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Abstract— We aim to maximize the energy efficiency,
gauged as average energy cost per job, in a large-scale
server farm with various storage or/and computing compo-
nents modeled as parallel abstracted servers. Each server
operates in multiple power modes characterized by po-
tentially different service and energy consumption rates.
The heterogeneity of servers and multiple power modes
complicate the maximization problem, where optimal so-
lutions are generally intractable. Relying on the Whittle
relaxation technique, we resort to a near-optimal, scalable
job-assignment policy. Under a mild condition related to
the service and energy consumption rates of the servers,
we prove that our proposed policy approaches optimality
as the size of the entire system tends to infinity; that is, it
is asymptotically optimal. For the non-asymptotic regime,
we show the effectiveness of the proposed policy through
numerical simulations, where the policy outperforms all
the tested baselines, and we numerically demonstrate its
robustness against heavy-tailed job-size distributions.

Index Terms— Restless bandit; job-assignment; asymp-
totic optimality.

I. INTRODUCTION

THE ever-increasing demand for internet services in recent
decades has led to explosive growth in data centers

and the markets of computing and storage infrastructures
to the so-called Zettabyte Era [1], [2]. In 2014, U.S. data
centers were reported to consume around 70 billion kWh of
annual electricity and this consumption is predicted to continue
increasing [2]. Computing and storage components have been
considered major contributors to power consumption in data
centers [3], [4]. We study energy-efficient scheduling policies
in a large server farm with widely deployed abstracted servers,
each of which represents a physical component used to serve
incoming customer requests.

Methodologies applicable to server farm scheduling or
network resource allocation have been studied from several
perspectives. Energy-efficient policies were considered in [5],
[6] with only identical servers, and in [7], [8] through static
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scheduling mechanics without dynamic reuse of released phys-
ical resources. Nonetheless, to meet the various demands of in-
ternet customers, service providers have launched a large num-
ber of networked facilities with highly diverse physical fea-
tures in backhaul networks, where frequent reuse of released
resources is the preferred option because of its efficiency
benefits. The heterogeneity of backhaul network facilities
keeps increasing in terms of not only their characteristics of
implementing specific functions but also their generations [9].
Advanced virtualization techniques abstract these physical
components as network resources in modern Cloud computing
platforms [10]. It is important to consider the heterogeneity of
such abstracted components in the development of scheduling
policy because it has substantial implications for the optimized
profit of service providers and costs incurred by customers.

Research on the development of dynamic resource alloca-
tion methodologies for large-scale server farms (networks)
with the reuse of released physical resources has been
conducted under certain simplifying assumptions. The work
in [11]–[13] considered heterogeneous servers but under the
assumption of negligible power consumption of idle servers,
while in [14], [15] it was assumed that servers either operate at
their peak power consumption rates or stay idle. Then, in [16],
[17], it was assumed that servers’ power consumption linearly
increases in their service rates. Such assumptions of specific
power functions simplify the analysis of the relevant prob-
lems. However, the diversity of computing/storage components
prevents a specific function of their power consumption from
being always applicable and there is a need for a methodology
applicable to any power consumption behavior. Publications
focusing on the server, GPU, and storage component power
consumption pointed out that real-life power behavior does not
support the convexity (or linearity) assumption [18], [19]. In
this paper, we do not assume convexity or linearity of power
functions but consider more general and practical situations
and in this way, our policy solutions can apply to a wider
range of practical scenarios.

We focus on energy-efficient server farms consisting of a
large number of abstracted components that are potentially
different in terms of service rates, power consumption rates,
and their abilities to serve different jobs. Optimizing resource
allocation in server farms is achieved in the vein of the
restless multi-armed bandit problem (RMABP) proposed in
[20]. The RMABP is a special type of Markov decision
process (MDP) consisting of parallel bandit processes, which
are also MDPs evolving with binary actions, referred to as
the active and passive modes. The RMABP includes a large
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number of such bandit processes that are competing for limited
opportunities of being evolved in the active mode. In [21],
RMABP was proved to be PSPACE-hard in general. Whittle
[20] proposed the classical Whittle index policy through the
Whittle relaxation technique and conjectured its asymptotic
optimality; that is, the Whittle index policy was conjectured
to approach optimality as the scale of the entire system tends
to infinity. The Whittle index policy is scalable for large
problems and, if it is asymptotically optimal, its performance
degradation is bounded and diminishes when the problem size
becomes larger and larger. Nonetheless, in general, Whittle
relaxation technique does not ensure either the existence of
Whittle indices, the main parameters required to construct the
Whittle index policy, or the bounded performance degrada-
tion. Whittle indices were originally defined in [20] under a
condition, subsequently referred to as Whittle indexability. In
[22], Weber and Weiss proved the asymptotic optimality of
the Whittle index policy with an extra, non-trivial condition
that requires the existence of a global attractor of a proposed
process associated with the RMABP. In the research field of
RMABP, the discussions on Whittle indexability and the global
attractor remain open questions in the past several decades.

