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Abstract— The Internet of Things (IoT) has emerged with
Distributed Ledger Technology (DLT) to address existing scala-
bility challenges and improve the trustworthiness of machine-to-
machine communication. Among the numerous potential benefits
of combining IoT and DLT, Blockchain, a subset of DLT, is a
crucial enabler to accelerate secure IoT adoption. Appending
a new block to a blockchain, especially in a blockchain-based
IoT ecosystem, requires more delay than expected. This delay is
one of several issues limiting the broader adoption of blockchain
within the IoT domain. To assess this delay, we develop a new
comprehensive model to estimate the time required to generate
a new block in a blockchain-enabled IoT system. To this end, we
develop sub-computation models and compare time consumption
associated with the block generation process by conducting an
extensive analysis of the following selected IoT layers: device
layer, cluster head layer, fog/edge layer, and cloud layer. Our
study identifies potential time-consuming steps in adding a new
block to a network. Our results demonstrate that the type of
blockchain framework and data encryption algorithms could
affect the block generation time and that Avalanche, Conflux,
Algorand, Polkadot Hyperledger Fabric outperforms Ethereum
in terms of block generation time in IoT networks. On the other
hand, the blockchain framework does not play a significant
role in block generation time for smaller data packets. We
also observed the benefit of using 256-bit ECC (elliptic curve
cryptography) encryption and the fog layer in IoT networks to
enhance the scalability of the block generation process. All in
all, our results indicate that the total block generation time
varies depending on the selected IoT framework, data encryption
algorithm, blockchain type, and key functions of the layers.
However, we found that time delays associated with queuing or
block size are negligible relative to the other key components of
block generation time.

Index Terms—Blockchain, Distributed Ledger Technology
(DLT), new block, Internet of Things (IoT), fog computing, cloud
computing, encryption algorithm, computation time.

I. INTRODUCTION

W ITH the advanced technologies in the Internet era,
people’s lifestyles have been enhanced in different

ways. The Internet of Things (IoT) is one of the key technolo-
gies facilitating smart life opportunities with daily substances
connected to the Internet. Furthermore, it aids consumers in
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delivering customized solutions based on specific user require-
ments across multiple platforms. The main reason for IoT
adoption is to derive intelligent information from the available
data to make real-time decisions, analyze performance, and
predict parameters. However, the full potential of the IoT has
not been achieved yet due to factors such as security loopholes,
lack of standards, heterogeneous behavior of devices, and
varied communication protocols. As forecast by Holst 2021
[1], the number of connected devices (IoT) worldwide will
almost triple from 8.74 billion in 2020 to more than 25.4
billion IoT devices in 2030. Correspondingly, scalability and
the current centralized architecture in the IoT network to
handle authentication, authorization, and device connections
will be a bottleneck in the future world. Therefore, blockchain
technology has been used to mitigate weaknesses in secu-
rity [2], [3], privacy, scalability, and transaction transparency
within the IoT framework.

A blockchain is a Distributed Ledger Technology (DLT) that
allows storing a linked list of records as a chain with additional
information for transactions. It is an alternative computer
model with key strengths such as tracking and recording each
transaction information and unmodifiable transaction records.
Thus, blockchain technology provides a secure and cost-
effective mechanism for transactions compared to traditional
methods. Blockchains are available in different types, such
as private (permissioned) and public (permission-less). Bit-
coin, Ethereum, Cardano, Avalanche, Conflux, Algorand, and
Polkadot are considered public blockchains, and Hyperledger
Fabric is an example of a private blockchain. Depending on
the application requirements, users have to adopt a suitable
blockchain type. Estimation of the time for generating a
new block is especially important because blockchains are
computationally expensive and require significant bandwidth
overhead and long latency. The PoW-based blockchain frame-
work, in particular, requires a significant time duration to
mine blocks. For example, a typical PoW, such as Bitcoin,
takes 10 minutes to mine each block [4]. Estimation of the
generation time of a new block can indicate whether or not
a particular PoW is suitable to meet the Quality of Service
(QoS) requirements of specific IoT applications.

Using blockchain technology in the IoT framework delivers
several advantages [5], such as (i) the ability to track and
analyze any activity of the chain for authorized officers, (ii)
improvements of the overall security, and (iii) creating smart
contracts to execute agreements if specific conditions are
available. It is essential to make real-time decisions in the IoT
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by analyzing the data transmitted from millions of connected
devices.

A. Motivation
In a blockchain, every transaction in a decentralized

system must undergo several processes requiring substantial
processing power and time [6]. Each data transaction must
go through various processes, including acceptance, mining,
dissemination, and validation by a network of nodes. A new
block generation time is straightforward and independent of
the delay in IoT layers (fog/edge/cloud) when IoT applica-
tions are not considered. In blockchain-enabled IoT systems,
however, the delay on the various IoT layers directly impacts
the block generation time, affecting the time required for data
to be added to the blockchain.

To add IoT transactions to the blockchain, the block gen-
eration time across the whole IoT system should be less than
the block interval (time) of the chosen blockchain framework.
Generating a model to estimate the total block generation
time will assist the professionals in discovering the areas that
need to be considered to reduce the total response time. So
far, however, there has been little discussion about the total
computation time in the IoT framework. Even though some
studies [7]–[9] have focused on generating models for time
consumption in different areas in the sensor network and the
IoT framework, a complete processing time estimation model
for the entire framework has not been generated.

Therefore, our model analyzes all functions in each IoT
layer and proposes a new, comprehensive, time estimation
model for understanding the impact of Blockchain-Enabled
IoT on the block generation process and evaluating the block
generation time in the IoT environment (device layer, cluster
head layer, fog/edge layer, and cloud layer). In addition, in
our proposed model, transaction queuing time and blockchain
network latency are taken into account.

Block time or block processing time is the required time
duration to create a new block or the time it takes to mine
a block or file in a blockchain. Block processing time is the
actual time within a network to validate transactions for one
block and add a new block to the blockchain. Based on the
blockchain type, the different blockchain frameworks require
different time durations. For example, the estimated block time
in Bitcoin is 10 minutes, whereas Ethereum’s is between 10
and 19 seconds.

The effectiveness of encryption algorithms outside the scope
of blockchain applications has been extensively explored,
e.g., [10]–[12], as encryption helps protect information and
sensitive data and can improve the security of communication
between client apps and servers. For blockchain applications,
the encryption time will account for a significant portion of
the total time spent on the block creation process. No existing
work provided an evaluation of the time to estimate generating
a new block in a blockchain-enabled IoT network. In this
study, we explore and analyze encryption methods that are
crucial when selecting a blockchain framework.

B. Main Contributions of this Paper
The main contributions of this paper include the following.

• We develop a new comprehensive time-computation
model of appending a new block to a blockchain to
estimate the new block generation time in a blockchain-
based IoT ecosystem. This requires the development of
sub-time computation models for each IoT layer (device
layer, CH layer, fog/edge layer, and cloud layer).

• We identify each IoT layer’s extreme time consumption
scenarios where we simulate our new time computation
model under different circumstances (varying data packet
size, blockchain type, and encryption algorithm).

• Using the model, we also identify the significance of the
fog layer for the block validation process by which we
achieve improvement of the efficiency of the entire block
generation process.

• We discover using our proposed model that the exist-
ing Hyperledger Fabric, Ethereum, Avalanche, Conflux,
Algorand, Polkadot blockchain frameworks, and 256-bit
ECC (elliptic curve cryptography) encryption algorithm
enhances the performance and scalability of the block
generation process in the blockchain-enabled IoT plat-
form.

• We observe based on our new model that the blockchain
framework does not play a significant role in block
generation time for smaller data packets.

C. Structure of Paper

The remainder of the paper is organized as follows. Section
II explains the background and related work. Section III high-
lights key layers of the IoT architecture, their main functions,
and the total computation time required to generate a new
block in the blockchain-based IoT architecture. Section IV
presents the simulation setup, Section V demonstrates results
and discussion in Section VI. Section VIII concludes the paper
and outlines possible future improvements (Section VII) for
the IoT and the blockchain technology.

II. BACKGROUND AND RELATED WORK

Most blockchain implementations that integrate into IoT
systems, such as Ethereum (Geth or Parity implementations)
and Hyperledger Fabric, generate blocks regardless of whether
sensing data arrives at the blockchain network. This block time
is generally stable and primarily determined by the hardware
infrastructure and a blockchain network’s consensus protocol
configurations. For instance, the PoW consensus protocol of
Ethereum has a mechanism to auto-adjust the mining difficulty
to ensure that the block time is stable around the desired figure,
regardless of the total hash rate of the network.

Previous literature has noted the importance of improving
the scalability of the IoT framework without slowing down
the transaction processing speed. Different studies have been
conducted to improve the efficiency of the data processing
in the IoT layers using different mechanisms, such as (i)
introducing energy optimization techniques [9], [17], [18],
different network architectures [10], [19], [20] for sensor
network, (ii) integrating edge and fog layers into the IoT
framework with enhancements [8], [21]–[24], (iii) introducing
various validation processes for the blockchain [25], and (iv)
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TABLE I
SUMMARY OF BACKGROUND LITERATURE

Study Research
Focused Area

Blockchain Type Sensors
/
Devices

Cloud /
Shared
Net-
work

Fog/Edge Security Mechanism Purpose of the Research Time Considerations

Mondal et al.
(2019) [10]

IoT architecture Bitcoin Yes Yes No Data encryption, traf-
fic encryption using
SSL / TSL protocol,
authentication

Proposing a tamper-proof block val-
idation process

Single block validation time

Jang et al.
(2019) [6]

IoT architecture Hyperledger
Fabric

Yes Yes Yes Not mentioned Develop block chain based fog sys-
tem architecture

Total response time (adding new block)

Tuli et al.
(2019) [11]

Fog / Edge and
cloud layers

Not mentioned Yes Yes Yes Integrity, authentica-
tion, encryption

Facilitating a framework for end-to-
end IoT-fog (edge)-cloud by reduc-
ing service delivery latency

Service delivery latency to fog/cloud
layer (network propagation delay and
application execution time)

Damianou et
al. (2019) [13]

Edge layer and
the blockchain
enabled IoT

Novel and
innovative hybrid
blockchain

Yes Yes Yes Default security in the
blockchain & Edge
network

To increase overall performance by
decreasing the memory capacity

Cloud service response time

Zhou et al.
(2018) [12]

Blockchain
security, data
storage, and
homomorphic
computation

Ethereum Yes Yes No ECIES encryption,
ECDSA digital
signature

Ensure data security of the
blockchain-based IoT network
using homomorphic computation
without accessing information

Cryptographic and mathematical com-
putation processing time block process-
ing time

Liang et al.
(2017) [14]

IoT (drone data
collection)

Bitcoin Yes Yes No PK cryptography Develop a model to secure drone
data using the blockchain technology

Average response time against data size
and the number of drones

Lei et al.
(2017) [15]

Vehicular
network /
Intelligent
transport system
(ITS)

Bitcoin Yes Yes No Blockchain-based key
management scheme

Security key management for Intelli-
gence transportation system

Processing time of the cryptographic
algorithm

Gervais et al.
(2016) [16]

Cloud, proof
of work of
the blockchain
technology

Bitcoin,
Dogecoin,
Litecoin,
Ethereum

No Yes No Default security Analyze security and performance
of the blockchain consensus process
based on network propagation, dif-
ferent block sizes, block generation
intervals,

Block generation time

Halgamuge et
al. (2009) [9]

Sensor
network energy
consumption

No Yes No No Not mentioned Propose a comprehensive energy
model for sensor network

Sensor transition time (sleep to idle,
idle to sleep), Active time, sleep time,
sensing time, sensor reading and writ-
ing time

Our Model Blockchain en-
abled IoT (Ethereum,

Hyperledger
Fabric,
Algorand,
Conflux,
Polkadot,
Avalanche)

Yes Yes Yes Authorization,
access control,
encryption, integrity

Estimate the computation time re-
quired to generate a new block in
a blockchain-enabled IoT system

Individual functional time in each
IoT layer (Sensor, CH, Fog, Cloud),
block propagation time (Ethereum,
Hyperledger Fabric, Algorand, Con-
flux, Polkadot, Avalanche), crypto-
graphic processing time in each layer

DLT-based IoT data trading over the narrowband Internet-of-
Things system [26], [27]. Table I shows a summary of some
of the prior studies that used blockchain-based IoT networks.
However, in reviewing the prior studies, not much evidence
was found to assess the importance of the time consumption
of each significant function when processing a block in the
IoT.

