumption.
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Figure 2: Algorithm performance comparison with different No. of terminals.
(a) Average energy consumption per terminal. (b) Average offloading ratio per
terminal.

The above performance comparisons indicate that the application-
aware algorithm is more efficient than the dedicated-computation
algorithm, accommodating more computation tasks and reduc-
ing energy consumption at terminals. The application-aware
algorithm also processes computation tasks according to appli-
cation types of tasks, which is more practical than the shared-
computation algorithm.

5.2. Application-aware Algorithm Performance
The performance of the application-aware algorithm is in-

vestigated by considering different application types. Different
application types may be defined by different computation re-
quirements, storage requirements, and/or delay thresholds.

Fig. 3 shows the performance of the application-aware al-
gorithm with application types defined by different computa-
tion requirements: there are computation tasks that require large
computation resources (computation hungry) with this param-
eter uniformly distributed in unif[1.0, 1.2] GHz. The perfor-
mance is investigated when the ratio of computation-hungry
tasks increases. In the experiments, we investigate three sce-
narios where 2, 3 and 5 application types are considered, re-
spectively. For each scenario, only one application type is com-
putation hungry, and the remaining application types have the
same computation requirement distribution, namely, unif[0.45,
0.55] GHz. The computation capacity at terminals is unif[9.5,

FIG3(a)-eps-converted-to.pdf

FIG3(b)-eps-converted-to.pdf

FIG3(c)-eps-converted-to.pdf

Figure 3: Algorithm performance with different computation hungry task ratios.
(a) Average energy consumption per terminal. (b) Average offloading ratio per
terminal. (c) Average offloading to the cloud ratio per terminal.

10.5] GHz and the delay threshold is 200 ms in the experiments.
Fig. 3(a) shows the comparison of energy consumption; note
that the algorithm with 5 application types has the highest en-
ergy consumption, followed by 3 application types and then by
2 application types. This is because fewer application types,
and higher stochastic grains for the same workload and compu-
tation resources, result in more tasks being processed by edge
computing reducing energy consumption at terminals. As the
ratio of computation-hungry tasks increases, the average energy
consumption increases. The reason is that the limited compu-
tation resources are shared by more computation tasks, leading
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to more tasks being processed at terminals and incurring more
energy consumption. When the computation-hungry task ratio
reaches 1, all tasks are computation hungry, and the three sce-
narios have only one application type (computation hungry). In
this case, the energy consumption of the three scenarios is the
same. Fig. 3(b) shows the average offloading ratio per termi-
nal: the average offloading ratio of the algorithm with 2 ap-
plication types has the largest offloading ratio, followed by 3
application types and by 5 application types. This is analogous
to Fig. 3(a) where the fewer the application types, the higher the
stochastic grain. The average offloading ratios decrease when
the computation-hungry task ratio increases, this is because the
limited computation resources at edge nodes force more task
processing at terminals. When the computation-hungry task
ratio reaches 1, the three scenarios have one application type,
and the average offloading ratios of the three scenarios are the
same. Fig. 3(c) shows the average offloading to the cloud ra-
tio. Here value of the algorithm with 5 application types has
the highest offloading ratio value, followed by 3 application
types and by 2 application types. This is because more addi-
tional application types reduce the benefit from resource shar-
ing (leading to a lower stochastic gain by edge computing).
These other application tasks (beyond edge computing) can be
offloaded to the cloud. The average offloading to cloud ratios
become large when the computation-hungry task ratio increases
because these demanding tasks create congestion as the capac-
ity of edge computing cannot handle the demand. This is shown
in Fig. 3(b). When the computation-hungry task ratio reaches
1, the three scenarios have the same value because they have
only one application type.

In Fig. 4, the performance of the application-aware algo-
rithm with application types defined by different storage re-
quirements is shown, and there is one task type that requires
large storage resources (storage hungry), uniformly distributed
as unif[1.9, 2.1] MByte. Similar to Fig. 3, we investigate three
scenarios where 2, 3 and 5 application types are considered and,
for each scenario, only one application type is storage hungry;
the other application types have the same storage requirement
distribution, unif[0.9, 1.1] MByte. The delay threshold is 200
ms in the experiments. The same measurements are compared
as the ratio of storage-hungry tasks increases. The curves for
the three scenarios are in Figs. 4(a) to (c). The trends of these
curves when the storage hungry task ratio increases, and the
explanations for these are similar to those for Figs. 3(a) to (c).

The algorithm performance with application types defined
by different delay thresholds is shown in Fig. 5, where one type
of task has a low delay threshold (delay sensitive), set to 150
ms. Similar to Fig. 3, we investigate three scenarios where 2,
3 and 5 application types are considered. For each scenario,
only one application type is delay sensitive, and the remaining
application types have the same delay threshold, set to 300 ms.
The same measurements are compared as the ratio of delay-
sensitive tasks increases. The graphs of these three scenarios
are in Figs. 5(a) to (c). The trends when the delay-sensitive
task ratio increases, and the explanations for these are similar
to those for Figs. 3(a) to (c). It is noted that in Fig. 5(b), when
the ratio of delay-sensitive tasks is zero, almost all tasks are of-

floaded to edge computing because of the high delay tolerance
(300 ms), and the three scenarios have almost the same aver-
age energy consumption as shown in Fig. 5(a). In Fig. 5(c), the
offloading to cloud ratio first increases and then decreases; this
is because when the delay-sensitive task ratio increases, edge
nodes have to accommodate tasks with a low delay threshold
(150 ms) and, as a result, the cloud has to accommodate more
tasks with high delay threshold (300 ms). When the delay-
sensitive task ratio increases further, most of the tasks are delay
sensitive, and the cloud cannot satisfy the delay threshold, so
the offload-to-cloud ratio decreases.

Table 3: Algorithm performance with hard tasks

Task ratio 0 20% 40% 60% 80% 100%

Energy 0.039 0.06 0.073 0.097 0.219 0.592
Offloading ratio 0.999 0.987 0.986 0.979 0.928 0.787

We also investigate the algorithm performance in a scenario
where two application types are considered and one type is dif-
ficult: computation hungry, storage hungry and delay sensitive.
In Table 3, the average energy consumption and average of-
floading ratio are shown when the ratio of difficult tasks in-
creases. The trends are similar to the previous cases where only
one requirement (computation, storage, or delay) is considered.

6. Conclusion

We have investigated the application-aware computation of-
floading problem where computation tasks of different applica-
tions may have different computation requirements, storage re-
quirements, and response delays. The problem is to minimize
the energy consumption of terminals with constraints on com-
putation, storage and response time thresholds from different
applications. We use relaxations to change the original non-
convex optimization problem into lower- and upper-bound con-
vex optimization problems and propose an algorithm. Finally,
the theoretical gap between the proposed algorithm solution and
the original problem solution has been analyzed. Numerical
results have verified that the proposed application-aware algo-
rithm can provide guaranteed QoS for tasks of different appli-
cation types.
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Figure 4: Algorithm performance with different storage hungry task ratios. (a)
Average energy consumption per terminal. (b) Average offloading ratio per
terminal. (c) Average offloading to cloud ratio per terminal.
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Figure 5: Algorithm performance with different delay sensitive task ratios. (a)
Average energy consumption per terminal. (b) Average offloading ratio per
terminal. (c) Average offloading to cloud ratio per terminal.
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