In [23], based on the results in [24], a scalable job-
assignment policy was proposed and proved to be asymp-
totically optimal for a simplified server farm, where the
servers/components were assumed to have only two power
modes (corresponding to two power consumption rates). We
refer to Section II for a detailed survey of RMABP and other
related work.

The contributions of this paper are as follows.
• We provide a scalable policy that aims to maximize the

energy efficiency of a large-scale system of deployed
computing/storage clusters. This policy always prioritizes
physical components (abstracted servers) according to the
descending order of their associated indices, which are
real numbers representing the marginal rewards gained
by selecting these components. The indices are pre-
computed and the complexity of implementing the index
policy is only linear in the number of available physical
components. We refer to the policy as Multiple Power
Modes with Priorities (MPMP), reflecting its applicability
to a parallel-server system with multiple power modes.

• When job sizes are exponentially distributed, under a mild
condition related to the service and energy consumption
rates of physical components, we prove that the index
policy approaches optimality as the job arrival rates
and the number of physical components in each cluster
tend to be arbitrarily large proportionately; that is, it
is asymptotically optimal. The asymptotic optimality is
appropriate for computing/storage clusters with a rapidly
increasing number of physical components. We prove that
the performance deviation between our proposed MPMP
policy and the optimal point in the asymptotic regime
diminishes exponentially in the size of the problem. It
implies that the MPMP policy is already near-optimal
for a relatively small system.
Recall that no previous results can be directly applied
for scalable, asymptotically optimal policies in the large

server farm, where the abstracted computing/storage
components operate in multiple power/service modes.
The complexity of the server farm problem requires
a new analysis of the entire system, provided in this
paper, including discussions on the indexability and the
global attractor for proving asymptotic optimality in the
continuous-time case.

• We numerically demonstrate the effectiveness of MPMP
in the general case, where MPMP significantly outper-
forms baseline policies in all the tested cases. We further
explore its performance with different job-size distribu-
tions and numerically show that the energy efficiency of
MPMP is not very sensitive to different shapes of job-size
distributions.

The remainder of the paper is organized as follows. In
Section II, we discuss other related work for job assignments
and RMABP. In Section III, a description of the server farm
model is provided, and in Section IV, the underlying stochastic
optimization problem is rigorously defined. In Section V, we
discuss the indexability of the underlying stochastic process
and propose the indices - the most important parameters for
constructing our policy. In Section VI, we formally define the
MPMP policy, and in Section VII we prove its asymptotic
optimality. Section VIII presents extensive numerical results
that demonstrate the effectiveness of MPMP in the general
case. The conclusions of this paper are included in Section IX.

II. OTHER RELATED WORK

Job-assignment policies with strict capacity constraints of
physical resources have been studied in [23], [25], [26], where
the release and reuse of physical resources were considered.
Following the ideas of restless bandits [20], [22], the authors
of [23], [25], [26] proposed scalable policies and proved that
the policies, which do not necessarily perform well in small
systems, approach the optimal solution in large-scale systems.
Optimization problems for small systems can be solved by
conventional algorithms, which cannot be directly applied in
large cases because of high computational complexity. Nev-
ertheless, these publications assumed either two power modes
(that is, fixed power consumption values for busy and idle
servers) or power consumption linearly increasing in servers’
traffic loads. As mentioned in Section I, here, we overcome the
weaknesses of past publications and provide general solutions
that are applicable to realistic power functions.