Another significant aspect is the overall delay in the block
generation process due to different factors. Numerous studies
have attempted to explain why the slowness of generating
blocks such as network delay, consensus process in the
blockchain, service delivery delay, response time, limited
capabilities of the IoT devices, and data processing time
within the different IoT layers. Damianou et al. [13] use novel
and innovative hybrid blockchain architecture to increase the
overall performance of block generation time by decreasing
the memory capacity. Lei et al. [15] consider the cryptographic
processing time of the intelligent transportation system (ITS)
and propose a security key management module to improve
block generation by enhancing the security of the process.

Moreover, a strong relationship between block generation
time and the blockchain type has been reported in the lit-
erature. Table VII and Table VIII (Appendix) show a com-
prehensive comparison of different features of blockchain
frameworks to determine the most efficient blockchain type.

The comparison between, for example, block interval, median
block propagation time, block mining time, and cross-chain
interoperability of the different blockchain types: Bitcoin,
Litecoin, Ethereum, Hyperledger Fabric, NEO, Cardano, EOS,
Algorand, Conflux, Binance (BNB), Polkadot (DOT), and
Avalanche are presented. Several models have used Bitcoin
and Ethereum for their studies. However, when considering
the block interval time and processing time, the advantage
of using those types for real-time decision-making systems is
arguable.

Jang et al. [6], Zhou et al. [12], and Liang et al. [14]
simulate sample modules to generate a block using the IoT
architecture. However, the cluster head (CH) layer has not
been taken into consideration in all models. In the model,
developed by Liang et al. [14] to secure collected data by
drones, they utilize the Bitcoin blockchain technology and
Public Key encryption as the cryptographic algorithm. Jang
et al. [6] do not consider the data security in their model and
do not mention the packet size for the simulation. Zhou et
al. [12] have not included fog/edge layer in their simulation
and used time-consuming data securing steps in the simulation
model.
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III. MODEL DESCRIPTION

Adopting blockchain technology is one of the practical ways
of improving scalability in the IoT framework. We develop
a new comprehensive time-computation model by using the
process employed in the basic IoT framework to generate a
new block to a blockchain, as shown in Figure 1. We develop
the following sub-computation models (corresponding to sub-
section A to F in this section) to compute the total time
required to generate a new block in the IoT framework.
A: Layer 1, Child Sensors - Sensing, data logging, transient,

data encryption, sensor delay, communication time to CH;
B: Layer 2, Cluster Head (CH) - Data retrieval time from

child sensors, switching, actuation, cluster data crypto-
graphic, data processing, data communication time to fog
server;

C: Layer 3, Fog/Edge Computing - Data communication
time from all connected CHs, data processing, blockchain
data consensus process, fog layer cryptographic, data
communication time to the cloud server;

D: Layer 4, Cloud Server - Data communication time from
fog servers in the network, cryptographic operational
time, block mining processing time;

E: Blockchain Network Delay - Impact of transactions queu-
ing delay, the influence of block size on new block
generation time, block mining, block propagation, and
smart contract execution time.

For simplicity, we assume a linear relationship between the
size of the data and the estimated time of a new block to be
added to the blockchain. This linear relationship is realistic for
cases when the data size is large which is the case in many
IoT applications.

In this section, we propose our comprehensive model for
estimating block generation time in the IoT framework. Block
generation time in the IoT system should be smaller than the
block interval (time) of a chosen blockchain framework in
order to add IoT transactions to the blockchain. Therefore,
such a comprehensive model is required to formulate the time
consumption for key functions in the IoT layers (Figure 1)
and next develop the total time computation model for the
new block generation process in the IoT network.

A. Total Computation Time for Layer 1 (Child Sensors)

Sensor node operation is divided into several phases: (i)
initializing, (ii) sensing, (iii) computing, (iv) transmitting data
to the parent sensor, (v) sleeping, and (vi) waking up (for
energy saving) [9]. However, encryption and delay time should
be added to the existing functionality. The timing is divided
into wake-up time, active time, sleep time, transient time, data
encryption time, and delay. The sensor performs its functions
as rounds. During a lifetime of a sensor, it can perform several
rounds of functions that repeat the phases from (i) to (vi) in
each round. The total time taken to sense and identify a single
transaction is the sum of each phase in a single round (Figure
1).

Different sensors behave in different ways depending on the
sensor type, where different time slots are required to conduct
the same function based on the data type. For example, the

sensing time for a humidity sensor is less than the time
required for a visual sensor used for image processing.

Consider Layer 1 has n child sensors designated 1, 2, . . . , n,
where L1 = {1, 2, . . . , n}. Next, we identify the time required
to complete each sensor function (Layer 1) in detail for sensing
time, sensor data logging time, sensor data encryption time,
sensor delay time, data communication time to CH, and total
child sensor computation time.

a) Sensing time (tts): The principal function of the sen-
sor is to sense the conditions of an environmental phenomenon
and transmit data to parent nodes. The time taken to sense 1
bit of data is considered as ts1 . The total time taken to sense
b1 bits, tts is given by

tts = b1ts1 . (1)

b) Sensor Data logging time (tdl): The sensed data is
logged into the sensor memory. The time required to read and
write b1 bits of data, tdl is given by

tdl = b1(tw + tr) (2)

where tr and tw represent the time taken for reading and
writing bit data.

c) Sensor Transient time (ttr): To save battery power and
as an energy-saving mechanism, sensors transit to sleep mode
every milli/microsecond (depending on the application) after
an active period. Therefore, they spend time to transit between
operation modes such as active, sleep, and idle. For a single
transaction, the transient time ttr is a combination of sleep
time and the active time given by

ttr = toff + ton (3)

where toff is the sleep time, and ton is the active time.
d) Sensor Data encryption time (te): Data encryption

te is performed before transmitting to ensure security during
the communication via the network. Encryption time varies
depending on the sensor voltage, as explained by Yuan and
Qu [28], and the data packet size. For b1 data, the sensor data
encryption time is given by

te = b1tek (4)

where tek is the time to encrypt 1 bit of data.
e) Sensor delay time (tlt): The delay of the data com-

munication between sensor nodes is derived as the sum of the
few different factors named: (i) sender processing delay tls,
(ii) media access delay (contention delay) tlm, (iii) receiver
processing time tlr, (iv) radio propagation time tlp, and (v)
network traffic ttf [29]. Therefore, we determine the maxi-
mum delay in transmitting a data packet tlt

tlt = tls + tlm + tlr + tlp + ttf . (5)

f) Data communication time to CH (ttm): After receiving
data, it is communicated/transmitted to the associated parent
node for further analysis. We estimate the time required to
transmit b1 bits data, ttm

ttm = b1td + tlt + τ1 (6)
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Fig. 1. Basic IoT architecture with four layers (IoT devices/sensors, CH layer, fog/edge layer, and the cloud service) and key functions of each layer (IoT
devices/sensors, CH layer (parent sensors), fog/edge layer, and the cloud service) corresponding to equations (1) - (28).

where td is the time required to transmit 1 bit of data, tlt
is the delay time, and τ1 is a random delay during the data
communication time to CH.

g) Total child sensor computation time for Layer 1:
(ts) Sensors in a network have different behaviors and per-
formances. For example, the time needed to process an image
is more than the time required to process temperature data.
Therefore, the maximum time taken for sensor functioning
should be computed. We quantify the time to sense and
complete a single transaction by a child sensor ts

ts = tts + tdl + ttr + te + tlt + ttm. (7)

B. Total Computation Time for Layer 2 (Cluster Head (CH))

CH performs sensor functionality similar to the (low-
powered) child sensors. It has sensing time, data logging time,
transient time, and data communication time similar to other
sensors mentioned in Section III-A. Additionally, the specific
functions of the CHs are (i) retrieving data from child sensors,
(ii) switching between microcontroller processing and events,
(iii) performing data encryption and decryption, (iv) triggering

physical events (actuating), (v) transmitting data to the next
layer.

Consider Layer 2 with m CHs designated 1, 2, . . . ,m,
where L2 = {1, 2, . . . ,m}. Next, we explain the time required
to complete each additional function illustrated in Figure 1
performed in the CH in detail.

a) Data retrieval time from child sensors (tctm): Due
to limited hardware capabilities and the network traffic in the
sensor network, each child sensor is assigned a separate time
slot to transmit their packets to the parent sensor using Time
Division Multiple Access (TDMA) method [30]. It is assumed
that all child sensor nodes in the cluster (Figure 1) transmit
their data to the CH asynchronously by utilizing the TDMA
mechanism. Therefore, we compute the total time required to
transmit data from child sensors, tctm to CH

tctm(i) =

m∑
i=1

ttm(i) + τ2 (8)

where ttm is the data communication time to CH and τ2 is a
random delay during the data retrieval time from child sensors.
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b) Switching Time (tcst): The time required for sensors
to switch into different operational modes depends on the mi-
crocontroller processing time and the time between switching
events [9]. We derive the switching time of a CH tcst, to switch
between the α number of microcontrollers and the β number
of switching events (sensing different measurements based on
the different environmental conditions such as object present
or not, maximum and minimum level detection of the object)

tcst(k, j) =

α∑
j=1

tct(j) +

β∑
k=1

tse(k) (9)

where tct is the time required for micro-processing, and tse is
the time to switch between events.

c) Actuation time (tta): The CHs provide mechanical
responses based on the inputs they receive, such as turning on a
light and activating motor sensors. Additionally, they perform
as actuators to trigger physical events based on the received
values from other sensors and themselves. We derive the total
actuation time to trigger the β number of events tta

tta(k) =

β∑
k=1

ta(k) (10)

where ta is the actuation time required to trigger a single event.
The time varies with the event’s length, and this is used only
if the sensor is an actuator.

d) Cluster data cryptographic time (tck): Encrypted data
sent by the child nodes are decrypted and processed by the
CH and encrypted again prior to the transmission to the fog
layer. We estimate the total time taken to the encryption and
decryption process in CH tck, is defined by

tck = (b1 + b2)(tek + tdk) (11)

where tek is the sensor encryption time and tdk is the decryp-
tion time for 1 bit.

e) Data processing time (tp): Data for a single trans-
action is transmitted to a CH from multiple child sensors.
CH uses data fusion mechanisms and rules to deliver reliable
and accurate information to the next layer [31]. It is assumed
that the time taken for data processing in CH is tp. The time
depends on the data type and the application requirements.

f) Data communication time to fog server (tttm): Time
taken to transmit data to the fog layer from the CH is measured
as tttm. The communication time depends on the data volume
transferred to the next layer.

