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Abstract—Real-time traffic in a cellular network varies over
time and often shows tidal patterns, such as the day/night traffic
pattern. With this characteristic, we can reduce the energy
consumption of a cellular network by consolidating workloads
spreading over the entire network to fewer Base Stations (BSs).
In this work, we propose a BS sleeping strategy for a two-tier
Heterogeneous Cellular Network (HeCN) that consists of Macro
Base Stations (MaBS) and Micro Base Stations (MiBS). We first
use a Bidirectional Long Short-Term Memory (BLSTM) neural
network to predict the future traffic of each user. Based on
the predicted traffic, our proposed BS sleeping strategy switches
user connections from underutilized MiBSs to other BSs, then
switches off the idle MiBSs. The MaBSs are never switched off.
All user connections have predefined Signal-to-Interference-plus-
Noise Ratio thresholds, and we ensure that each user’s service
quality, which is related to the user’s traffic demand rate, is
not degraded when switching user connections. We demonstrate
the effectiveness and superiority of our proposed strategy over
four other baselines through extensive numerical simulations,
where our proposed strategy substantially outperforms the four
baselines in different scenarios.

Index Terms—Heterogeneous cellular networks, traffic fore-
casting, energy saving, SINR, quality of service, BLSTM.

I. INTRODUCTION

MOBILE internet services, such as mobile payments,
online maps, and real-time videos, have become in-

tegral to people’s daily lives. With the widespread use of
smartphones, tablets, wearable devices, and Internet of Things
(IoT) applications, the number of devices connected to the
network has significantly increased. In early 2022, the number
of IoT devices reached 14.4 billion, an increase of 18%
compared to 2021 [1]. This growth in connected devices has
led to a substantial increase in data traffic. By the end of 2021,
the global mobile data traffic had reached around 84 EB per
month, and it is estimated to increase by about 4.2 times,
reaching 368 EB per month in 2027 [2].

To keep up with this explosive growth in data traffic,
the construction and deployment of fourth-generation and
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fifth-generation wireless networks have been promoted and
popularized, increasing the number of Base Stations (BSs)
and the capacity and coverage of mobile cellular networks.
However, as Information and Communications Technologies
(ICTs) account for 1.8%-2.8% of global greenhouse gas emis-
sions [3], and BSs consume more than 80% of the energy
in mobile cellular networks [4], energy efficiency (EE) has
become a crucial concern. Optimal BS switching on/off and
BS sleeping strategies [5, 6] can significantly improve the
EE of mobile cellular networks, reducing greenhouse gas
emissions and leading to considerable cost savings. Therefore,
such strategies and solutions have become critical to the design
of future mobile cellular networks.

However, the unprecedented number of mobile device
connections in the network and the diversification of data
service types have rendered traditional Homogeneous Cel-
lular Networks (HoCNs) inadequate to meet the complex
requirements of future networks. HoCNs consist of BSs with
similar working modes and transmit patterns [7]. To address
this issue, Heterogeneous Cellular Networks (HeCNs) have
been introduced, which can achieve flexible and low-cost
deployment by adding Micro Base Stations (MiBSs), such
as pico and femto BSs, with different working modes and
transmit patterns within the coverage of Macro Base Stations
(MaBSs). This approach increases data transmission rates and
complements the coverage area, as shown in Fig. 1. The
MiBSs have different carrier frequencies than MaBSs and do
not cause interference to MaBSs in the same coverage area.

In HeCNs, MiBSs can be shut down or switched to sleep
mode at appropriate times, providing a significant opportunity
to reduce the excessive energy consumption of BSs. This
attribute makes HeCNs more amenable to BS sleeping than
the earlier, more rigid HoCNs because, in a HeCN, a user of
a shutdown MiBS can connect to a MaBS that covers their
location. In contrast, in a HoCN, if a BS shuts down, its
users may not obtain the required Quality of Service (QoS) by
connecting to active, far-away BSs. The flexibility of HeCNs
enables efficient network management and better utilization
of network resources, making them a promising solution for
future mobile networks.

Researchers have focused on analyzing and predicting mo-
bile cellular network data traffic to find the best BS sleeping
schedule. Studies such as [8, 9] have found that traffic in
mobile cellular networks exhibits strong self-similarity and
follows general regularity in spatio-temporal distribution. This
predictability of mobile cellular network traffic has made it a
topic of exploration for researchers. Additionally, there is a
significant difference in the traffic pattern between day and
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Fig. 1: Architecture of a HeCN.

night for every working day [8, 10]. Therefore, analyzing the
historical traffic data for a specific period in the same area
can effectively predict the network traffic demand in the area
for a certain period in the future based on the spatio-temporal
distribution of users’ mobile data traffic.

Prediction methodologies for the traffic of mobile cellular
networks that enable BS sleeping scheduling in different
periods have been studied under specific scenarios. In [11–
13], the authors proposed several BS sleeping strategies to
reduce energy consumption based on predicted traffic, but
they were all for HoCNs. Lin et al. [14] predicted data traffic
in HeCNs and proposed BS sleeping strategies based on the
predicted traffic without considering the differences between
the traffic demands of different users in the network and the
effect of the locations of the different BSs on the performance
of sleeping strategies. Donevski et al. [15] proposed methods
to find the optimal BS sleeping times in HeCNs based on
traffic prediction using neural networks but did not specify
user reallocation. Specifically, for the association between
users and BSs, since the transmission power of MaBSs in
HeCNs is much greater than that of MiBSs, users will prefer
to choose MaBSs that can provide a better QoS without
particular intervention, causing MiBSs not to be fully utilized
or even empty-loaded. Therefore, a BS sleeping strategy must
consider the effect of different BS deployment methods on the
performance of sleeping strategies and control user choices
to achieve sufficient utilization of MiBSs in HeCNs during
the sleeping periods. These essential enhancements to the BS
sleeping strategy will lead to load balancing among BSs and
energy saving.

In this paper, our main contributions to developing BS
sleeping strategies in HeCNs are as follows.

• We use a Bidirectional Long Short-Term Memory
(BLSTM) to predict the traffic demand rates of each user
in the HeCN rather than predicting the traffic of the whole
network or individual BSs as done in prior literature. We
use real historical traffic data sets for training and testing
the prediction model. The predicted traffic is then used
as the input for our designed sleeping strategy.

• Based on stochastic geometry, we abstract the deployment
of BSs in HeCNs to a random point process. Specifically,
we consider a two-tier HeCN consisting of MaBSs and
MiBSs and use a Poisson Point Process (PPP) and a

Matérn Hard-Core Point Process (MHCPP) to model
the positions of BSs, respectively. We then evaluate
the energy-saving performance of the two-tier HeCN
under different BS deployment methods, namely PPP and
MHCPP.