Apart from the job-assignment problems, conventional
RMABP has been widely studied and applied to schedul-
ing problems. For instance, in [27], a set of identical
servers/processors were scheduled to serve stochastically iden-
tical jobs that keep arriving. In [28], Borkar considered a
special type of bandit processes, of which the state variables
take binary values and are only partially observable. He proved
the Whittle indexability, a key property for an RMABP, by gen-
erating and analyzing the indexability of an equivalent process
of the original bandit process. In [29], Whittle indexability
was proved for a channel-selecting problem where each bandit
process was associated with a wireless channel and its state
variable was defined as the number of successive transmission
failures in that channel. In [30], a group maintenance problem
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was modeled as a standard RMABP with a detailed analysis
of its Whittle indexability.

In [31], Niño-Mora proposed the partial conservation law
(PCL) and the PCL-indexability for RMABP. The latter was
proved to imply (be stronger than) the Whittle indexability.
Later in 2002, Niño-Mora [32] identified a set of optimization
problems that satisfy PCL-indexability and thus are Whittle
indexable. A detailed survey about the Whittle and PCL-
indexability was provided in [33]. In [34], Niño-Mora defined
the indexability and Whittle indices of a bandit process with
continuous state space and proposed a method that verified
the indexability and computed the corresponding Whittle in-
dices. All in all, these studies have established computational
methodologies for verifying Whittle indexability for the gen-
eral RMABP that aims to maximize/minimize the expected cu-
mulative rewards/costs. Our work, in this paper, aims to max-
imize a long-run average objective that prevents the existing
off-the-shelf techniques from being applied directly. Although
from [35], optimizing the long-run average rewards/costs of an
MDP can usually be translated to a problem that optimizes the
expected cumulative rewards/costs of the same process with
an attached, real-valued criterion, this real-valued criterion is
not known a priori and has a strong impact on the indexability
of the underlying bandit processes. We refer to Section V-B
for a detailed explanation for demonstrating the indexability
with the long-run average objective for our server farm.

For a general RMABP, to further prove that the Whittle
index policy approaches optimality as the number of bandit
processes increases to infinity (that is, asymptotic optimality),
Weber and Weiss [22] required another non-trivial condition;
namely, there exists a fixed point such that the underlying
stochastic process of the RMABP will almost surely enter a
nearby neighborhood of the point. Such a point is referred
to as a global attractor of the process. In [36], [37], similar
assumptions related to the global attractor were required in
the proofs of asymptotic optimality of Whittle index policy
in channel selection problems, which are special cases of
RMABP. In [24], for a system consisting of a special type of
bandit processes, Fu et al. proved that such a global attractor
exists and hence the resulting policy is asymptotically optimal.
The idea of this technique was later applied to a server farm
model in [23]. Nonetheless, due to the complexity of the
server farm model considered in this paper, it does not fall
in the scope of [24] and we cannot directly apply the same
conclusions here. Recall that modeling the server farm as an
RMABP or RMABP-like system cannot ensure the existence
of a scalable near-optimal policy with theoretically bounded
performance. The complexity of the problem requires a new
and thorough analysis of the indexability and global attractor,
which have been, in general, open questions in the past
several decades. Here, we resort to scalable policies for such a
challenging server farm model with a theoretical performance
guarantee.

Our job-assignment problem can be modeled as a set of par-
allel, restless bandit processes coupled with action constraints.
A detailed description of our model is provided in Section III.
As discussed, in this paper, we generalize the power functions
discussed in [23], which requires a new analysis. In particular,

we prove that, for a mild condition related to the service and
energy consumption rates of physical components (abstracted
servers), the MPMP policy is asymptotically optimal with
respect to energy efficiency. To the best of our knowledge,
there is no published work applicable to a server farm model
with strict capacity constraints and generalized power func-
tions, where a scalable policy is proposed with theoretically
guaranteed performance when the system is largely scaled.

III. MODEL

For any positive integer N , let [N ] represent the set
{1, 2, . . . , N}. Let R, R+ and R0 represent the sets of all
real numbers, positive real numbers, and non-negative real
numbers, respectively. Similarly, N and N+ are the sets of
integers and positive integers, respectively.

There are I clusters of physical components. These compo-
nents are identical within the same cluster in terms of their
availability of accommodating jobs, hardware features and
software profiles. Physical components in different clusters
may be different.