As illustrated in Figure 2, the study considers that the
number of data packets transferred from the n number of child
sensors is different from the sizes of data packets transferred
from the respective CH. Since the CH is more powerful than
child sensors, it can transmit more data. Similarly, different
percentages of data are transferred to the next layer from
each available cluster in the sensor network. Furthermore, the
transmission of data packets between CH and the fog layer is
delayed due to network delay. Therefore, we estimate the total
time required to transmit CH data to the fog server

tttm = max
n∈L1

([b2 + nb1q]Ptµ + tlt) (12)

Fig. 2. Data communication or transmission flow in Cluster Network:
Q1, Q2, . . . , Qσ are the number of data packets transferred from each cluster
to their parent CH, q is the percentage of total data sending to the next CH
layer from each cluster, and P is the total percentage of data transmitted
to the fog layer, n is the number of sensors in each cluster, b1 is the data
transferred from child sensor, and b2 is the data transmitted from the CH.
Here Q1 = (b2 + nb1q1)P1% and Q2 = (b2 + nb1q2)P2%, hence,
Q = [b2 + (nb1 +Q1 +Q2)q]P%.

where b1 and b2 represent the number of data packets trans-
mitted from a child sensor and CH, q and P represent the
percentages of transferred data from each child sensor and
CH, tµ is the communication time for one packet of data to
the fog layer, and tlt is the network delay.

g) The total data computation time of a cluster (tCH ):
By combining equations retrieved for child sensors and the
CH, we compute the total time consumed by CH to complete
a transaction tCH

(13)tCH(i, j, k) = tts + tdl + ttr + tctm(i) + tcst(j, k)

+ tta(k) + tck + tp + tttm.

h) Total processing time of the sensor network (ttsn1):
We explore two models in this study to access ttsn1 that
we use in the simulations. One model considers one layer
of child sensor propagation and the other model considers
multiple layers (2 or more) of child sensor propagation. A
sensor network consists of multiple CH with subordinate child
sensors as given in Figure 2 that function all together to
succeed in the data tracking process. Therefore, if the topology
in Figure 2 is used for the network, the total processing time
of the sensor network ttsn1 is equal to the maximum time
taken to process all CHs, and we estimate it

(14)
ttsn1(i, j, k) = max

m∈L1,L2

tSN + tctm(i) + tcst(j, k)

+ tta(k) + tck + tp + tttm.

where maxm∈L1,L2
tSN = max(tts) +max(tdl) +max(ttr).

If a different topology is used with σ cluster layers before
transmitting data to the fog layer as given in Figure 2, we
determine, ttsnσ

(15)

ttsnσ(i, j, k, v) = max
m∈L2

ttsn1(i, j, k)

+

σ∑
v=1

(b2 + (b1n+Qv)qP tv)
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where Q1, Q2, . . . , Qσ are measures transferred from each
cluster to their parent CH, tv is the data communication time
from the vth child layer to its parent layer, q is the percentage
of total data sending to the next CH layer from each cluster,
and P is the total percentage of data transmitted to the fog
layer. Depending on the sensor network (IoT) structure, we
can use either Equation (14) or Equation (15). However, for
simplicity, in this study, we use Equation (14).

C. Total Computation Time for Layer 3 (Fog/Edge Computing)

The fog/edge layer assists the IoT framework by conducting
communication, routing, storage, and computation [32]. Data
received from CHs are analyzed using fog computing before
sending the final value to the cloud service. Furthermore, since
some IoT sensors are unable to process raw data, the fog layer
aids in improving the efficiency of the transaction [11]. In this
study, five main functions of the fog server are considered: (i)
data gathering from all associated CHs, (ii) data processing,
(iii) blockchain validation process, (iv) data decryption and
encryption, (v) data communication or transmission to cloud
server.

Consider Layer 3 with r fog nodes designated 1, 2, . . . , r,
where L3 = 1, 2, . . . , r. Next, we describe the time required
to complete each function in the fog layer.

a) Data communication time from all connected CHs
(tftm):

To evaluate tftm, we consider communication delays in all
three layers as follows.

1) Sensor Layer - (i) sender processing delay tls, (ii) media
access delay (contention delay) tlm, (iii) receiver pro-
cessing time tlr, (iv) radio propagation time tlp, and (v)
network traffic ttf and random delay (τ1 and τ2) during
the data communication time

2) Fog Layer - network delay, random delay
3) Cloud Layer - network delay, transactions queuing delay.
The fog server receives values from different CHs to per-

form analysis and other functionalities. Due to the synchro-
nized data receiving capability of the fog layer, we estimate
the total time required to transmit data from multiple CHs,
tftm

tftm = max
m∈L2

tttm (16)

where data tttm is the data communication time from the CH
to the fog layer.

b) Data processing time (tfp): When the fog node suc-
cessfully retrieves values, it starts processing the transaction
data to generate information. For example, when multiple
sensors sense the temperature from a large area and send
values to different CHs, those CHs send finalized values to
the fog nodes based on their received information. The time
consumption for data processing time is measured as tfp, and
it depends on the number of transactions and data amount to
be processed.

c) Time for the blockchain data consensus process (tfc):
It is essential to follow a consensus mechanism for data before
adding a new transaction to the existing blockchain [10]. The
different blockchain frameworks follow different mechanisms

to validate the new transactions to mitigate different types of
attacks. Different blockchain types have different mechanisms
for performing the consensus process. For instance, bitcoin
utilizes the Proof of Work (PoW) system, Ethereum uses PoW
and PoS (Proof of Stake), and Hyperledger Fabric utilizes
Byzantine Fault Tolerance (BFT) as their consensus algo-
rithms [33]. The total consensus time depends on the selected
blockchain type. Here we suggest performing a consensus
process in the fog/edge layer to improve the total performance
of the cloud layer. The advances in effective resource man-
agement in the fog layer can enhance the reliability of cloud
facilities by minimizing process latency. The consensus time
of a transaction to validate h bytes of data in the fog server
tfc is measured by

tfc = htfh (17)

where tfh is the time required to process the consensus
mechanism for the 1 byte of data (1 byte = 8 bits).

d) Fog layer cryptographic time (tfk): The fog layer
performs the cryptographic process to decrypt data sent by
sensors and encrypt them before sending it to cloud service.
The time to encrypt and decrypt a file depends on the file size
and the cipher algorithm [34]. Therefore, we determine the
time required to encrypt and decrypt h bytes of data, tfk

tfk = h(tfe + tfd) (18)

where tfe and tfd represent the time taken to encrypt and
decrypt 1 byte of data using desired ciphertext length.

e) Data communication time to the cloud server (tcj):
If the transaction is accepted by the validation process of the
fog layer, it is transmitted to the cloud server, which is the
highest layer of the IoT framework. We evaluate the total time
to transmit data to the cloud, tcj

tcj = max
r∈L3

(tft + tfl) (19)

where tft is the time to transmit h bytes from the fog layer
to the cloud server, and tfl is the network delay.

f) Total fog/edge: server processing time (tFG) From the
combinations of the equations in the section, we add together
the total time consumption in the fog layer tFG

(20)tFG = tftm + tfp + tfc + tfk + tcj .

D. Total Computation Time for Layer 4 (Cloud Server)

The cloud server, the final layer of the IoT platform, is
used as the main block management network in blockchain
technology. It acts as the final layer with (i) final data
validation with other cloud servers, (ii) block mining, and (iii)
block propagation activities in the blockchain.

Consider Layer 4 with s cloud servers designated
1, 2, . . . , s, where L4 = 1, 2, . . . , s. Next, we explain the time
required to complete each sub-function in the cloud.

a) Data communication time from fog servers in the
network (tct): Since different fog networks are connected to a
single cloud service, a cloud server receives data from multiple
fog layers for a transaction. Therefore, we quantify the cloud
has to wait until all fog servers finish transmitting data, tct

tct = max
r∈L3

tcj (21)
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where tcj is the data communication time to the cloud.
b) Cryptographic operational time (tck): We estimate

Time taken to encrypt and decrypt δ MB data in the cloud
server tck

tck = δ(tce + tcd) (22)

where tce and tcd represent the time required to encrypt and
decrypt 1 MB data in the cloud.

c) Total cloud computation time (tCS): From the com-
binations of the equations in the section, we derive the total
time consumption in the cloud tCS to generate a single block

tCS = tct + tck. (23)

E. Computation Time for Blockchain Network Layer (tbc)

The IoT data layer sends transactions to the blockchain
network layer. The application layer is in charge of data
processing and end-user service delivery. The Blockchain
network layer maintains the blockchain while interacting with
the application layer in both directions. We compute the time
required for this process.

a) Impact of Transactions Queuing Delay in M/D/1
Queue Model for Blockchain-based IoT Network (tD): It is
likely that, in some cases, new transactions arrive before the
previous transactions are served and added to the blockchain.
Therefore, a buffer is used to store transactions waiting to be
connected to the blockchain. We model the waiting time in the
queue (including the service time) of transactions (tD) to join
the blockchain using queuing theory and select the M/D/1
queueing model.

The assumption that arriving transactions follow a Poisson
process (M ) is justified by the fact that these transactions
are generated by many independent users. Because blockchain
transactions are processed normally one at a time by a server,
the single server assumption is justified. In our model, we
assume for simplicity that the service time — specifically, the
time taken to add a transaction to a given blockchain — is
fixed (deterministic).

This assumption is grounded on several reasons: In many
IoT applications, the size and complexity of transactions are
approximately fixed, especially when devices are programmed
to send standardized data packets required for adding transac-
tions to a blockchain at regular intervals [35], [36]. While IoT
networks can experience congestion, many real-time critical
IoT applications are designed to operate under controlled
network conditions, reducing the variability in transaction
processing times [37]. For IoT applications requiring high
real-time performance, the network and devices often use
optimized protocols and infrastructures to ensure minimal
required delay [38]. Therefore, while there might be slight
fluctuations in service times, we can approximate them as
deterministic for our analysis.

It is crucial to note that while our model adopts this deter-
ministic assumption for simplicity, in practice, service times
can vary based on numerous factors. Future work may explore
stochastic models to account for such possible variability.

In addition, the assumptions of unlimited buffer and first-in-
first-out (FIFO) scheduling are also consistent with blockchain

practice. Although, in practice, the arrival rate over time may
vary, our implied assumption of a constant arrival rate is
overcome in this paper by considering different levels of queue
utilization.