• Given the predicted user traffic demand and the deploy-
ment results of BSs, we design a BS sleeping strategy,
which we refer to as Minimum Load Sleep First (MiLSF)
strategy, for the two-tier HeCN. In this strategy, we try
to reallocate users of MiBSs in the network to other BSs
and turn the idle MiBSs into sleep mode to minimize
the overall energy consumption of the whole network.
We consider each user connection to have a predefined
Signal-to-Interference-plus-Noise Ratio (SINR). We guar-
antee each user’s QoS requirement, which is related to the
user’s demand traffic rate, by ensuring the SINR does not
violate the given threshold when switching the connection
from one BS to another. Our goal is to optimize the
selection of the set of MiBSs that are switched to sleep
mode at the beginning of a low-load period and then are
switched back to active mode once the low-load period
ends. In practice, the low-load period is normally at night.
This design avoids frequent BS switching changes, which
are problematic because of initialization requirements
during switching from sleep to active mode [16]. Notice
that MaBSs in the network will not be switched to
sleep mode, and our MiLSF strategy is implemented
to not degrade all users’ QoSs after reallocating the
users. We demonstrate the effectiveness and superiority
of MiLSF over four other baseline strategies through
extensive numerical simulations.

The MiLSF strategy effectively reduces energy consumption
and operating expenses for the HeCN. This, in turn, helps
to reduce carbon emissions, making it an environmentally
friendly solution. When combined with AI techniques to
predict future traffic, the MiLSF strategy can help ensure
QoS by proactively avoiding violations of the SINR threshold
provided to each user. This proactive approach helps to prevent
potential client loss and revenue loss for mobile carriers, thus
making it a highly desirable solution for improving network
performance. The remainder of this paper is organized as
follows. In Section II, we discuss other related work for
developing green HeCNs, traffic prediction, and BS sleeping
strategies in HeCNs. In Section III, a description of the
system models is provided, which includes the BS develop-
ment model, SINR model, BS power consumption model, and
BLSTM traffic prediction model. In Section IV, the energy-
saving optimization problem in the HeCN is formulated. In
Section V, we propose the MiLSF in the HeCN based on
traffic prediction. Section VI introduces the parameter settings
and the simulation scenarios and presents extensive numeri-
cal results that demonstrate the superiority of our proposed
MiLSF strategy over four other baseline strategies. Finally, in
Section VII, we draw our conclusions.
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II. RELATED WORK

A. Green HeCNs

The topic of developing green HeCNs has been widely
studied over the past decades. Wildemeersch et al. [17] demon-
strated that deploying MiBSs in MaBSs can improve user sat-
isfaction, network capacity, network coverage, and reliability
of HeCNs. Ghosh et al. [18] discussed new problems encoun-
tered in HeCNs compared to HoCNs, including multi-layer
network modeling, SINR analysis, interference management
between different types of BSs, and network maintenance.
Elsawy et al. [19] introduced a new interference coordination
management mechanism in HeCNs to solve the problems
caused by BS power differences, distribution randomness of
BSs, and frequent switching between users and BSs. Guo et
al. [20] presented a theoretical framework for optimizing BS
deployment in order to maximize network frequency efficiency
and mitigate interference caused by a high density of MiBSs.
In [21], Cheng et al. used the system throughput as the perfor-
mance index and found the best placement positions of various
MiBSs. Yang et al. [22] studied the problem of energy-saving
BS deployment under probabilistic line-of-sight and non-line-
of-sight transmissions. Mlika et al. [23] focused on the issue of
BS operation and user association to develop energy-efficient
HeCNs to meet the minimum rate requirements. In [24], Ak
et al. used a PPP model to decide the locations of BSs
and studied the impact of different network parameters on
energy consumption. Chen et al. [25] analyzed the effects
of various BS deployment topologies on network throughput
and reliability. In [26–28], the BS deployment strategies with
maximum reliability for HeCNs in real-world metropolitan
scenarios were studied. However, the above studies did not
consider the movement of users and the variability of the traffic
load generated by these users over time.

B. Traffic prediction

Traffic prediction is usually realized by analyzing the net-
work traffic pattern and extracting traffic changes’ charac-
teristics. Since cellular network traffic is usually presented
as time series, time series modeling methods can describe
and predict changes in cellular network traffic [29]. Xu et
al. [30] decomposed the traffic of BSs into periodic and
random components and used time-series predictions to predict
the BS traffic. In [31], Sultan et al. proposed a method to
remove abnormal data to predict traffic better. Zhang et al. [32]
analyzed the mobile traffic data by three aspects: periodic flow
components, directional flow components, and additional ele-
ments that contain the effects of noise and anomalous events.
Xu et al. [33] proposed a decomposition model consisting of
traffic trend, seasonal, and holiday components and built a
sub-model of the holiday component based on out-of-direction
residuals and seasonal components.

Moreover, the emergence of many neural network meth-
ods provides new ideas for modeling and predicting cellular
network traffic. Guo et al. [34] used a deep neural network
model to learn the characteristics of historical data for predic-
tion. LSTM is a particular Recurrent Neural Network (RNN)

that successfully addresses the gradient disappearance prob-
lem [35] and easily learns long-term dependent information.
Specifically, LSTM feeds the previous step’s output to the
current step’s input layer, a dynamic feedback connection
that models dependencies in a time series. In [36], Trinh et
al. studied the effectiveness of RNNs for traffic forecasting
and used LSTM to successfully predict the traffic for distant
timeslots, showing the applicability and accuracy of LSTM
in mobile cellular network traffic prediction. Azari et al. [37]
compared the user traffic prediction performance of the statis-
tical learning-based forecasting method named autoregressive
integrated moving average (ARIMA) and LSTM in various
scenarios and then demonstrated the superiority of LSTM
over ARIMA. However, existing publications focus more on
the traffic prediction of BSs or the entire network without
considering individual users’ traffic demands.

C. BS sleeping techniques

In HeCNs, considering the high flexibility of MiBSs and
the ease of switching on and off, sleep strategies are usually
applied to MiBSs to reduce the overall energy consumption
of the networks. Wu et al. [38] improved the EE of a HeCN
through cooperation among MiBSs. In [39], the influence of
the sleeping ratio of femto BSs on EE was studied to obtain the
optimal sleeping rate of femto BSs with maximum EE. In [40],
Li et al. comprehensively studied the EE-related issues in
femtocell networks and proposed a fixed-time sleeping strategy
for femto BSs to save energy consumption in HeCNs.

BS sleeping strategies must ensure that the active BSs
can bear the network’s traffic load when reducing energy
consumption. The dynamic change of the network traffic load
is an essential reference basis for formulating the sleeping
strategies of the BSs. In [41], Wyner proposed using sleep
mode for BSs during the low traffic load to reduce system
energy consumption. In [42], Saker et al. associated the user
with the MaBSs and woke up the sleeping MiBSs only when
the traffic load was huge to make up for service defects.
Considering the load of BSs, Wu et al. [43] proposed a BS
sleeping strategy based on E/M/1 and E/M/n queuing models.
In [44], Wu et al. modeled every sleeping BS as an M/G/1/K
queue and studied the tradeoff between the grade of service
and power consumption under various BS sleeping strategies.
The neural networks were used to predict the future traffic load
of BSs in [11, 12, 14], and then the corresponding BS sleeping
strategies were formulated according to the predicted traffic
load. In [45], Wu et al. provided a detailed survey presenting
facts and figures about BS sleeping strategies and the potential
issues and future research in green cellular networks.