Consider L classes of jobs, each of which is characterized
by a tuple (λℓ,Iℓ) for ℓ ∈ [L], where the arrival process of
jobs in class ℓ follows a Poisson process with rate λℓ > 0, and
the set of clusters that are potentially able to serve jobs of class
ℓ is given by Iℓ ∈ 2[I]\{∅}. The components in the clusters
i ∈ Iℓ are referred to as the available components for jobs of
class ℓ. The sizes of all jobs are considered as independently
and identically distributed (i.i.d.) random variables with unit
mean, and jobs are arriving sequentially with positive inter-
arrival time. We refer to a job of class ℓ ∈ [L] as an ℓ-job.

Each physical component of cluster i ∈ [I] has a finite
capacity, Ci ∈ N+, as the maximal number of jobs it
can serve simultaneously. Define its energy consumption and
service rates as functions of carried load: εi(n) and µi(n),
n ∈ {0} ∪ [Ci]. Note that the service units of each physical
component are being reused and released dynamically along
the timeline. For the purpose of this paper, assume that εi(n)
and µi(n) are finite, non-negative and increasing in n (that is,
0 ≤ εi(n) ≤ εi(n+1) <∞ and 0 ≤ µi(n) ≤ µi(n+1) <∞)
with µi(0) ≡ 0, εi(0) ≥ 0 and, for n > 0, εi(n) > εi(0) and
µi(n) > 0.

Consider M0
i · h components in cluster i where M0

i and h
are positive integers. Let λℓ = λ0ℓ ·h for some λ0ℓ ∈ R+. In this
context, h is a constant that signifies the scale of the multi-
cluster system, which is referred to as the scaling parameter.
There are in total J = h

∑
i∈[I]M

0
i components in our system,

labeled by j ∈ [J ], with each computing cluster i ∈ [I]
consisting of physical components j1, j2, . . . , jhM0

i
∈ [J ]. For

j ∈ [J ], let ij represent the label of the cluster with j ∈Jij .
IV. OPTIMIZATION PROBLEM

At time t ≥ 0, there are Nj(t) jobs accommodated by
physical component j, and define N(t) = (Nj(t) : j ∈ [J ]).
The Nj(t) is a random variable and is referred to as the
state variable of component j. When a job is assigned to a
component j at time t, the state of component j transitions
from Nj(t) to Nj(t) + 1; when a job on component j is
completed, the state decreases to Nj(t)−1. Preemption of jobs
is not permitted in our system. The variable Nj(t) is affected
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by the underlying scheduling policy, denoted by ϕ. When an
ℓ-job arrives, the scheduling policy selects a component in
cluster i ∈ Iℓ with at least a vacant slot to accommodate this
job or block it. For fairness, we do not allow the rejection of
any job when there is a vacant slot in any of the available
components for this job. In other words, rejection of a job
occurs if and only if all the available components for the job
are fully occupied.

To indicate the dependency of the counting process
{N(t), t ≥ 0} and the scheduling policy ϕ, we rewrite the
state variables as Nϕ

j (t) and the state vector Nϕ(t).
In this context, the set of all possible values of Nϕ

j (t) of
component j in cluster i is Ni := {0, 1, . . . , Ci}; that is, Ni is
the state space of the process {Nϕ

j (t), t ≥ 0} associated with
a component j in cluster i, abbreviated as the state space of
cluster i. The state vector Nϕ(t) of the entire system is then
taking values in N :=

∏
i∈[I] (Ni)

h·M0
i , of which the size is

increasing exponentially in h.
More precisely, define action variable aϕℓ,j(n) ∈ {0, 1} as

a function of a state vector n ∈ N associated with policy
ϕ: if aϕℓ,j(n) = 1, then a newly-arrived job of class ℓ will be
accommodated by physical component j when Nϕ(t) = n
under policy ϕ; otherwise, the job will not be assigned to
component j. To take account for the rejection of jobs, define
a virtual component for each class ℓ, labeled by jℓ := J + ℓ;
that is, if aϕℓ,jℓ(n) = 1, a new job of class ℓ will be blocked.
For ℓ ∈ [L], assume without loss of generality that the virtual
component jℓ belongs to a virtual cluster iℓ := I + ℓ. Define
a stochastic process Nϕ