Let λ be the transaction arrival rate (transactions per sec-
ond), µ be the service rate (transactions per second), and ρ
be the queue utilization factor, where ρ = λ/µ. As shown in
[39], the mean transactions queuing delay in the system of the
M/D/1 queue is given by

tD =
1

2µ
× 2− ρ

1− ρ
. (24)

b) Influence of Block Size on New Block Generation Time
(tbs): The capacity of a block or a block size is equal to the
amount of data it can hold. A block, like any other container,
may only hold a certain amount of data or transactions in
the context of our work. Once a transaction is accepted after
the mining process, the accepted transactions are ordered and
packed into a block. Thus, the number of transactions that
can fit into one block depends on the block size. Block sizes
are limited on different blockchains. For example, the average
block size is up to 4 MB for Avalanche and Polkadot, 2
MB for Bitcoin, Conflux, and Binance, 1 MB for Hyperledger
Fabric, Litecoin, EOS, and Dogecoin, 20-30 kB for Ethereum.
Additionally, some transactions are lightweight. Let sb be the
block size in MB, st the transaction size in MB, nt the number
of pending transactions to be added to a block, and µ the
transactions per second [tps]. As the ratio sb/st is the number
of transactions required per block and nt/µ is one transaction
time, we evaluate the time to create one complete block tbs

tbs =
sb
st
× nt
µ
. (25)

c) Total block mining time: (tmn) An existing blockchain
is updated using two phases named block mining tmn and
block propagation. The time it takes for miners or validators
in a blockchain network to validate transactions within a single
block is known as mining time. Block generation (creation),
validation, and integration to the transaction of the existing
blockchain are termed block mining [40]. The time required
for block mining in blockchain-based IoT systems can be
influenced by various factors, including the specifics of the
transaction and the role of centralized systems like the cloud
layer. However, the mining process fundamentally relies on
the consensus mechanism adopted by the blockchain and the
collective efforts of participating nodes. Therefore time to
mine a block is measured by tmn, which depends on the
number of transactions x [15] in the blockchain.

d) Block propagation time (tpp): Block propagation time
is a well-known barrier in blockchains that prohibits any
blockchain framework from scaling. Stale blocks are mine
blocks that are excluded from the main chain due to simulta-
neous transactions, conflicts, or network propagation delays.
The block propagation time is an essential factor influencing a
blockchain framework’s scalability and stale block rate. When
a block is added to an existing blockchain, it is broadcasted
via the entire network to reach most network nodes using a
suitable propagation mechanism. The average time it takes for
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a new block to reach the majority of nodes in a network is
called block propagation time.

The research revealed that extended propagation delay
could lower a node’s ability to withstand 51% attacks and
selfish mining attacks. Blockchain developers aim to minimize
block propagation time to mitigate this security issue, typically
targeting it to be less than 1% of the average block time [41].
Therefore, although for some blockchain frameworks, this
target has not yet been achieved, in this study, we use this 1%
target to calculate the block propagation time in cases where
more reliable data on block propagation time is unavailable.
Due to fluctuations in network conditions, the median block
propagation time may not be consistently accurate.

e) Smart contract execution time (tsc): We assume each
blockchain has a designated target smart contract function
which the submitter always signs. As a result of processing
the transactions submitted by users, the blockchain node
executes a smart contract. The transaction is submitted to any
blockchain node responsible for distributing that to the entire
blockchain network. After the transaction is distributed, it is
processed by each node using the executable program in the

target smart contract. We determine the time taken to execute
the smart contract tsc.

f) Total blockchain time (tbc): We derive the total time
to update the existing blockchain tbc

tbc = tD + tbs + tmn + tpp + tsc. (26)

F. Total Computation Time Required to Generate a New Block
in the IoT Framework

From the combination of equations (7), (13), (20), (23),
(24), and (26), we compute the total computation time to
sense an environmental phenomenon until it generates as a
new block to an existing blockchain in the IoT platform tT

tT (i, j, k) = max
m∈L1,L2

tSN + tctm(i) + tcst(j, k) + tta(k)

+ tck + tp + tttm + tftm + tfp + tfc + tfk

+ tcj + tct + tck + tD + tbs + tmn + tpp + tsc.

(27)

From the summations of equations (1) − (26), we further
simplify the total computation time (27) as

tT (i, j, k) = max(b1ts) + max(b1(tw + tr)) + max(toff + ton)︸ ︷︷ ︸
Layer 1 & Layer 2 (Sensor, CH)

+

m∑
i=1

b1td(i) + tlt(i) + τ1(i) + τ2 +

α∑
j=1

tct(j) +

β∑
k=1

tse(k)︸ ︷︷ ︸
Layer 2 (Cluster Head, CH)

(28)

= +

β∑
k=1

ta(k) + (b1 + b2)(tek + tdk) + tp + max
n∈L1

([b2 + nb1q]Ptµ + tlt)︸ ︷︷ ︸
Layer 2 (Cluster Head, CH)

= + max
m∈L2

tttm + tfp + htfh + h(tfe + tfd) + max
r∈L3

(tft + tfl)︸ ︷︷ ︸
Layer 3 (Fog/Edge Computing)

= +max
r∈L3

tcj + δ(tce + tcd)︸ ︷︷ ︸
Layer 4 (Cloud Service)

+

(
1

2µ
× 2− ρ

1− ρ

)
+

(
sb
st
× nt
µ

)
+ tmn + tpp + tsc.︸ ︷︷ ︸

Blockchain Network Layer

Thus, this is the estimated time required to generate a new
block in the blockchain-enabled internet of things (IoT).

G. Requirement for a New Block Generation Time for IoT
Once we obtain the total computation time to sense an

environmental phenomenon until it generates a new block to
an existing blockchain in the IoT platform, we need to observe
which blockchain platform is suitable for the specific IoT
applications. To add the IoT transactions to the blockchain,
block generation time in the IoT should be less than the block
interval (time) of a particular blockchain framework. Hence,
we obtain the comparison

Block generation time in IoT(tT ) < Block interval (time).
(29)

Depending on the application requirements (such as smart
agriculture, smart home, and smart transportation system),

users could choose the suitable blockchain framework type
using the proposed model.

IV. SIMULATION DESIGN

A simulation is carried out to evaluate the proposed model.
The analysis is performed using MATLAB (MathWorks Inc.,
Natick, MA, USA) R2021b on a computer with macOS Mon-
terey with Processor 2 GHz Quad-Core Intel Core i5 and RAM
(Random Access Memory) 16 GB 3733 MHz LPDDR4X. All
parameter values used for the simulation model are presented
in Table II. The experimental values we use in this analysis
are taken from peer-reviewed literature. Hence, we believe our
results represent a general IoT setup.

A sensor network is used with 100 sensor nodes that are
connected to their respective CHs, and the same simulation
settings utilized in [9] are applied for the sensor network. It
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is assumed that all connected child sensors are homogeneous
and take a similar time to transmit data to the respective CH.
The sensor network we consider in our simulation consists
of powerful CHs, fixed clusters, and single-hop transmission.
Using the above simulation settings, we generate 1,000,000
random setups, enabling each simulation data point to obtain
1,000,000 random setups. Depending on the IoT application
(or use case), we can determine how many hours/days the
simulation will run. IoT in agriculture, collects data from
sensors every hour, whereas IoT in smart cities collects data
every two minutes.

The fog and cloud simulation setup used is similar to the
simulation conducted by Naas et al. [8]. The size of data
packets generated is assumed to be increased by 10 percent in
each subsequent layer due to the added overheads (that is, if
the sensor generates 1 kB data packet, the fog layer adds an
overhead of 100 bytes). Moreover, we assume that the network
is a permissioned network which increases the security of the
block generation process. We use Ethereum, Hyperledger Fab-
ric, Algorand, Conflux, Polkadot, and Avalanche blockchain
for the simulation model. As the experiments performed by
Gervais et al. [16] and Malik et al. [46] the respective median
block propagation times in seconds are 1.02, 0.85, 0.5-0.75,
and 0.075. Furthermore, to ensure data security, we consider
the data encryption algorithms, such as Advanced Encryption
Standard (AES), Data Encryption Standard (DES), Triple
DES (DES3), Rivest Cipher 2 (RC2), Rivest Cipher 6 (RC6),
Blowfish, 256-bit ECC (elliptic curve cryptography), 2048-bit
RAS (Rivest-Shamir-Adleman) and RAS-3072 in the study.

V. RESULTS

This study illustrates the general taxonomy of a blockchain-
enabled IoT system and its contribution to the overall data
acquisition delay. We develop a model to determine key
time-consuming areas of the IoT network to generate a new
block in an existing blockchain. A new, comprehensive, time
utilization model is essential for the IoT network to improve
process efficiency and scalability. The applicability of the
proposed model is validated through simulation experiments.
We compare the total block generation time with the different
blockchain frameworks and data encryption algorithms in
the simulation process. Some blockchain frameworks do not
provide block propagation time, hence they cannot be used
to compare performance. Nevertheless, the IoT issues that
affect delay are applicable to other blockchains, so we use
blockchains for which data is available. In addition, we analyze
the time consumption of each IoT layer to identify each
layer’s contribution to the total block generation process. In
the simulation process, we utilize the fog layer for the block
validation process to improve the efficiency of the cloud server
and the total block generation process in the IoT network.
The results indicate that the total block generation time varies
depending on the selected IoT framework, data encryption
algorithm, blockchain type, and key functions of the layers.
Finally, we compare the outcome of our model with similar
time computation models developed by Jang et al. [6], Liang
et al. [14], and Zhou et al. [12] to identify the efficiency of
our model.

TABLE II
PARAMETER VALUES FOR THE SIMULATION MODEL

Sym Description Value

b1 Packet size transmit from child sensor 1 kB
b2 CH communication or transmission

packet size
2 kB

n Number of child sensors in a cluster 100
β Number of switching events in a sen-

sor
1

α Number of microcontrollers in a sen-
sor

1

l Number of validation cycles 1
q Data percentage from sensors to fog 70%
P Total data percentage to fog 80%
h Data packet size in the fog layer 10 kB
δ Data packet size in the cloud server 100 kB
ts Sensor sensing time 0.0002 ms [9]
tek Sensor encryption time (AES) 0.7346 ms [34]
tdk Sensor decryption time (AES) 1.2857 ms [34]
tw Sensor data writing time 0.00645 ms [9]
tr Sensor data reading time 0.0003 ms [9]
τ1 Random delay (Layer 2 - CHs) vary
τ2 Random delay (Layer 1 - Child sen-

sors)
vary

tlr Sensor propagation delay time 0.002 ms [17]
tls Sensor processing delay for commu-

nication
0.0006 ms [18]

td Data transmit time to CH 0.0002 ms [29]
tlm Media access delay 0.0001 ms
tlp Receiver processing delay after data

receiving
0.0006 ms [18]

ttf Network traffic 0.0002 ms
ton Transient time to switch on 2.45 ms [9]
toff Transient time to switch off 0.25 ms [9]
tct Microcontroller processing time 0.0001 ms
tse Switching time between different

events
0.002 ms [42]

ta Actuation time 0.0025 ms [19]
tp Data processing time of CH 0.14 ms [20]
tfl Network delay in fog 1.41 ms [23]
tµ Data communication or transmission

to fog
0.0006 ms [24]

tfp Data processing time of fog 23.36 sec [7]
tdp Data processing time of cloud 84.58 sec [7]
tfh Data validation in own memory 0.0014 ms [25]
tfe Fog layer encryption 100 kB (AES) 73.469 ms [34]
tfd Fog layer decryption 100 kB (AES) 116.32 ms [34]
tft Data communication or transmission

time from fog to cloud
9.01 ms [8]

tbv Data validation time in cloud 0.17 ms [8]
tcn Network delay of the cloud server 17.99 ms [23]
tce Encryption time in the cloud 1MB

(AES)
187.12 ms [34]

tcd Decryption time in the cloud 1 MB
(AES)

120.82 ms [34]

µ Service rate in the queue (transactions
per second, tps)

20 (Ethereum)
[43], 3500
(HyperLedger
Fabric) [44],
up to 4500
(Avalanche)
[45]

nt Number of pending transactions 100 Tx
st Average transaction size 380.04 bytes
sb Block size ≈ 20 KB - 2

MB
tpp Median block propagation time Refer Table VIII
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A. Overall New Block Generation Time Based on the
Blockchain Type

Block time or block processing time is the time length it
necessitates to create a new block or the time it carries to
mine a block or file in a blockchain. Block processing time is
the actual time within a network to validate transactions for
one block and add a new block to the blockchain. Based on
the blockchain type, the different blockchain frameworks take
different times (see Table VII and Table VIII in Appendix).
The blockchain framework decides block interval time; for
example, the estimated block time in Bitcoin is 10 minutes,
whereas Ethereum’s is between 10 and 19 seconds. Since the
Bitcoin blockchain framework is computationally expensive
and requires high bandwidth overhead and delays, it may not
be suitable for most IoT applications. Further, it is well known
that in Bitcoin, new blocks of size approximately 1 megabyte
are mined every 10 minutes on average. Thus, the available
data rate is about 6 megabytes/hour, 100 kilobytes/minute, or
1.67 kilobytes/second. This is well below the speed of most
wireless communication technologies available today. Hence,
it is not possible for an IoT system that would generate data
at this rate. Thus, we remove the Bitcoin blockchain from our
analysis.