The sleeping of BSs needs to ensure the QoS of users and
user associations with the remaining active BSs. In [46], some
MaBSs were switched to sleep mode, and the users associated
with the sleeping MaBSs were reallocated to surrounding
MiBSs without reducing the QoS of users. In [47], the
energy consumption was reduced by sleeping some MiBSs
that are not associated with users. In [48], Soh et al. reduced
energy consumption while guaranteeing all network requests
by introducing transmission power adaptation and BS sleeping
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technique. Liu et al. [16] considered the extra energy con-
sumption and initialization delay caused by frequent switches
of BSs and performed BS sleeping without reducing the QoS
of users. Zhang et al. [49] proposed a BS sleeping strategy for
5G small-cell networks that also included energy harvesting
and matched the dynamics of arriving energy with all the
users’ demands. Alqasir et al. [50] considered a HeCN where
the power source of MiBSs comprises harvested energy and
a grid power source. Then, Alqasir minimized the energy
consumption of the HeCN by optimizing the transmitted power
and activation/deactivation of the MiBSs. In [51], a user
association and scheduling algorithm was proposed to help
reduce energy consumption, where users connected to sleeping
BSs can be rapidly reconnected to active BSs according to
multiple parameter access criteria.

In summary, research on BS sleeping strategies mainly
considers the traffic load of BSs, resource allocation, and
user association. Researchers use greedy algorithms, heuristic
algorithms, or game theory to obtain energy-saving sleeping
strategies to maintain user satisfaction. To the best of our
knowledge, most of the current BS sleeping strategies are
based on traffic prediction of BSs rather than individual users
with different traffic demands in the network. The traffic
prediction for different users can help formulate BS sleeping
strategies that accurately meet the needs of different users.
Meanwhile, the impact of different deployment methods of
MaBSs and MiBSs in heterogeneous networks on user associ-
ation and energy consumption has not been studied in depth. In
this paper, based on the BLSTM predicted traffic data of every
user with different traffic patterns in the network, our proposed
MiLSF selectively sleeps some MiBSs and considers the user
association problem, thereby reducing the energy consumption
in the network without reducing the QoS of every user.

III. SYSTEM MODEL

The introduction of different types of BSs in HeCNs has led
to the development of multi-layer network structures, which
comprise multiple types of BSs. This paper considers a two-
tier HeCN consisting of MaBSs and MiBSs. In the following,
we describe the details of the two-tier HeCN and the BLSTM-
based model for user traffic prediction.

A. BS deployment

Compared to the traditional cellular topologies where
MaBSs use a hexagonal grid model and the MiBSs are
deployed within the MaBSs’ coverage in a specific way, the
stochastic geometry theory provides an effective and tractable
way to study the HeCNs’ performance from a statistical
perspective [19, 52]. Specifically, PPP is a tractable and
popular point process due to its independence [53]. The PPP
can be used to model the deployment process of the BSs
of cellular networks, while MHCPP [54], which is based on
PPP but avoids points being too close, can better reflect the
BSs’ deployment in actuality and describe the network more
practically. This paper considers both a PPP and an MHCPP
in a two-dimensional Euclidean plane to deploy the BSs.

• PPP. The deployment process of BSs Φ = {Bi; i =
1, 2, ...} in a two-dimensional Euclidean plane R2 can be
modeled as a PPP if the number of the BSs in any two-
dimensional compact set D ⊂ R2 is a Poisson random
variable, where Bi is the i-th BS. Specifically, we deploy
the MaBSs and MiBSs by applying different intensity
values to a PPP. Notice that the deployments of MaBSs
and MiBSs are independent of each other.

• MHCPP. The MHCPP is based on the PPP but avoids
interference between very close BSs by removing the
points that coexist within a predefined non-negative dis-
tance (also known as the hard-core parameter rh), namely
∥ Bi − Bj ∥≥ rh, ∀Bi, Bj ∈ Φ, i ̸= j, rh ≥ 0.
Specifically, for any two BSs Bi and Bj separated by
less than rh, we remove the BS with a smaller subscript,
which is Bi if i < j.

The realization of a PPP and an MHCPP for the BSs’
deployment is illustrated in Fig. 2. The deployment processes
for MaBSs and MiBSs are independent of each other. We
used different intensities for MaBS and MiBS because of
MaBS’s higher transmitting power and larger coverage area,
which resulted in fewer than MiBS in the actual deployment.
We can observe from Fig. 2(a) that BSs of the same type
may exist within a very close range, resulting in considerable
signal interference. This situation is improved in Fig. 2(b) by
removing BSs of the same type that are too close together.
It should be noted that, for ease of exploration, we only
consider the signal interference among the same type BSs.
This is because, as mentioned above, MaBS and MiBS are
characterized by entirely different carrier frequencies, so the
interference among different types of BSs can be ignored
compared with the interference among the same type of BSs.

It should be noted that the hard-core constraint in the
MHCPP model may potentially adversely affect its scalability
when applied to large or high-density point patterns. As the
number of BSs increases, finding feasible configurations that
satisfy the hard-core constraint becomes more challenging, po-
tentially limiting the model’s scalability in practical scenarios
of highly dense networks in 6G architectures. Consequently, it
would be beneficial to conduct a further study that includes an
asymptotic analysis of the scalability of MHCPP in relation
to the number of BSs. However, such an analysis falls beyond
the scope of this paper and should be considered as a valuable
direction for future research.

Nevertheless, it is worth mentioning that for the actual
scenarios of 5G or future 6G high-density BS networks,
the increase in carrier frequency and the shortening of the
wavelength of the BSs hasten the attenuation during signal
propagation. Compared to 4G BSs, the coverage of 5G and 6G
BSs is significantly reduced [55]. These characteristics suggest
that while increasing the BS density in the MHCPP model, we
could employ a smaller hard-core constraint distance, thereby
lending the MHCPP model scalability in the high-density
network practical scenarios of 5G or even 6G architecture.

Another limitation of the MHCPP model is that it as-
sumes a specific form of spatial dependence characterized
by a correlation structure [54, 56], which may not fully
capture the complex spatial dependencies present in real-
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(a) PPP in a 10km×10km area with MaBS intensity 0.2
points/km2 and MiBS intensity 0.4 points/km2, respectively.

(b) MHCPP based on the PPP in (a) with the hard-core param-
eter rh set as 1km and 2km for MaBS and MiBS, respectively.

Fig. 2: BS deployment realized by PPP and MHCPP.

world scenarios. To address this limitation, alternative models,
such as Voronoi Tessellation [57] and network-based models,
offer more flexibility in capturing complex spatial dependence
patterns. Voronoi tessellation divides space into regions around
each base station, ensuring that any point within each region
is closer to its corresponding base station than any other [57].
This model effectively captures the spatial interaction between
base stations and provides a more accurate representation
of coverage areas and interference patterns. It takes into
account the proximity of users to individual base stations
and enables the analysis of signal strength and interference
levels. Network-based models explicitly consider the underly-
ing network structure and connectivity between base stations.
Graph-based models, such as random geometric graphs or
random connection models, capture the spatial proximity of
base stations and their connectivity patterns. These models
are particularly useful for modeling wireless networks with

interference, signal propagation, and connectivity constraints.

B. SINR model

In this paper, we assume all homogeneous BSs have the
same characteristics. The MaBSs and MiBSs are characterized
by different deployment intensities, transmit powers, number
of contained transmit antennas, carrier frequencies, and band-
widths.