jℓ
(t) ≡ 0, t ≥ 0, associated with the

virtual component jℓ, which has state space Niℓ := {0}.
To mathematically define the feasibility of policy ϕ, we

introduce the following constraints for the action variables:∑
j∈Jℓ∪{jℓ}

aϕℓ,j(n) = 1, ∀ℓ ∈ [L],n ∈ N , (1)

and
aϕℓ,j(n) = 0, if nj = Cij , ∀ℓ ∈ [L], j ∈ Jℓ,n ∈ N , (2)

where Jℓ is the set of all available components of job class ℓ,
and cluster ij is the cluster in which component j is located.
Define that aϕℓ,j(·) ≡ 0 for all j /∈ Jℓ ∪ {jℓ}. Constraints (1)
ensure that only one component is selected for an arrived job,
and Constraints (2) disable a fully-occupied component from
accommodating more jobs.

Recall that a rejection of jobs is not permitted if there is a
vacant slot on any available component. It can be addressed by
introducing intermediate variables āϕℓ (n) (n ∈ N ) satisfying

āϕℓ (n) +
∑

j∈Jℓ

I(Cij − nj) ≤ 1, ∀ℓ ∈ [L],n ∈ N , (3)

where I(x) (x ∈ R) is a Heaviside function with I(x) = 1
for x > 0; and 0 for x ≤ 0. For such āϕℓ (n) that takes values
in (−∞, 1], define

aϕℓ,jℓ(n) := I(āϕℓ (n)). (4)

From (3), when there is at least one available component in Jℓ,
āϕℓ (n) ≤ 0 and so aϕℓ,jℓ(n) = 0. If all these components are
fully occupied, constraints in (1) and (2) force aϕℓ,jℓ(n) = 1,
which does not violate constraints in (3).

We aim to maximize the energy efficiency of the entire sys-
tem; specifically, to maximize the ratio of the long-run average
job throughput to the long-run average power consumption.
Let

Lϕ = lim
T→+∞

1

T
E
∫ T

0

∑
j∈[J]

µj(N
ϕ
j (t))dt (5)

and
Eϕ = lim

T→+∞

1

T
E
∫ T

0

∑
j∈[J]

εj(N
ϕ
j (t))dt (6)

represent the long-run average job throughput and the long-run
average power consumption, respectively. Our optimization
problem is

maxϕ Lϕ/Eϕ (7)

subject to (1), (2) and (3). Let Φ represent the set of all policies
constrained by (1), (2) and (3).

As in [23], [25], consider an optimal policy ϕ∗ that maxi-
mizes the problem described in (7), (1), (2) and (3) and define
a real number

e∗ = Lϕ
∗
/Eϕ

∗
. (8)

Following [11, Theorem 1], if 0 < Lϕ < +∞ and 0 < Eϕ <
+∞, then a policy ϕ ∈ Φ that maximizes

maxϕ∈Φ Lϕ − e∗Eϕ, (9)

subject to (1), (2) and (3) also maximizes the problem defined
in (7), (1), (2) and (3).

The constraints (3) make our problem slightly different from
a standard RMABP in the sense that in our problem, rejecting
a job has the lowest priority among all the other actions.
Unlike the uncontrollable variables constrained by (2), (3)
guarantees the lowest priority for rejecting a job rather than
disables this action. If L = 1 and constraints (3) do not exist,
then our problem reduces to an RMABP, where the processes
{Nϕ

j (t), t ≥ 0} (j ∈ [J ]) are parallel restless bandit processes
coupled by action constraint (1). Note that such an RMABP
is no longer applicable to our server farm.

Similar to an RMABP, addressing our problem requires
overcoming the challenge of its large state space, which is
exponentially increasing in the number of components and
optimal solutions are intractable. In [23], a scalable policy was
proposed for a similar problem with simplified µi(n) ≡ µi and
εi(n) ≡ εi for all n = 1, 2, . . . , Ci. This policy was proved
to be asymptotically optimal, for which the performance gap
to optimality diminishes exponentially in the scale of the
problem. However, in this paper, the generalized µi(n) and
εi(n) (that is, the multiple power states) prevent the same
technique from being applied directly. For general RMABPs
or some relevant problems, the Whittle relaxation technique
does not ensure a good, scalable policy that asymptotically
approaches optimality. From [20], [22], asymptotic optimality
relies on two important but non-trivial properties related to
the underlying stochastic process: Whittle indexability and the
existence of a global attractor in the asymptotic regime. These
two properties do not necessarily hold in general and remain
open questions in the past several decades.