Fig. 3. Average block generation time versus data packet size for different
blockchain types.

The simulation is conducted to measure the overall block
preparation time with the identified functions. The initial
results show that cryptographic time and block mining time
utilize the maximum time consumption of the IoT block
generation process. Therefore, firstly, we observe the most
appropriate blockchain type for the IoT network.

Few key blockchain frameworks, such as Ethereum, Hyper-
ledger Fabric, Algorand Conflux, Polkadot, and Avalanche are
associated with the simulation (Figure 3). We compare a small
number of blockchain frameworks because the median block
propagation time (Equation (26)) for all blockchain systems
was not provided. In contrast, the blockchain framework does
not play a significant role in block generation time for smaller

data packets. The most evident result of the analysis is that
the block processing time in the IoT network is less than the
block interval times of the given blockchain types when the
data packet size is below 110 kB.

Figure 3 indicates that Avalanche has the shortest block
processing time. Due to the real-time decision-making require-
ments of the IoT network, it is essential to provide the informa-
tion and decisions immediately to the end user. Therefore, in
the results, it is observed that Avalanche, Hyperledger Fabric,
Conflux, and Polkadot are the most time-efficient blockchain
types for the IoT network.

B. Overall New Block Generation Time Based on Encryption
Algorithm

Since encryption helps secure information and sensitive data
and can improve the security of communication between client
applications and servers, the efficiency of encryption algo-
rithms has been extensively studied. Further, the encryption
time will account for a significant portion of the total time
spent on the block creation process. As a result, it is critical
to thoroughly research and analyze encryption algorithms in
order to choose the appropriate blockchain framework.

When considering the time taken to process data encryption,
it is understandable that the selected algorithm affects the
total block generation time (Figure 4). The results show that
the total time is increased from 1.2 - 4.3 sec based on the
selected algorithm type. However, as illustrated in Figures 4(a)
HyperLedger Fabric (for symmetric encryption) and 4(b) (for
asymmetric encryption), no significant differences are found
between the seven algorithm types when the data packet size is
below 5 kB. The most striking observation to emerge from the
data comparison is that the processing time of each algorithm
varies with the packet size after 35 kB. This observation
could be due to the performance factors of each algorithm.
Furthermore, in a typical IoT network, the fog and cloud layers
process more data volume than the sensor layers. Therefore,
the data packet size of each layer should be analyzed before
incorporating an algorithm in a specific layer. These findings
suggest that the block processing time AES and ECC are the
time-efficient algorithms for real-time data security in the IoT
framework when data packet size is up to 110 kilobytes.

The RSA (Rivest-Shamir-Adleman) and elliptic curve en-
cryption are two of the world’s extensively utilized asymmetric
algorithms. Because of the limitations of experimental data
on the time taken to process data encryption for different
data sizes, we limit the complete analysis of all algorithms to
200 kilobytes. The ECC-256 and RAS-2048 show the lowest
block time. Hence, in addition to another popular encryption
algorithm, AES, we further observe these three encryption
algorithms with four different blockchain frameworks (Hy-
perledger Fabric, Algorand, Conflux, Polkadot, Avalanche) as
shown in Figure 5 and Figure 6. Significant differences are
observed between asymmetric (AES versus BLOWFISH) and
asymmetric (ECC-256 versus RAS-2048) algorithms for block
generation time.
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(a) Different cryptographic algorithms (symmetric) for HyperLedger Fabric. (b) Different cryptographic algorithms (asymmetric) for HyperLedger Fabric.

Fig. 4. Average block generation time versus data packet size for different cryptographic algorithms for HyperLedger Fabric.

(a) Different symmetric (AES, 3-DES, Blowfish) encryption algorithms. (b) Different asymmetric (ECC-256, RSA-2048) encryption algorithms.

Fig. 5. Average block generation time using different symmetric (AES, 3-DES, Blowfish) and asymmetric encryption algorithms (ECC-256, RSA-2048) and
blockchain frameworks (Ethereum, Algorand, HyperLedger, Conflux, Polkadot, Avalanche).

C. Overall New Block Generation Time Based on the IoT
Layers (Sensor, Fog/Edge, Cloud)

In general, Layer 3 (fog/edge layer) assists in reducing the
network latency of the IoT network by bearing the additional
burden from the cloud server. Further, in our model, the fog
layer has been utilized to perform the blockchain consensus
process to minimize the block execution time of the cloud.
Typically block the validation process is conducted in the
cloud server, and it takes much time because of the high
network latency in the cloud server. Therefore, we propose to
utilize the fog layer for that to accelerate the block generation
process. Figure 7 illustrates the average processing time versus
the data packet size in each IoT layer. In addition to utilizing
the fog layer to bear the additional burden from the cloud
server, we use it to perform the blockchain consensus process

to minimize the block execution time of the cloud. As a
consequence, we observe lower block generation time in the
cloud layer than in the fog layer.

It is essential to observe the block generation time com-
parison with/without the fog/edge layer and with/without the
cloud layer for the blockchain-enabled IoT networks. Thus,
Figure 8 shows a block generation time comparison for 100
kB data packets. We consider two scenarios: fog only and
cloud only, and then compute the time using our proposed
model of the block time required by each scenario. In the
first scenario (fog only) block time takes 20-40 sec while in
the second scenario (cloud only) it takes around 85-100 sec.
Therefore, the results of our study confirm that if we use only
cloud servers, the block generation time is doubled compared
to using fog servers only.
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Fig. 6. Average block generation time using different encryption algorithms
(ECC-256, RSA-2048) and blockchain frameworks (HyperLedger, Algorand,
Conflux, Polkadot, Avalanche).

Fig. 7. Block generation time comparison between different IoT layers.

D. Overall New Block Generation Time Based on the Trans-
actions Queuing Delay

We apply the M/D/1 queue model to our blockchain-based
IoT context. Figure 9 shows the impact of queuing delay of
transactions (tD) for different queue utilization factors (ρ)
using Equation (24).

However, we observe that the queuing time is negligible
relative to the block time in the IoT network (Figure 10).
In addition, this demonstrates the impact of the transaction
queuing delay (tD) for different queue utilization factor values
(ρ) is higher in Polkadot, while the overall block time is lower
in Conflux and Avalanche.

Fig. 8. Simulation results for block generation time comparison between fog
and cloud servers.

Fig. 9. Transactions mean queuing delay (D) for different queue utilization
factor values (ρ) in M/D/1 queue model for blockchain-based IoT network
(HyperLedger, Algorand, Conflux, Polkadot, Avalanche).

E. New Block Generation Time Based on the Block Size

Figure 11 shows the block time versus block size when
the device processing speed is 2 GHz using Equation (25).
For all blockchain platforms, block time increases as block
size grows. However, since block sizes are not likely to
significantly exceed 2.5 MB, the maximum increase that we
observe is below 0.06 seconds and therefore this increase due
to block size is insignificant relative to the block time in the
IoT network.

F. Overall New Block Generation Time: Performance Evalu-
ation Comparison

Next, we compare our model with similar time computation
models developed by Jang et al. [6], Liang et al. [14], and
Zhou et al. [12]. Various attempts to measure block generation
time have been presented in Table III and Figure 12 with
a summary of their considerations, such as the IoT layers,
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TABLE III
COMPARISON OF PERFORMANCE EVALUATION

Model Packet Size Total Time (sec) Blockchain Type Security Device CH Fog/Edge Cloud

Our model 1024 bytes 0.495 Hyperledger Fabric (BFT) DES Yes Yes Yes Yes

Jang et al. [6] Not Mentioned 4.665 Hyperledger Fabric (BFT) Not Given Yes No Yes Yes

Zhou et al. [12] 1014 bytes 7.3 Ethereum (PoW) ECIES, ECDSA Yes No No Yes

Liang et al. [14] 1000 bytes 2.9 Bitcoin (PoW) PK cryptography Yes No No Yes

Fig. 10. Comparison of the block generation time for different queue
utilization factor values (ρ) for HyperLedger, Algorand, Conflux, Polkadot
and Avalanche.

Fig. 11. Comparison of the block generation time for different block size (ρ)
for HyperLedger, Algorand, Conflux, Polkadot and Avalanche, when device
processing speed is 2 GHz.

security mechanism, and the used blockchain type. However,
their results are not very encouraging. Without considering the
time taken for each function, findings cannot be utilized for
accurate decision-making. Moreover, compared to the time of
those models, our model has taken the best time consumption

Fig. 12. Various attempts to measure block generation time comparison
between different studies.

approach with a total processing time of 0.495 sec. Finally, we
verify that unnecessary time consumption can be eliminated
by utilizing an appropriate blockchain framework, encryption
algorithm, and fog layer.

G. Real Blockchain Data Comparison for the Different
Blockchain Frameworks

The block size limit refers to the maximum amount of data
that a blockchain block may carry. The maximum block size
determines the number of transactions taken inside a block.
This size consequently controls the throughput of the system.
In addition, larger block sizes bring slow block propagation
speeds; thus, expanding the old block rate or stale block rate,
which impacts the blockchain network’s security. Observing
the impact of block size on the scalability and security of
the blockchain is, hence, essential. In addition, it is vital
to understand the current market of blockchain technology
and cryptocurrency. Thus, we compare actual blockchain data
using [47] (accessed April 2022) for different blockchain
frameworks. Since there is a vast range of values, we use the
logarithmic scale (log scale) to demonstrate values.

Figure 13 shows block size in kilobytes and the number of
transactions per day in mega (106) from June 2020 to May
2021 for Ethereum, Dogecoin, Ripple (XRP), and Litecoin.
Ethereum and Litecoin show the largest block sizes. Thus,
we further investigate the number of transactions of each
framework. As block sizes are large in Ethereum and Litecoin,
obviously, those can carry more transactions. On top of that,
we compare block time in minutes and the number of transac-
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Fig. 13. Real blockchain data comparison: Block size and the number of transactions for the different blockchain framework - Ethereum, Dogecoin, Ripple
(XRP), and Litecoin for May 2021 to April 2022.