We consider K users, M MaBSs, and N MiBSs in the
two-tier HeCN, where

• the transmit powers of a single transmit antenna in
MaBSs and MiBSs are represented by p1 and p2;

• the carrier frequencies of MaBSs and MiBSs are charac-
terized by f c

1 and f c
2 ;

• the bandwidths of MaBSs and MiBSs are denoted as w1

and w2.
For clarity of presentation, we define sets ΨM =
{1, 2, ...,M} and ΨS = {M + 1,M + 2, ...,M + N}, and
the MaBSs and MiBSs in the two-tier HeCN are tagged
as Bi, i ∈ ΨM and Bi, i ∈ ΨS , respectively. Let ΨK =
{1, 2, ...,K} be the set of users in the two-tier HeCN. Since
MiBSs and MaBSs have different characters (e.g., they use
different carrier frequencies and different bandwidths), we
introduce a binary indicator θ(x) to clarify it, which indicates
which tier a BS belongs to, defined as:

θ(x) =

{
1, if x ∈ ΨM ,

2, if x ∈ ΨS .
(1)

Consider user k ∈ ΨK who is allocated to BS i ∈ ΨM∪ΨS ,
its path loss (dB) is obtained by

Li,k = 20log

(
4πf c

θ(i)

c

)
+ 10βlog (di,k),

∀ k ∈ ΨK , i ∈ ΨM ∪ΨS ,

(2)

where c is the speed of light, β is the pass loss exponent,
f c
θ(i) is the carrier frequency of BS i, and di,k is the distance

between BS i and user k. Then the received SINR from BS i
to user k is

Si,k =
pθ(i)ρi,kL

−1
i,k∑

j∈ΨM∪ΨS\{i} pθ(j)ρj,kL
−1
j,k + η0wθ(i)

,

∀ k ∈ ΨK , i ∈ ΨM ∪ΨS ,

(3)

where pθ(i) and wθ(i) are the transmit power and bandwidth
of BS i, respectively. η0 denotes the noise spectral density.
ρi,k is the small-scale fading between user k and BS i
where we consider Rayleigh fading that follows an exponential
distribution [58]. In this context, user k will be blocked from
BS i if the received SINR is lower than threshold γ0. The
numerator in (3) (i.e., pθ(i) · ρi,k · L−1

i,k ) is the signal power
received by user k from its associated BS i. The denominator
consists of both interference power and white noise power.
The interference power (i.e.,

∑
j∈[M+N ]\{i} pθ(j) · ρj,k · L

−1
j,k)

is the signal power received by user k from other BSs, i.e.,
the BSs except BS i.
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Different interference mitigation strategies have been used
in a HeCN in order to improve the SINR performance, such as
the beamforming technique [59]. Instead of a single antenna,
an antenna array is used for signal transmitting or receiving
in beamforming. The signals received by multiple antennas
have different phases (and amplitudes) due to the different
signal paths. The received signals are adjusted to be coherent
by introducing appropriate delays such that different signals
can enhance each other, achieving a channel gain much more
than a single antenna can realize. In addition, other techniques,
such as power control and resource allocation, can also be used
to mitigate interferences and improve the quality of signals.
However, our core contribution to this paper is to present a
BS sleeping strategy to save energy with guaranteed quality
services. We consider a simple and general SINR model but
do not delve into detailed interference management techniques.
These mitigation techniques can be combined with our work
by providing a different SINR threshold to our proposed
algorithm.

C. BS power consumption model

For a user k connected to BS i with a SINR no less than the
threshold γ0, namely Si,k ≥ γ0, according to Shannon–Hartley
theorem [60], the required bandwidth of BS i by user k at
moment t is

bi,k(t) =
rk(t)

log2 (1 + Si,k)
, (4)

where rk(t) is the demand rate of user k at moment t. (4)
describes the relationship between the required bandwidth
resources and the demand traffic rate of users. Notice that
the Si,k in (4) is expressed as a linear power ratio, not
as logarithmic decibels. Let Ψi

K(t) be the set of the users
connected to BS i at the moment t. Then, the load of BS i at
the moment t is obtained by

µi(t) =
∑

k∈Ψi
K(t)

bi,k(t)

wθ(i)
. (5)

Notice that µi(t) ∈ [0, 1] since any BS is not allowed
to be overloaded. For ease of exploration, we consider two
modes for a BS: sleep mode and active mode. We introduce
the following definitions.

• We define P s
1 and P s

2 as the sleep powers of MaBSs
and MiBSs, respectively. We consider the sleep powers
invariant with time and load because the BSs in sleep
state will not bear any traffic load.

• For active mode, we define P a
1 and P a

2 as the active
powers of MaBSs and MiBSs. The power of an active
BS can be regarded as two parts, transmit power and
circuit power [61], where the former is related to the
load of BSs, and the latter contains the necessary circuit
component energy consumption, which can be regarded
as a constant. Specifically, we define pc1 and pc2 as the
circuit powers of MaBSs and MiBSs. We assume every
MaBS and MiBS consists of multiple transmit antennas,
and the numbers of transmit antennas of every MaBS and

MiBS are α1 and α2, respectively. In this context, we use
the linear approximation model of [61] to represent the
total power of BS i at moment t as follows.

P a
θ(i)(t) = αθ(i)pθ(i)µi(t) + pcθ(i). (6)

(a) Active mode. (b) Sleep mode.

Fig. 3: Block diagram of the power consumption of a MaBS.

D. BLSTM model
The traffic patterns of users in cellular networks change

over time [30]. RNN has gained significant attention in recent
years [62] for handling sequence data as input and performing
recursion in the direction of the evolution of the sequence.
In RNNs, all the nodes (which are artificial neurons) are
connected to allow the output of some nodes to impact the
subsequent input to the same nodes. However, RNNs usually
cannot handle long dependencies in reality, even with carefully
chosen parameters, for very long sequences [35].

LSTM is an RNN designed to handle the long-term depen-
dence problem that standard RNNs cannot handle [35]. LSTM
lets the model learn how to forget the previous hidden state
and update the current state, making it well-suited to capturing
long-term temporal dependencies in sequences. The LSTM
architecture includes forget, input, and output gate mechanisms
that allow the model to forget or retain information selectively.
Fig. 4 illustrates the differences between a standard RNN and
a standard LSTM regarding their repeating models. At time t,
xt, ct, c̃t, ht, ft, it, and ot represent the input, internal state,
candidate state, hidden state, forget gate output, input gate
output, and output gate output, respectively. The gate structure
includes sigmoid and tanh activation functions, denoted by
σ(·) and τ(·), respectively. The function called sigmoid com-
presses the input between 1 and 0, while the function called
tanh compresses the input between 1 and -1. This feature
allows LSTM to forget information by multiplying zero and
memorize part or all of the information by multiplying a non-
zero number.

For the repeating model described in Fig. 4(b) at time t,
LSTM introduces an internal state ct ∈ RD to linearly transfer
the cyclic information and to output information non-linearly
to the hidden state ht ∈ RD. The internal state ct and hidden
state ht are obtained by

ct = ft ⊙ ct−1 + it ⊙ c̃t, (7)

ht = ot ⊙ τ(ct), (8)

where ⊙ is the pointwise multiplication operation, c̃t ∈ RD

is the candidate state obtained by

c̃t = τ(Wcxt +Ucht−1 + vc). (9)
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(a) The repeating module of a standard RNN.

(b) The repeating module of a standard LSTM.

Fig. 4: Differences between RNN and LSTM.