Fig. 14. Real blockchain data comparison: Block time and the number of transactions for the different blockchain framework - Ethereum, Dogecoin, Ripple
(XRP), and Litecoin for May 2021 to April 2022.

tions per day in mega (Figure 14) Ethereum and Ripple show
very low block time. We repeated the all above simulations for
Ethereum, Hyperledger Fabric, Algorand, Conflux, Polkadot
and Avalanche and found the results to be consistent.

VI. DISCUSSION

Combining blockchain and IoT/Edge technology can pro-
vide trusted access and control [3] to the network and to stor-
age facilities. It also enables distributed computing at the edge,
high-efficiency computation, large-scale network facilities, and
data storage while preserving blockchain security.

A comprehensive understanding of the general functions
and their time consumption is an immense advantage for any
application to achieve maximum efficiency. The present study
is designed to determine key time-consuming areas of the IoT
network while adding a block to an existing blockchain. Our
study compares the total block generation time with different
blockchain frameworks and data encryption algorithms. In
addition, the average time consumption comparison of each
layer and fog layer utilization for the block validation process
can be considered as another significant instance. The results
of the study indicate that the total block generation time varies
depending on the selected IoT framework, data encryption
algorithm, blockchain type, and key functions of the layers.

In this study, first, we analyze all significant functions
performed in each IoT layer, and next, we measure the
time taken for each function to identify the respective data
processing time of those. One of the key findings of the
study is identifying the time taken for key activities in the
sensor network (sensor layer and CH layer). The findings for
sensor behavior are primarily similar to the prior study done
by Halgamuge et al. [9]. They have conducted their study to
estimate sensor energy consumption by identifying key sensor
and CH functions. However, data cryptography and network

latency functions are not included in their model. Furthermore,
that study was mainly focused on energy consumption and
optimization. In contrast, we mainly focus on the time con-
sumption in our model to generate a new block in the IoT
network.

As another key finding in this study, we propose that the
fog layer can perform a block validation process. It will assist
in reducing the heavy load of the cloud layer. Several prior
studies are focused on using the fog/edge layer as an interme-
diate layer in the IoT platform to reduce the additional burden
of the cloud layer [8], [23], [24]. However, using fog/edge
in the blockchain-enabled IoT architecture is not adequately
investigated. Therefore, the outcome of the simulation assists
future studies in using fog in the blockchain paradigm.

This study indicates that a few appropriate blockchain types
to generate a new block in the IoT platform are Avalanche,
Conflux, Algorand, Polkadot and Hyperledger Fabric. The
block generation time in the IoT is less than the block
interval time of the blockchain frameworks such as Ethereum.
Moreover, due to the high data generation rate and real-time
decision-making requirements in the IoT network, they cannot
be used in the IoT network.

Some distributed blockchains, such as Bitcoin, Ethereum,
Hyperledger Fabric, Algorand, Conflux, Avalanche, Polka-
dot, Cardano, EOS, NEO, and Litecoin, are permissionless,
allowing any node to participate in the consensus process.
Hyperledger Fabric is a permissioned blockchain; thus, it is
not vulnerable to diverging ledgers (“fork”). The Orderer is in
charge of packaging transactions into blocks and distributing
them around the network to anchor peers who are in charge
of peer discovery. Additionally, Hyperledger Fabric uses an
Orderer (also known as an “Ordering node”) that does this
transaction ordering, which forms an ordering service along
with the other Orderer nodes. Fabric’s design uses determin-
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TABLE IV
COMPARISON OF DIFFERENT ENCRYPTION ALGORITHMS

Encryption Al-
gorithm)

DES 3DES (3-DES,
TDEA)

AES BLOWFISH RC2 (Rivest
Cipher 2)

RC6 (Rivest
Cipher 6)

ECC-256 RSA-2048 RSA-3072 International
Data
Encryption
Algorithm
(IDEA)

Year 1977 1978 2000 1993 19987 1998 1985 1978 1978 1991

Organisation /
Developer

IBM and US
government

IBM National
Institute of
Standards and
Technology
(NIST)

Bruce
Schneier
(Harvard
University)

Ron Rivest
(MIT
University)

Ron Rivest
(MIT
University)

Neal Koblitz
(University of
Washington) and
Victor Miller
(IBM)

Rivest-Shamir-Adleman Rivest-Shamir-
Adleman

Lai and
Massey (ETH
Zurich)

Country USA USA Belgium USA USA USA USA USA USA Switzerland

Key Structure Symmetric
Key

Symmetric Key Symmetric
Key

Symmetric
Key

Symmetric
Key

Symmetric
Key

Asymmetric Key
(public and pri-
vate keys)

Asymmetric Key (public
and private keys)

Asymmetric Key
(public and private
keys)

Symmetric
Key

Type/Block Size
(bits)

64-bit block
cipher

64-bit block ci-
pher

128-bit block
cipher

64-bit block
cipher

64-bit block
cipher

128-bit block
cipher

64-bit block ci-
pher

112 bits 128 bits 64-bit block
cipher

Key
Length/Size
(bits)

56 56, 112, 168 128, 192, 256 32-488 (vari-
able)

8-128 128, 192, 256 256-384 2048 3072 128

Number of
Rounds

16 48 10 for 128,
12 for 192, 14
for 256

16 16 20 1 1 1 8.5

Number of
Operations per
Round

16, 20 20 16 20 20 36 1 1 1 16

Encryption
Time for 915
KB (sec)

15.19 45.75 4.75 15.19 24.68 29.43 1.79 120.13 201.14 11.96

Algorithm
Structure

Feistel
network

Feistel network Substitution
and
permutation
network

Feistel
network

Feistel stream Feistel
network

Public key algo-
rithm

Factorisation Factorisation Lai–Massey
scheme

Authentication Message
authentication
code (MAC)

Message
authentication
code (MAC)

Message
authentication
code (MAC)

Message
authentication
code (MAC)

Message
authentication
code (MAC)

Message
authentication
code (MAC)

Digital signature Digital signature Digital signature Message
authentication
code (MAC)

Key
Compromise
Option

Both sender
and receiver
side

Both sender and
receiver side

Both sender
and receiver
side

Both sender
and receiver
side

Both sender
and receiver
side

Both sender
and receiver
side

Only owner of
asymmetric key

Only owner of asymmet-
ric key

Only owner of asym-
metric key

Both sender
and receiver
side

Known Attacks Brute force
attack, man-
in-the-middle
attack

Brute force
attack, Chosen
plaintext attack,
known plaintext
attack

Side channel
attack

Dictionary at-
tack, birthday
attack

Differential
attack, linear
attack

Brute force
attack,
analytical
attack,
correlation
attack

Side channel
attack, backdoor
attack, quantum
computing attack

Brute force attack,
oracle attack, man-in-
the-middle attack, side
channel analysis attack,
power fault attack

Brute force attack, or-
acle attack, man-in-
the-middle attack, side
channel analysis at-
tack, power fault at-
tack

Linear attack

Encryption
Speed

Very slow Very slow Faster Fast Slow Slow Fast Average Average Fast

Security Level Proven in ad-
equate

Adequate Excellent Good Adequate Good Excellent Good Good Good

istic consensus techniques, ensuring that each block certified
by a peer is final and correct.

In the computation (2nd, 3rd, and 4th generation)
blockchain frameworks on the market may support IoT appli-
cations with smart contracts. NEO [48], Cardano [49], EOS
[50], R3 Corda [51], Binance (BNB) [52], Polkadot [53],
Avalanche [45], Algorand [54] and Conflux [55] are a few
examples.

Compared to blockchain, platforms based on DAG utilize a
different ledger structure and different methods for transaction
confirmation. Thus, an extension of this work for all IOTA
versions is considered as future work.

Data security is one of the essential and challenging con-
straints associated with the IoT platform. In contrast, most
of the studies ignore adhering to security procedures in
their experiments and mention it as a challenge [10]. Even
though blockchain has an in-built security procedure, it has
been vulnerable to several attacks in the past decade [56].
Data security should be a predominant factor of any reliable
electronic system when managing sensitive consumer data
(such as smart health monitoring applications). Therefore,

the most appropriate mechanism to preserve data within a
network is using an encryption algorithm to convert plain text
to ciphertext during communication. Based on that fact, we
simulate different encryption algorithms to identify the most
efficient algorithm for the block generation process in the IoT
network.

Additionally, we observe that 256-bit ECC (elliptic curve
cryptography) has the potential to be the most efficient encryp-
tion algorithm for IoT networks to enhance the performance
and scalability of the block generation process. However,
the robustness of the encryption algorithm depends upon the
type of cryptography, key management, number of keys, and
number of bits used in a key. Longer key length and data length
provides high security; on the other hand, they consume more
power and result in more heat dissipation. This provides the
trade-off between security level and power consumption. In
addition, keys with more bits utilize more computation time
to encrypt data. Table IV shows this comparison for different
encryption algorithms.

In the computation of the encryption time, a standard
assumption is made regarding uniform hardware and software
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implementation, ensuring consistent processing power across
different devices. Nevertheless, it is essential to acknowledge
that real-world encryption speeds may differ due to discrep-
ancies in hardware specifications, software configurations, and
implementation difficulties. In our calculations, we adopt a
processing speed of 2 GHz and allocate 1 GB of RAM as the
basis for our estimations.

To estimate the encryption time (Table IV), we employ the
following equations: Time per block: calculates the number of
rounds and operations per round: Time per block = Number
of rounds × (Number of operations per round / Processing
speed); Number of blocks: calculates the total number of
blocks needed to encrypt the data: Number of blocks =
Data size / Block size; Time taken to encrypt: combines the
number of blocks and the time per block to determine the
overall encryption time: Time taken to encrypt = (Number of
blocks × Time per block). These equations provide a general
framework for estimating the encryption time based on the
given assumptions. However, it is essential to consider that
actual encryption speeds may vary due to several factors,
including algorithmic efficiency, hardware capabilities, and
software optimizations. The comparison and the findings of
the study will assist future studies in improving their models
by considering security principles.

Since crypto-currencies process a few transactions per
second, the theoretical limit is usually in the low two- or
three-digit range, approximately for Ethereum, 15-20 tps,
and for Bitcoin, 7 tps. The parameters primarily determine
the average block time, maximum block size, and minimum
transaction size [57]. In practice, we cannot increase the block
size. When the block size is large, it takes a long time to
propagate a new block to all nodes through the wireless
blockchain network. This impacts the latency and security
of the network. Besides, every device may not have high
network bandwidth and sufficient hardware storage capacity
on top of the computation power. Thus, high demands could
lead to sacrificing blockchain decentralization, which is the
blockchain trilemma. On the other hand, with the advancement
of technology, the future device storage capacities (hard disks)
and network speed remain to grow globally; thus, larger block
sizes might be convincing in the future. If network speed and
storage capacities continue to enhance, a noticeable increment
in block sizes may be convincing in the future. That allows
high transaction rates (tps) without a notable rise in energy
consumption [58]; thus, the scalability of the network will be
improved.

Jang et al. [6], Liang et al. [14], and Zhou et al. [12]
simulate sample modules to generate a block using the IoT
architecture. However, to obtain accurate decision-making in
an IoT environment, the time taken for each function is essen-
tial. For example, Jang et al. [6] ignored CH layer, Zhou et al.
[12] and Liang et al. [14] ignored CH and Fog/Edge layers.
Therefore, it is essential to provide all required parameters
used in any experiments or simulations. Jang et al. did not
consider the data security in their model and did not mention
the packet size they used for their experiment. Compared to the
time of those models (Jang et al. [6] 4.66 sec, Zhou et al. [12]
7.3 sec and Liang et al. [14] 2.9 sec), our model has taken

the best time consumption approach with a total processing
time of 0.495 sec. These were the main limitations of their
work. In addition, we validate that by utilizing an appropriate
blockchain framework, encryption algorithm, and edge/fog
layer, unnecessary time consumption can be eliminated. While
we present one of the prevalent IoT architectures, it is essential
to note that not all IoT implementations mandate every layer
discussed. Indeed, in certain contexts, IoT services can be
effectively deployed and utilized within local networks or
intranets.

The most exciting finding was that we observed the block
generation time comparison with/without the fog/edge layer
and with/without the cloud layer for the blockchain-enabled
IoT networks. The results of our study confirm that if we
use only cloud servers, the block generation time is doubled
compared to using fog servers only. These findings of the
current study are consistent with those of Gill et al. (2019)
[7] who found the vision of fog computing and experimentally
found a complement to cloud computing and an essential
ingredient of the IoT. Moreover, they compared by considering
different configurations (CPU GHz, RAM size, and power).
Thus, based on our analysis, we can suggest that if the network
uses small data packets, it is recommended to use fog or edge
computing because of the network’s efficiency (low latency,
low data processing time).

In reviewing the recent literature, most of the studies have
considered limited functional areas of the IoT platform to
increase the data processing efficiency. So far, however, there
has been little discussion about individual layer functions, and
no study can be found with a comprehensive-time utilization
model related to the block generation process. Without having
a clear picture of process functions and respective time con-
sumption, it is difficult to identify how those improvements
impact the total block generation process. Therefore, the
findings in this study have several important implications for
future practices. In future investigations, it might be possible
to use different data packet sizes to observe the evaluations
of the estimated impact. Thus, it is essential to verify the
proposed model in an industrial IoT cloud and fog computing
environment for practical understanding. Fog computing does
not substitute the cloud but rather complements it [59]. Fog
computing can work with cloud computing for the blockchain-
enabled IoT. Cloud computing will be the primary force to be
considered with the IoT, Big Data, Artificial Intelligence (AI),
and future technologies. Thus, we recommend combining fog
and cloud for the blockchain-enabled IoT depending on the
requirements, such as limited scalability, less data storage, and
computation capabilities.

In recent years, various blockchain technologies have
been explored for integration with IoT applications, aiming
to strengthen security, transparency, and decentralized control.
The popularity of blockchain-based IoT may vary over time
and depend on specific use cases. In this study, we use a
few blockchain types to generate a new block in the IoT
platform: Avalanche, Conflux, Algorand, Polkadot, and Hyper-
ledger Fabric. Table V provides an overview of the blockchain
platforms utilized in IoT applications, detailing their unique
features and relevance to the domain.
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TABLE V
OVERVIEW OF BLOCKCHAIN PLATFORMS IN IOT

Platform Blockchain Overview and External Perspec-
tives

Ethereum Originally designed as a general-purpose plat-
form for decentralized applications; Ethereum’s
smart contract capabilities have made it a popu-
lar choice for IoT solutions, particularly in sce-
narios requiring programmable logic embedded
within transactions [12], [16], [60].

Hyperledger Fabric Developed under the Linux Foundation’s Hyper-
ledger project, Hyperledger Fabric is a modular
and flexible blockchain platform. Tailored for
specific enterprise needs, it is a favored platform
for IoT solutions in industries such as supply
chain and healthcare [6], [33].

Algorand Known for its high throughput and low latency,
Algorand’s consensus mechanism offers poten-
tial for large-scale IoT networks requiring real-
time data processing [61], [62].

Conflux Utilizing a unique Tree-Graph consensus mech-
anism, Conflux targets both scalability and se-
curity. It is a promising blockchain for IoT
applications with extensive networks [61], [63].

Polkadot Polkadot’s multi-chain structure emphasizes
high scalability, interchain operability, and flex-
ible governance. It is suitable for diverse IoT
applications that communicate across multiple
blockchains [61].

Avalanche With a goal of creating highly scalable decen-
tralized networks, Avalanche’s subnetworks and
custom virtual machines make it a robust choice
for complex IoT ecosystems [60].

A. Possible Applications (Use Cases)

We use a few case studies to demonstrate the usefulness
of the suggested model in this sub-section. A wide range of
businesses, in addition to financial institutions, have planned
to explore the blockchain’s capabilities. IoT devices may
use blockchain to enhance security and transparency in their
ecosystems. In several Blockchain Enterprise applications, it
has been demonstrated that merging IoT and Blockchain can
have a substantial benefit in a variety of industries. A few
examples follow.

1) Energy Trading: blockchain plays an essential role in
energy trade for IoT applications [26].

2) Supply Chain and Logistics: The effectiveness of a supply
chain is dependent on trust among the various stakehold-
ers. The combination of blockchain and IoT technologies
can help to improve the traceability and dependability of
data along the chain [64] and end-to-end visibility.

3) Smart Homes: Smart IoT-enabled devices are becoming
increasingly vital in our daily lives. The IoT blockchain
allows home security systems to be controlled remotely
using a smartphone. Telstra, an Australian telecommuni-
cations corporation, has used blockchain and biometric
security to protect data collected by smart devices [65].

4) Agriculture: Pavo marketplace [66] is a blockchain IoT
use case that delivers transparency to farmers by offering
a new and smart farming technique. Pavo’s IoT hardware
device, which is put on farms, collects data that is kept

on the blockchain. It allows farmers to improve their
agricultural operations by analyzing the data collected.

B. Comparing Use Cases: Evaluating Model Applicability

To justify various design choices of our experiments, in this
subsection, we present two different case studies that contrast
the sensor data collection intervals in IoT applications for
agriculture and smart cities. We assume a higher frequency
of data collection in smart cities allows for more real-time
monitoring and rapid response to changing conditions. At the
same time, agricultural IoT applications generally require less
frequent data collection due to the nature of their use cases.

Block time refers to the average time it takes to create a
new block in a blockchain. To calculate the appropriate block
time for each use case, we need to consider the data collection
frequency, the number of sensors, and the blockchain’s capac-
ity to store the data. We assume that each data point requires
the same storage space. We determine the appropriate block
time by assuming that the blockchain can accommodate the
storage capacity required for each use case.

For each use case, we perform the activities below:
• Step 1: Get the total number of deployed sensors count.
• Step 2: Calculate the total data points per day for each

sensor.
• Step 3: Calculate the data points generated per block time.
• Step 4: Calculate the storage capacity required.
• Step 5: Determine the appropriate block time, assuming

the blockchain can accommodate the required storage
capacity.

• Step 6: Calculate the maximum data points stored in a
block for each blockchain framework.

To compare various design choices of our experiments,
we compare two blockchain frameworks (Hyperledger Fabric,
Avalanche) using two use cases (IoT in agriculture, IoT in
smart cities) (Table VI). Note that in certain applications, as
discussed (see Table VI), such as within the healthcare domain,
data might be collected at frequencies as low as one data point
per second.

C. Limitations of the Model

Like any model, the proposed model has some limitations.
This information would help to estimate the time to generate
a new block.

1) Constraints of the design - our research mainly focuses on
the given IoT layer structure; however, the layers could
be vary in a real-world context.

2) Sampling errors could occur - data we use from previous
studies may not reflect the general population or appro-
priate population concerned.

3) Simulation data - data for simulation are collected from
different previous studies. Thus, when considering all
data in a single flow, the results could deviate from the
actual.

4) Measured timing could be changed on other dependencies
(performance of hardware, software).



19

TABLE VI
COMPARING USE CASES: CASE STUDY 1 - IOT IN AGRICULTURE AND CASE STUDY 2 - IOT IN SMART CITIES

Description Case Study 1 - IoT in Agriculture Case Study 2 - IoT in Smart Cities

IoT environment context
A farm utilizes IoT sensors to monitor the temper-

ature, humidity, and soil moisture across different
sections of the field. These sensors collect hourly
data, allowing the farm to respond to environ-
mental changes and optimize crop management. A
blockchain network is implemented on the farm to
ensure data security and integrity of the data.

A smart city uses IoT sensors to monitor traffic
flow, air quality, and energy consumption across
different areas of the city. These sensors collect
data every two minutes, allowing the city to re-
spond quickly to traffic patterns, pollution levels,
and power usage changes. This real-time data col-
lection helps the city efficiently manage resources
and improve the quality of life for its residents. A
blockchain network is deployed on the IoT smart
city to enhance data security and maintain the
integrity of the collected information.

IoT environmental parameters -
sensors

Temperature, humidity, light intensity, and soil
moisture

Traffic management, air quality monitoring, noise
level, and energy consumption tracking

Number of sensors deployed 50 200

Data collection frequency Every 60 mins (hourly) Every 2 mins

Total data points per day for each
sensor

24 hours/day × 1 data point/hour = 24 data points 24 hours/day × 30 data points/hour = 720 data
points

Total data points collected by all
sensors in a day

50 sensors × 24 data points = 1200 data points 200 sensors × 720 data points = 144,000 data
points

Number of data points generated
within the desired block time.

50 data points 200 data points

Storage capacity required per
block time by assuming that each
data point requires 1 KB of storage

50 data points × 1 KB = 50 KB 6000 data points × 1 KB = 6,000 KB

Calculate the maximum data
points that can be stored in a
block for Hyperledger Fabric (1
MB block size = 1024 KB)

1024 KB / 1 KB = 1024 data points 1024 KB / 1 KB = 1024 data points

Calculate the maximum data
points that can be stored in a block
for Avalanche (4 MB block size =
4096 KB)

4096 KB / 1 KB = 4096 data points 4096 KB / 1 KB = 4096 data points

New block generation time using
Hyperledger Fabric (1 MB block
size)

Data points generated per 60 minutes: 60 minutes
× (50 data points / 1024 max data points) = 2.929
minutes (approx.)

Data points generated per 2 minutes: 2 minutes
× (6,000 data points / 1024 max data points) =
1.71minutes (approx.)

New block generation time using
Avalanche (4 MB block size)

Data points generated per 60 minutes: 60 minutes
× (50 data points / 4096 max data points) = 0.73
minutes (approx.)

Data points generated per 2 minutes: 2 minutes
× (6,000 data points / 4096 max data points) =
0.296 minutes (approx.)

5) Proposed model is generated using the common functions
of the process; however, those could be slightly changed
based on the devices used (e.g., different sensors and
hardware).

6) This study does not differentiate the communication
approach devices use to transmit data (e.g., Bluetooth or
WiFi). However, communication may be interfered with
or depends on this in the real world.

7) The median block propagation time for all blockchain
frameworks was not given; thus, we use a limited number
of blockchains for the comparison.

VII. FUTURE DIRECTIONS

Current security technologies are unable to keep up with
the exponential expansion in the number of Internet-connected
devices and their CPU and memory constraints, resulting in
vulnerabilities for hackers to exploit. IoT/Edge computing
can increase the amount of resources and services available
at the network’s edge. However, distributed nodes pose a
security concern. Despite its widespread application in var-
ious fields, AI remains a single source for building black
boxes for consumers, limiting their trust in its outcome. In
government and industry, federated databases are becoming
more widespread. Optimizing federated-AI model adaptation
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for on-the-fly IoT/Edge data and leveraging Federated-AI
for blockchain scalability and interoperability is an exciting
potential future research avenue.