For the outputs of the three gates, we have

• the forget gate output ft ∈ [0, 1]D, which controls how
much information needs to be forgotten for the last cell
state ct−1,

ft = σ(Wfxt +Ufht−1 + vf ), (10)

• the input gate output it ∈ [0, 1]D, which decides how
much information needs to be memorized for a candidate
state c̃t,

it = σ(Wixt +Uiht−1 + vi), (11)

• and the output gate output ot ∈ [0, 1]D, which decides
how much information the internal state ct needs to
output to the hidden state ht,

ot = σ(Woxt +Uoht−1 + vo), (12)

where the W∗, U∗, and v∗, ∗ ∈ {i, f, o, c} are the learnable
network parameters. Concisely, we describe (9)-(12) as

c̃t
ot

it
ft

 =


τ(·)
σ(·)
σ(·)
σ(·)

(
W

[
xt

ht−1

]
+ v

)
, (13)

where xt ∈ RF is the input at time t, W ∈ R4D×(D+F ) and
v ∈ R4D are the network parameters of LSTM. (13) together
with (7)-(8) comprehensively describe a repeating model of a
standard LSTM in Fig. 4(b).

Although the standard LSTM described above is widely
used in literature, not all LSTMs are the same. Different
publications may use slightly different versions of the LSTM
network, and the output at time t may be related to both past
and future information. In our paper, we enhance the LSTM
network’s ability to predict user traffic data more accurately

using a Bidirectional LSTM (BLSTM). We add a specific
network layer that transmits information in reverse order of
time, allowing the BLSTM to process both past and future
context while making predictions. This modification improves
the BLSTM’s ability to capture temporal dependencies in the
data and produces more accurate predictions than the standard
LSTM. See Fig. 5. The two layers in Fig. 5 have different
information transmission directions, where Layer 1 is in order
of time, and Layer 2 is reversed in time. The internal state
outputs (c(1)t , c(2)t ) and hidden state outputs (h(1)

t , h(2)
t ) of

the two layers are obtained in the same vain of ct and ht of
the standard LSTM by (7), (8), and (13). Then, we can obtain
the internal state output and hidden state output of BLSTM at
time t by

hB
t = h

(1)
t ⊕ h

(2)
t , (14)

cBt = c
(1)
t ⊕ c

(2)
t , (15)

where ⊕ is the concatenation operation.
The computational complexity of the BLSTM model de-

pends on factors such as the input sequence length, the number
of layers in the model, and the number of LSTM units in each
layer. The time complexity of the BLSTM model can be high
for long input sequences and models with many layers and
LSTM units. It is worth mentioning that there are techniques
to mitigate this complexity. For example, truncated backpropa-
gation through time (TBPTT) can be employed during training
to limit the number of time steps considered, reducing the
overall computational burden. Readers are referred to [63, 64]
for more details on this.

The BLSTM model also has some disadvantages compared
to other types of RNNs, such as computational complexity,
higher memory requirements, overfitting risks, and sensitivity
to hyperparameters. However, considering that traffic predic-
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Fig. 5: Architecture of the BLSTM.

tion accuracy is very important in our problem, which may
have a large influence on the performance of our proposed
sleeping strategy, we chose the BLSTM model, which per-
forms better than the RNN for our dataset. Our comparison
of the accuracy of the BLSTM and the RNN models on our
dataset shows the superiority of the BLSTM model, which we
have presented in Section VI.A.

IV. PROBLEM FORMULATION

We aim to reduce the total energy consumption of all BSs
in the two-tier HeCN by selectively placing MiBSs in sleep
mode during periods of low network load. To achieve this, we
impose three constraints: first, we ensure that all users’ SINRs
remain above the threshold γ0; second, we ensure that there
is no degradation in the QoS for each user, which is closely
related to the demand traffic rates; and third, we ensure that
the load of each BS does not exceed 1.

Define an action vector aϕ
t = (aϕi (t), i ∈ ΨM ∪ ΨS) as a

state vector associated with strategy ϕ that
• if aϕi (t) = 1, then BS i at time t is in active mode;
• otherwise, BS i at time t is in sleep mode.
In this context, the set of all active BSs and sleeping BSs are

Iactive(t) = {i | aϕi (t) = 1} and Isleep(t) = {i | aϕi (t) = 0},
respectively. Let Rk = max

t∈[T1,T2]
rk(t), k ∈ ΨK be the set

of maximum demand rates of users within low-load time
period [T1, T2]. To mathematically define the feasibility of
strategy ϕ during low-load time period [T1, T2], we introduce
the following constraints for the action variables:{

Si,k ⩾ γ0

µi(t) +
Rk

wθ(i) log2(1+Si,k)
≤ 1

,

∀k ∈ ΨK , t ∈ [T1, T2],∃i ∈ Iactive(t).

(16)

(16) ensures that every user in the network has access to
at least one active BS that can maintain an SINR above the
threshold γ0 while also being capable of accommodating the
user’s maximum traffic demand rate during the low-load period
[T1, T2].

The different traffic demands of each user connected to an
active BS jointly constitute a load of the BS. Since any BS is
not allowed to be overloaded, we have

i ∈ Iactive(t), 0 ≤ µi(t) ≤ 1, ∀t ∈ [T1, T2]. (17)

Recall that we only consider the sleeping operations on
MiBSs due to the high flexibility of MiBSs and the ease of
switching on and off. This can be addressed by

Isleep(t) ∩ΨM = ∅, ∀t ∈ [T1, T2]. (18)

We aim to minimize the energy consumption of the BSs
in the two-tier HeCN during a low-load time period [T1, T2].
Precisely, let

P(t) =
∑

i∈ΨM∪ΨS

(
aϕi (t)P

a
θ(i)(t) +

(
1− aϕi (t)

)
P s
θ(i)

)
,

t ∈ [T1, T2],

(19)

be the total power of all BSs in the two-tier HeCN at time
t ∈ [T1, T2], then our optimization problem is

min
ϕ

∫ T2

T1

P(t)dt, (20)

subject to (16), (17), and (18). Let Φ represent the set of all
strategies constrained by (16), (17), and (18).

V. MILSF STRATEGY

This section describes the MiLSF strategy based on the user
traffic demands rk(t) predicted by BLSTM and the load of
BSs µi(t). Notice that we only consider the sleeping operation
on MiBSs in this paper due to the high flexibility and ease
of operation. Furthermore, the frequent switching of the state
of BSs will cause additional network delay and extra energy
consumption for BS initialization. Therefore, in this paper,
for the low-load period [T1, T2], we only consider one sleep
operation for the MiBSs, which occurs at the start time of
the low-load period, namely T1. Before the T1, we assume all
M MaBSs and N MiBSs are in active mode. As the low-load
period is typically during the night period when human activity
is low, the mobility of users is also very low. For simplicity,
we assume that mobile terminals or users are stationary during
this period. However, due to the unpredictable nature of human
activity, this assumption may not be practical for all users.
Therefore, further research is needed to understand the impact
of mobility, which we plan to investigate in future studies.

The detailed implementation process of our MiLSF strategy
is listed as follows.

1) Sorting. We sort the active MiBSs based on their load
situation at time T1 from low to high.

2) Sleeping. Using the sorting order from Step (1), we
evaluate each MiBS to determine whether it can be
switched to sleep mode. If an active BS exists, including
MaBSs and MiBSs, that can meet the maximum traffic
demand rate during the low-load period [T1, T2] of every
user currently connected to the MiBS, then the MiBS can
be switched to sleep mode, and we move on to Step (3).
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Otherwise, we will continue evaluating the next MiBS
until we find one that can be switched to sleep mode.

3) User reallocation. We select active BSs, including
MaBSs and MiBSs, that can meet the maximum traffic
demand rate during the low-load period [T1, T2] of every
user connected to the MiBS which will be switched to
sleep mode in Step (2). We then reassign the users to
the selected active BSs. We preferentially reallocate each
user to the MaBS with the highest SINR among the
selected BSs. If no qualified MaBS exists among the
selected BSs, we reallocate the user to the MiBS with
the highest load among the selected BSs.

4) Repeating. We repeat Steps (1) and (2) until no more
MiBSs can be switched to sleep mode.

In Step (3), since our goal is to have as many MiBSs as
possible in sleep mode, to save energy without degrading user
service quality and sleeping any MaBS, priority is given to
the active MaBS with the highest SINR among the selected
BSs. Since all the MaBSs have the same power consumption
characteristics, assigning users to the MaBS with the highest
SINR can obtain the best spectral efficiency.

Suppose there is no active MaBS among the selected BSs in
Step (3). In this case, we reallocate users to the MiBS with the
maximum load, which helps speed up the execution process
and reduce the complexity since we always try to sleep the
minimum load MiBS first in each cycle of the above execution.

We propose the pseudo-code of our MiLSF strategy ϕ∗ in
Algorithm 1. The tie-breaking rules in Line 8 and Line 20 of
Algorithm 1 can be arbitrary if argmax returns more than one
argument, and card(·) returns the cardinality of a set.

VI. NUMERICAL RESULTS

In this section, we numerically demonstrate the effectiveness
of our MiLSF strategy by comparing it with the following four
other baseline strategies in different scenarios.

1) Randomly Sleep (RS). We randomly select active MiBSs
(see Step (2) in Section V) to try to have them in sleep
mode until no remaining MiBS can be switched to sleep
mode. The user reallocation process of users in RS is
the same as that in MiLSF (see Step (3) in Section V).

2) Randomly Reallocate Users (RRU). The selection pro-
cess of active MiBSs is the same as the selection
process of active MiBSs in MiLSF (see Step (2) in
Section V), but under RRU, the users will be randomly
reallocated to active BSs that meet the SINR threshold
and can guarantee the users’ traffic demand rates, which
is different from Step (3) in MiLSF.

3) Closest User Reallocation (CUR) [65]. The CUR strat-
egy always reallocates a user to the closest available BSs
(including both MaBSs and MiBSs) that can guarantee
the maximum traffic demand rate for this user during
the low-load period [T1, T2] with an SINR larger than
the threshold, while the selection of MiBSs follows the
same principle of our MiLSF strategy (see Step (2) in
Section V).

4) Closest Base Station Sleep First (CBSSF) [66]. In the
CBSSF strategy, the MiBS closer to the MaBSs is

Algorithm 1: MiLSF strategy ϕ∗ in a two-tier HeCN.
Input: Rk, k ∈ ΨK ;P s

o , p
c
o, po, αo, f

c
o , wo, o ∈

{1, 2}; Ψi
K(T1), µi(T1), i ∈ ΨM ∪ΨS

Output: aϕ∗

T1

1 sort N active MiBSs (Bi, i ∈ ΨS) according to the
loads in ascending order;

2 foreach i ∈ ΨS do
3 k ← 1;
4 ξk ← 0;
5 while k ≤ card

(
Ψi

K(T1)
)

do
6 ΓMaBS ← ΨM \ {m | µm(T1) = 1 or Sm,k <

γ0};
7 while ΓMaBS ̸= ∅ & ξk = 0 do
8 j∗ ← argmax

j∈ΓMaBS

Sj,k;

9 ∆µj∗,k ←
Rk

w1 log2(1 + Sj,k)
;

10 if ∆µj∗,k + µj∗ > 1 then
11 ΓMaBS ← ΓMaBS \ {j∗};
12 else
13 µj∗(T1)← µj∗(T1) + ∆µj∗,k;
14 ξk ← 1;
15 end
16 end
17 if ξk = 0 then
18 ΓMiBS ← ΨS \ {n | µn = 1 or Sn,k < γ0};
19 while ΓMiBS ̸= ∅ & ξk = 0 do
20 j∗ ← argmax

j∈ΓMiBS

µj,k;

21 ∆µj∗,k ←
Rk

w2 log2(1 + Sj,k)
;

22 if ∆µj∗,k + µj∗ > 1 then
23 ΓMiBS ← ΓMiBS \ {j∗};
24 else
25 µj∗(T1)← µj∗(T1) + ∆µj∗,k;
26 ξk ← 1 ;
27 end
28 end
29 end
30 if ξk = 1 then
31 k ← k + 1;
32 end
33 end
34 if

∏
k∈Ki(T1)

ξk = 1 then
35 aϕ

∗

i (T1)← 0;
36 else
37 aϕ

∗

i (T1)← 1;
38 end
39 i← i+ 1;
40 end
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prioritized to consider sleep, while the user reallocation
process is the same as that in MiLSF (see Step (3) in
Section V).

In Section VI-A, we introduce the traffic data source and
demonstrate the prediction of user traffic demand rates using
BLSTM. In Section VI-B, we demonstrate the superiority of
our proposed MiLSF strategy over RS and RRU in different
scenarios. We obtained the 95% confidence intervals based on
the Student’s t-distribution for the results on energy-saving
percentages of MiLSF, RS, and RRU relative to the non-
sleeping strategy, all within 2% of the observed mean.

A. User traffic data prediction by BLSTM

We obtain user traffic data from [67], which analyzed the
week-long traffic data of medium-sized Chinese cities with
large populations. To predict each user’s traffic demand for the
next day, we use their historical traffic demand rates over the
past week for the modeling training. Specifically, we split each
user’s hourly average traffic rate dataset for eight consecutive
days into two parts: the first seven days for training and the
eighth day for testing.

We use the BLSTM neural network, which consists of an
input layer for receiving user traffic data sequences, two LSTM
layers with 500 hidden units each, a fully connected layer
with an output size matching the input size, and a regression
layer that computes the half-mean-squared-error loss for re-
gression tasks [68]. We use the RMSProp as the optimizer
when training our model, and the parameters, including the
optimization algorithm, learning rate, and batch size, are set
as default values of this optimizer.

To train the BLSTM neural network on the above-mentioned
real-world user traffic data from [67], we observe that user traf-
fic exhibits a daily periodic characteristic. Thus, we designed
a special training approach that utilizes this characteristic.
Firstly, we trained the model on the user traffic of the first
two days and used it to predict the traffic for the third day.
We then recorded the errors between the predicted and actual
traffic and modified the model’s parameters (such as gate
parameters) to minimize the errors after modification. With
the modified model, we predicted the user traffic of the fourth
day based on the traffic of the last two days (i.e., the second
and third days), recorded the errors, and modified the model’s
parameters. We repeated these steps until we used all the traffic
data for seven days, which marks the end of one round of
training. We repeated the above round until the average error
in this round was lower than a given threshold, thus completing
the model training.

To assess the performance of our BLSTM neural network,
we utilize two commonly used metrics: Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE). Specifically,
MAE is obtained by the average of the absolute prediction
errors, while RMSE is computed as the square root of the
average of the squared prediction errors.