In the future, researchers could explore the feasibility and
implications of executing all described operations on a local
blockchain, where a single device carries out all processes.
This exploration could open new avenues for efficient IoT
implementations and further promote advancements in this
direction.

In this work, quantum cryptography’s effects on the fu-
ture of encryption were not examined, again, because of
the unavailability of data. However, as with any other new
technology, as data becomes available, it can be incorporated
into our model.

The Digital twin is a representation of a physical asset,
process, or service in a digital form. Directly modeling the
physics of Edge/IoT networks is challenging. Automating the
construction of the digital twin of Edge/IoT networks for
cybersecurity monitoring and cyber threat modeling is an im-
portant future research direction. Furthermore, exploring how
to combine different emerging technologies such as federated
learning, artificial intelligence, and digital-twin technology
with blockchain technology will be important to improve
security in IoT networks.

Our model examines all functionalities in each IoT layer
and presents a novel and comprehensive time estimation
framework for understanding the influence of blockchain-
enabled IoT on the block generation process and assessing
block generation time in the IoT ecosystem. Further validation
of our delay estimations of blockchain new block generation
will benefit from real-world experiments utilizing various
blockchain platforms.

VIII. CONCLUSION

This study develops a new comprehensive-time computation
model for block generation in blockchain-enabled IoT and
provides insights that can lead to improved scalability of
the architecture. It analyzes the main functions of four IoT
layers (device layer, CH layer, fog/edge layer, and cloud layer)
to adapt fast, real-time, machine-to-machine communications.
The evidence from this study suggests that the block genera-
tion time in IoT networks mainly depends on the blockchain
type, encryption algorithm, and the efficiency of each layer.
The significant findings to emerge from this study are that
the block generation time can be reduced by utilizing an
efficient encryption algorithm (such as 256-bit ECC, elliptic
curve cryptography) and the blockchain frameworks (such
as Avalanche, Conflux, Algorand, Polkadot, and Hyperledger
Fabric). Nevertheless, the blockchain framework does not
play a significant role in block generation time for smaller
data packets. Additionally, the results of this study indicate
that utilizing the fog layer for the block validation process
improves the efficiency of the entire block generation process.
This study could be replicated using more experimental data
(encryption time for different data packet sizes) to clarify
the estimated impact using a real industrial IoT environment.
By employing a suitable blockchain framework, encryption

algorithm, and fog layer, unnecessary time consumption can
be eliminated. During the design process, the proposed tool
will assist in determining the most appropriate blockchain
technology for a specific use case. However, it is recommended
to conduct further studies on optimizing key functions of
each IoT layer to improve blockchain scalability. In partic-
ular, such optimization can be achieved through utilizing Big
data analysis, Artificial Intelligence, deep learning, machine
learning, federated learning techniques, and the IoT service
orchestration with the block generation process.

IX. APPENDIX

Here, we provide Table VII and Table VIII, which were
referred to in Section II, where we provide a detailed compar-
ison of different features of blockchain frameworks to select
the most efficient blockchain type.
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TABLE VII
COMPARISON OF THE DIFFERENT BLOCKCHAIN PROTOCOLS

Blockchain
Framework

Bitcoin [4] Litecoin
[67]

Ethereum
[43]

Hyperledger
Fabric [44]

NEO [48] Cardano [49] EOS [50] Algorand
[54]

Conflux [68] Binance
(BNB) [52]

Polkadot
(DOT) [53]

Avalanche
[45]

Main Web-
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bitcoin.org litecoin.org ethereum.org hyperledger.org neo.org cardano.org eos.io algorand.com confluxnetwork.org binance.com polkadot.network avax.network

Blockchain
Generation

1st Gen 1st Gen 2nd Gen 2nd Gen 2nd Gen 1st Gen 2nd Gen 4th Gen 3rd Gen 3rd Gen 3rd Gen 4th Gen

Organisation
/
Devolopers

Bitcoin
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Litecoin
Core De-
velopment
Team

Ethereum
Foundation

Linux Foun-
dation

OnChain
(China’s
Ethereum)

Cardano
Foundation,
IOHK
Emurgo

Block.One Algorand,
Inc.

Conflux
Foundation

Binance Ex-
change

Web3 Foun-
dation

Ava Labs

Governance Bitcoin
Foundation
Developers
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Litecoin
Core De-
velopment
Team

Ethereum
Foundation
Developers
Community

Linux
Foundation,
IBM
Bussiness
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NEP Cardano
Foundation

EOSIO Core
Arbitration
Forum
(ECAF)

Algorand
Foundation

Conflux
Foundation

Binance Web3 Foun-
dation

Avalanche-X
Council

Established
Year

2009 2011 2014 2015 2016 2017 2018 2019 2019 2020 2020 2020

Application
(Use Cases)

Financial In-
dustry

Financial In-
dustry
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try

Cross Indus-
try

Cross Indus-
try

Enterprise
and B2B
applications
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try

Cross Indus-
try

Cross Indus-
try

Financial In-
dustry

Enterprise
and B2B
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try

Blockchain
Network
Type

Permissionless
& Public

Permissionless
& Public

Permissionless
& Public or
Private

Permissioned
& Private

Permissionless
& Public

Permissionless
& Public

Permissionless
& Public or
Private

Permissionless
& Public

Permissionless
& Public

Permissionless
& Public

Permissionless
& Public

Permissionless
& Public

Consensus
Algorithm

PoW PoW (Mem-
ory)

Proof-
of-Work
(PoW),
Proof-of-
Stake (PoS)

Practical
Byzantine
Fault
Tolerance
(PBFT),
Crash Fault
Tolerent
(CFT),
Kafka, Raft

Delegated
Byzantine
Fault
Tolerance
(dBFT), 7
validators

PoS,
Ouroboros

Delegated
Proof-of-
Stake (DPoS)

Pure proof-
of-stake
(PPoS)

Tree-Graph
(TG)
consensus
protocol
(PoW)

Proof of
Staked
Authority
(PoSA)

Nominated
Proof-
of-Stake
(NPoS)

Avalanche
consensus
protocol
(PoS)

Platform
Description

Generic
blockchain
platform

Generic
blockchain
platform

Generic
blockchain
platform

Modular plat-
form

Generic
blockchain
platform

Modular plat-
form

Modular plat-
form

Generic
blockchain
platform

Modular plat-
form

Modular
platform

Modular
platform

Modular plat-
form

Security
(Hashing
Function)

SHA 256
(SHA 2
based)

Scrypt,
SHA-256

Ethash,
KEC-
CAK256,
ECDSA

AES256,
Nodejs
Chaincode

SHA256 and
RIPEMD160

BLAKE2b-
256

SHA-256 Ed25519 Keccak-256
(Conflux-
256),
BLAKE2b

SHA-256 BLAKE2b SipHash,
SHA-256,
SHA-3

Programming
Language

Golang,
C++

Golang,
C++

Go, C++,
Rust, Solid-
ity, Serpent,
LLL

Go JAVA, C/C# C++ C++,
WASM

Reach,
PyTeal,
TEAL

Solidity, Rust GO, Java,
Javascript,
C++, C#,
Python, and
Swift

JavaScript,
Rust

Go,
TypeScript,
JavaScript,
Python, Vue

Smart Con-
tract

No
(possible via
sidechains)

Progress
(Flare
Networks)

Yes (Solid-
ity, Vyper)

Yes
(Chaincode,
Golang,
Node.JS,
Java)

Yes
(Chaincode,
GO)

Yes (Plutus) Yes (Web As-
sembly )

Yes (TEAL) Yes (Solidity,
Vyper)

Yes Relay-
chain, only
Parachains
- hetero-
geneous
blockchains
(WASM,
EVM)

Yes
(Solidity++,
EVM, C-
Chain)

Smart
Contract
Applica-
tions Pro-
gramming
Language

No Partial Solidity Golang,
Node.JS, Java

Chaincode,
GO

Haskell
(based on
Plutus)

Rust, C,
C++

TEAL
(PyTeal)

Solidity GO, Java,
Javascript,
C++, C#,
Python, and
Swift

WASM,
EVM (only
parachains)

Yes
(Solidity++,
EVM,
X-Chain,
P-Chain)

Smart Con-
tract Exe-
cution

Native Native EVM Docker NVM Dapps JVM AVM EVM EVM WASM,
EVM

EVM, JVM,
WASM

Cross-chain
Interoper-
ability

No No Yes (using
3rd party
solution)

No No Yes (using
3rd party
solution)

No No Yes Yes Yes Yes

Data Model Transaction-
based
(UTXO)

Transaction-
based
(UTXO)

Account-
based

Account-
based

Account-
based

Account-
based

Account-
based

Account-
based

Account-
based

Transaction-
based
(UTXO)

Account-
based

Hybrid model
(Account-
based and
Transaction-
based(UTXO))

Currency -
Native To-
ken

Bitcoin LTC Ether
(ETH),
tokens
via smart
contract

None,
currency
and tokens
via chaincode

NEO ADA EOS, tokens
via smart con-
tract

ALGO CFX BNB DOT AVAX

Transaction
Fee

Progressively
large fees

LTC $4- $40
(GAS)

No GAS $0.16 0 (need band-
width by stak-
ing)

ALGO GAS $0.01 No GAS

Minning/Block
Reward

Yes Yes Yes Blocks are
not mined
- validating
peers

No Yes Yes No Yes No Yes Yes

Hashrate 358.331
EH/s

327.348
TH/s

613.309
TH/s

N/A N/A N/A N/A N/A 7.165 TH/s N/A N/A N/A

Throughput
/ Scalability

7 tps 56 tps 15 - 20 tps 3.5k - 110k
tps (3-4 tps)

10,000 tps 250 tps millions 1200 tps Up to 3000
tps

100 tps 1000 tps Up to 4500
tps

Block Time
(Interval)

10 mins
(600 sec)

2.5 mins
(150 sec)

12-14 sec 0.5 - 2 sec 15 sec 20 sec 0.5 sec 3.7 sec 1 sec 3 sec 7 sec 2-3 sec
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TABLE VIII
COMPARISON OF THE DIFFERENT BLOCKCHAIN PROTOCOLS

Blockchain
Framework

Bitcoin [4] Litecoin
[67]

Ethereum
[43]

Hyperledger
Fabric [44]

NEO [48] Cardano [49] EOS [50] Algorand
[54]

Conflux [68] Binance
(BNB) [52]

Polkadot
(DOT) [53]

Avalanche
[45]

Median
block prop-
agation
time

8.7 sec 1.02 sec 0.5 - 0.75
sec

0.075 sec Not Found 5 sec Not Found Not Found Not Found Not Found Not Found Not Found

Average
Block Size

2 MB 1 MB 20-30 KB 1 MB 1-2 MB 500 KB 1 MB N/A Up to 2 MB 1-2 MB 3-4 MB Up to 4 MB

Blockchain
Size
(Ledger
Size)

402.51 GB 48.22 GB 345.17 GB Not Found Not Found 85 GB Not Found Not Found Not Found Not Found Not Found 2 GB

Average
Transac-
tions per
Day

256 K 30 K 1 M 5 K 4K 4K 3.5 M 5M 33K 5M 15K 2.9M

Internet of
things

No
(Progress)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Decentralized
Finance
(DeFi)

No No Yes Yes Yes No Yes Yes Yes Yes Yes Yes

Energy
Consump-
tion

Very High Low High Low Low Low Low Low Low Low Low Low
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