We employ 20% hold-out validation to assess the perfor-
mance of the BLSTM, RNN, and ARIMA models. Specifi-
cally, we reserve 20% of the user traffic data from the reference
[67] for validation, while the remaining 80% is utilized for

training. Table I presents the hold-out validation results of
these three models on the validation set, where BLSTM shows
great superiority for user traffic prediction over RNN and
ARIMA with the lowest MAE and RMSE.

TABLE I: 20% hold-out validation of the BLSTM, RNN, and
ARIMA models.

BLSTM RNN ARIMA
MAE 62.23 79.81 232.46
RMSE 91.67 144.09 398.77

In Figs. 6, 7, and 8, we present the hourly traffic rate
predictions for three users with distinct traffic patterns, as
predicted by the BLSTM, RNN, and ARIMA models, respec-
tively. The results presented by each subfigure are based on
the performance metrics MAE and RMSE. These figures serve
to illustrate the prediction accuracy of each model for different
traffic patterns.

It can be seen that the prediction results of ARIMA differ
the most from the actual values, which can be observed both
from the MAE and RMSE metrics. This is because ARIMA
is a classic linear model, assuming that time series data has
a linear relationship, but actual data may contain nonlinear
relationships, thus may cause inaccurate prediction results
for nonlinear time series [69–71]. The analysis of nonlinear
time series requires using corresponding nonlinear models or
methods to model and predict data, such as RNN and LSTM
in neural network models.

We observe that the MAE of the prediction results for the
three users is similar between RNN and BLSTM (BLSTM
has a slight advantage over RNN), indicating comparable av-
erage prediction accuracy for both methods. However, BLSTM
significantly outperforms RNN in predicting peak rates, as
reflected by the much lower RMSE of BLSTM for the three
users in Fig. 6 and Fig. 7. Therefore, we use BLSTM to predict
the future traffic rates of every user in the two-tier HeCN.
Based on the predicted user traffic rates from BLSTM, we
implement our MiLSF strategy and demonstrate its superiority
over RS and RRU strategies in different scenarios.

B. Effectiveness of MiLSF

Here we provide a comparison between our proposed
MiLSF strategy with the four baseline strategies, RS, RRU,
CUR, and CBSSF in various scenarios based on predicted
data of user traffic rates by BLSTM. We use the simulation
parameter values in Table II unless otherwise specified. Al-
though different users have varying traffic demands at different
times, most users typically have lower traffic demands at night,
resulting in a lower overall network load during this period.
This provides an opportunity for BS sleeping strategies to save
energy and therefore, by considering night-time, we can also
demonstrate the superiority of MiLSF over the four baseline
strategies. Additionally, we assume that users do not move
during the low-load period at night, as user mobility is sig-
nificantly reduced during this time. We consider the low-load
period to be between 10:00 p.m. and 6:00 a.m. the following
day as the sleeping period. That is, a selected set of MiBSs
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(a) User 1, MAE = 75.56, RMSE = 98.32. (b) User 2, MAE = 55.78, RMSE = 75.17. (c) User 3, MAE = 99.26, RMSE = 115.23.

Fig. 6: The hourly average traffic rates prediction by BLSTM for three users.

(a) User 1, MAE = 87.89, RMSE = 135.52. (b) User 2, MAE = 68.07, RMSE = 118.93. (c) User 3, MAE = 104.99, RMSE = 179.61.

Fig. 7: The hourly average traffic rates prediction by RNN for three users.

(a) User 1, MAE = 257.931, RMSE = 460.085. (b) User 2, MAE = 221.24, RMSE = 339.779. (c) User 3, MAE = 221.132, RMSE = 332.755.

Fig. 8: The hourly average traffic rates prediction by ARIMA for three users.

enter sleep mode at 10:00 p.m. and enter active mode at 6:00
a.m., and we aim to select these MiBSs optimally. We use PPP
to determine user locations. We randomly allocate each user
to a BS that meets the SINR threshold and the user’s traffic
demand rate for initialization. We then implement MiLSF, RS,
RRU, CUR, and CBSSF strategies during the low-load period
and compare their energy-saving performances relative to a
non-sleeping strategy. Our numerical results demonstrate the
effectiveness and superiority of MiLSF over the four baseline
strategies.

1) Scenario I: In this scenario, we compare the energy-
saving performance of MiLSF with the four baseline strategies
under two different BS deployment methods. Specifically, for
each strategy, we use two different deployment processes,
PPP and MHCPP, to determine the locations of all BSs. It is
important to note that the deployment processes of MaBSs and
MiBSs are independent and have different intensities, as shown
in Table II. By comparing the energy-saving performance of
each strategy under these different deployment methods, we
can gain insight into the effectiveness of each strategy under
different BS deployment methods.

In Fig. 9, we observe the effect of different BS deployment

Fig. 9: Comparison of energy-saving performance between
MiLSF and the four baseline strategies under both PPP and
MHCPP conditions.

methods on the energy-saving performance of BS sleeping
strategies. The results show that MiLSF outperforms all the
four baseline strategies under both PPP and MHCPP de-
ployments. However, using MHCPP instead of PPP for BS
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TABLE II: Simulation parameters.

Description Value
The two-tier HeCN area 10× 10 km2

Intensity of MaBSs for PPP deployment, λPPP
m 2/km2

Intensity of MiBSs for PPP deployment, λPPP
s 4/km2

Intensity of MaBSs for MHCPP deployment, λMHCPP
m 2/km2

Intensity of MiBSs for MHCPP deployment, λMHCPPP
s 4/km2

Hard-core parameter for MaBSs, rh,m 2 km
Hard-core parameter for MiBSs, rh,s 1 km
Intensity of users in the HeCN for PPP deployment, λu 25/km2

Transmit power of a single antenna in MaBSs, p1 8 W
Transmit power of a single antenna in MiBSs, p2 3 W
Number of transmit antennas in a MaBS, α1 6
Number of transmit antennas in a MiBS, α2 2
Carrier frequency of MaBSs, f c

1 2.4 GHz
Carrier frequency of MiBSs, f c

2 20 GHz
Bandwidth of a MaBS, w1 20 MHz
Bandwidth of a MiBS, w2 50 MHz
Circuit power of MaBSs, pc1 120 W
Circuit power of MiBSs, pc2 10 W
Sleep power of MaBSs, ps1 8 W
Sleep power of MiBSs, ps2 2 W
Path loss exponent, β 3.7
SINR threshold (dB), γ0 -6

deployment significantly increases the energy-saving percent-
age for the same strategy. For example, the MiLSF strategy
achieves an energy-saving percentage of 5.82% under PPP
deployment, but it achieves an energy-saving percentage of
11.26% under MHCPP deployment, almost twice that under
PPP. The disadvantage of PPP is due to the presence of the
same-type BSs that are too close to each other, resulting in
significant signal interference. This reduces the number of
selectable BSs for users in Step (3), resulting in a significant
reduction in the number of MiBSs that can eventually be
switched to sleep mode and a reduction in energy-saving
percentages. Therefore, we use MHCPP for BS deployment
in Scenarios II, III, and IV.

2) Scenario II: In this scenario, we observe the effect of
user loads on the energy-saving performance of MiLSF the
four baseline strategies by varying the user intensity λu in
Fig. 10.

Fig. 10 demonstrates the superiority of MiLSF over all
the four baseline strategies, with MiLSF achieving higher
energy-saving percentages under different numbers of users,
particularly when the number of users is moderate. This is
because, unlike RS, MiLSF always selects the MiBSs with
the lowest load and reallocates connected users to other BSs.
Sleeping the lowest-load MiBS is easier than high-load MiBSs,
as users connected to the lowest-load MiBS are more likely
to be “satisfied” and assigned to other BSs. Prioritizing user
allocation of lowest-load MiBS to other BSs also reduces the

likelihood of problems during subsequent sleep operations of
other MiBSs. Additionally, MiLSF prioritizes user allocation
to the MaBS with the maximum SINR, leading to higher
energy-saving percentages than RRU, where users are real-
located to a random active BS that may not use full use of the
MBS’s bandwidth resource.

In the CBSSF strategy, MiBSs that are closest to the MaBSs
are always prioritized for sleep consideration. Consequently,
users previously associated with these MiBSs are most likely
to be reallocated to the nearest corresponding MaBSs. This
characteristic results in an overemphasis on MaBSs during the
user reallocation process, triggering premature load saturation
in the MaBSs. Concurrently, MiBSs that cannot transition to
sleep mode (if one user solely relies on a particular MiBS
and can not be allocated to other BSs) remain underutilized,
operating in a low-load working state without the option to
enter sleep mode. This situation reduces the total number of
MiBSs that can ultimately be switched to sleep mode, signifi-
cantly diminishing the energy-saving percentage compared to
that achieved by the MiLSF strategy.

As for the CUR strategy, it simply reallocates users to the
BSs that are closest to them and can guarantee the maximum
user traffic demand with an SINR larger than the threshold.
However, it overlooks the load distribution of each BS across
the entire network and the different SINR situations that
various BSs can offer. Unlike our MiLSF strategy, which fully
considers the load information of all BSs in the network and
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the optimal SINR throughout its implementation, the CUR
strategy does not achieve as effective global optimization in
energy saving across the network as MiLSF does.

Furthermore, Fig. 10 shows that the energy-saving percent-
ages of five strategies are similar when there are either no users
or a large number of users (close to 400). This is because,
under all the strategies, all the MiBSs sleep when the number
of users is small, or remain in active mode when the number of
users is large, resulting in similar energy-saving performance.
Additionally, the more users in the network, the lower the
energy-saving percentage of all five strategies, as fewer MiBSs
can be switched to sleep mode.

Fig. 10: Performance comparison between MiLSF and the four
baseline strategies across different user numbers.

3) Scenario III: In this scenario, we observe the effect of
the SINR threshold value γ0 on the energy-saving performance
of MiLSF and the four baselines in Fig. 11. The results show
that MiLSF outperforms all four baselines under different
SINR thresholds. Additionally, the energy-saving percentages
of all five strategies gradually decrease as the SINR threshold
increases, as the number of BSs that can be selected by each
user for reallocation decreases, reducing the possibility of
successfully reallocating all users of each MiBS and resulting
in fewer MiBS that can be switched to sleep mode.

Moreover, the most significant difference in energy-saving
percentages between MiLSF and the four baseline strategies
occurs when the SINR threshold is moderate. When the SINR
threshold is too large (i.e., γ0 = 0 dB), very few active
BSs can be selected to meet the SINR threshold for user
reallocation in Step (3), making it challenging for all five
strategies to reallocate users successfully. As a result, the
difference in energy-saving percentages is small. Conversely,
when the SINR threshold is too small (i.e., γ0 = −12 dB),
almost all active BSs can become qualified active BSs for user
reallocation in Step (3), making it easier for all five strategies
to reallocate all users connected to a MiBS and achieve higher
energy-saving percentages.

When the SINR threshold is moderate, the user reallocation
in Step (3) cannot be too “arbitrary”, as there may be only
a few (or even one) qualified active BSs for each user.
In this case, MiLSF prioritizes the MaBS with the highest
SINR, maximizing the probability of satisfying all users’
demand traffic rates and sleeping as many MiBSs as possible.

Therefore, when the SINR threshold is moderate, MiLSF has
a significant energy-saving advantage versus RS, RRU, CUR,
and CBSSF.

Fig. 11: Performance comparison between MiLSF and the four
baseline strategies across different SINR thresholds γ0.

4) Scenario IV: In this scenario, we observe the relationship
between the number of sleeping MiBSs and the energy-saving
percentages for five strategies in Fig. 12. The results demon-
strate a linearly positive correlation between the number of
sleeping MiBSs and the energy-saving percentage. Notice that
there is only a small difference in the energy-saving percentage
among the five strategies with the same number of sleeping
MiBSs. Because under MiLSF and the four baseline strate-
gies, different MiBSs may sleep, resulting in different user
reallocation situations (users may be reallocated to different
MaBSs or MiBSs). This small difference in the energy-saving
performances between MiLSF and the four baselines shows
that if we only consider different BS sleeping strategies or user
reallocations without switching more MiBSs to sleep mode,
it is challenging to reduce energy consumption significantly.
Therefore, a BS sleeping strategy that can have more MiBSs
in sleep mode is always preferred. In this case, the results in
Fig. 9, Fig. 10, and Fig. 11 illustrate that, given the network
parameters, our MiLSF strategy can always achieve a higher
energy-saving percentage than the four baseline strategies by
sleeping more MiBSs, demonstrating its effectiveness and
superiority over RS, RRU, CUR, and CBSSF.

VII. CONCLUSIONS

We have proposed a new BS sleeping strategy named
MiLSF for a two-tier HeCN, based on predicted traffic demand
rates for each user. Underutilized MiBSs are switched to sleep
mode, and users are reallocated to other active BSs that meet
the SINR threshold and can guarantee the users’ maximum
demand traffic rates during the low-load period. We have
used BLSTM to predict each user’s future traffic demand
rates based on historical traffic data over the past week,
achieving higher prediction accuracy than RNN, particularly
for peak rates. We have implemented our MiLSF strategy
during a low-load period at night to explore its energy-saving
performance in different scenarios. Specifically, our MiLSF
strategy has always tried to have the least loaded MiBS in
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Fig. 12: Performance comparison between MiLSF and the
four baseline strategies across different numbers of sleeping
MiBSs.

sleep mode and reallocate users to the MaBS with the highest
SINR that can guarantee their traffic demand rates. Through
extensive numerical simulations, we have demonstrated the
effectiveness and superiority of the MiLSF strategy over the
four baselines, RS, RRU, CUR, and CBSSF. Furthermore,
although we only consider one sleep operation for a two-tier
HeCN, our MiLSF strategy can be extended to any multi-layer
HeCNs for multiple sleep operations during various low-load
periods.

While our work focuses on improving energy efficiency
while guaranteeing the QoS of each service with a predefined
SINR ratio, we acknowledge that load balancing is an impor-
tant aspect to consider in network design. Load balancing can
help evenly distribute network traffic and improve the quality
of service for end-users. While we have ensured the QoS
of each deployed service, we recognize that combining our
strategy with load-balancing techniques could further improve
the overall performance and efficiency of the network. There-
fore, we propose to investigate load-balancing mechanisms or
algorithms in future work to complement our energy-efficient
MiLSF strategy.
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