As mentioned in Section I, the existence of an appropriate
global attractor has been discovered in a class of RMABPs
[24], including the special case studied in [23]. In this paper,
the server farm with more general service and power con-
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sumption rates does not fall exactly in the scope of [24].
This requires a new analysis of the entire system. As men-
tioned in Section II, Whittle indexability for relatively general
RMABPs has been widely studied with provided sufficient
conditions for optimizing cumulative rewards/costs [31]–[34].
Nonetheless, the generalized transition and reward rates of the
underlying stochastic process and the objective in this paper -
maximization of an average reward - prevent these off-the-
shelf techniques from being applied directly. Although the
maximization of the average reward of an MDP can usually be
translated to the maximization of the cumulative reward of the
same process with an attached real-valued criterion, the exact
value of this attached criterion cannot be known a priori and
has a strong impact on the discussion of Whittle indexability.
In [23], for the very special server farm with µi(n) ≡ µi
and εi(n) ≡ εi, the real-valued criterion was directly offset
during the analysis of Whittle indexability, which significantly
simplified the entire discussion. Whittle indexability ensures
the existence of a scalable policy, derived from Whittle indices,
for a standard RMABP [20]. Unfortunately, such an unknown
criterion persists in this paper which requires a thorough
analysis of the entire system. We will discuss in Section V
the indexability of the server farm with the generic µi(n)
and εi(n) and in Section VII further results for asymptotically
optimal policies.

V. WHITTLE RELAXATION AND INDEXABILITY

A. Whittle Relaxation
Following the idea of Whittle relaxation [20], we relax

constraints (1) and (3) to
lim

t→+∞
E
[∑

j∈Jℓ∪{jℓ}
aϕℓ,j(N

ϕ(t))
]
= 1, ∀ℓ ∈ [L] (10)

and
lim

t→+∞
E
[
āϕℓ (N

ϕ(t))+
∑

j∈Jℓ

I(Cij−N
ϕ
j (t))

]
≤ 1, ∀ℓ ∈ [L],

(11)
respectively. Similarly, (2) can be rewritten as

lim
t→+∞

E
[
aϕℓ,j(N

ϕ
j (t)) | N

ϕ
j (t) = Cij

]
= 0, ∀ℓ ∈ [L], j ∈ [J ].

(12)
Define a special policy ϕ0 with aϕ0

ℓ,j(n) = 1 for all ℓ ∈
[L], j ∈ Jℓ, and n ∈ N . Note that ϕ0 /∈ Φ because
it violates the constraints on action variables. We apply the
ϕ0 to all stochastic processes {Nϕ0

j (t), t ≥ 0} for j ∈
[J ]. Define Aℓ :=

∑
j∈Jℓ

lim
t→+∞

E
[
I(Cij −N

ϕ0

j (t))
]
, where

limt→+∞ E
[
I(Cij −N

ϕ0

j (t))
]

is the proportion of time that

Nϕ
j (t) < Cij . The value 1 − Aℓ represents the blocking

probability of job class ℓ under the policy ϕ0. Thus, we can
further relax (11) as

I
(
ᾱϕℓ

)
≤ I(1−Aℓ), ∀ℓ ∈ [L] (13)

where ᾱϕℓ = limt→+∞ E
[
āϕℓ (N

ϕ(t))
]
. Equations (9), (10),

(12) and (13) comprise a relaxed version of our original
problem described in (9), (1), (2) and (3). Define Φ̃ as the
set of all the policies ϕ satisfying (10), (12) and (13) so that
Φ ⊂ Φ̃.

For clarity of presentation,

• define πϕj (n) as the steady state probability of state n ∈
Nij under ϕ ∈ Φ, and define πϕj := (πϕj (n) : n ∈ Nij );

• for n ∈ Nij , j ∈ [J ] ∪ {jℓ : ℓ ∈ [L]}, ℓ ∈ [L], define
αϕℓ,j(n) := limt→+∞ E

[
aϕℓ,j(N

ϕ(t)) | Nϕ
j (t) = n

]
;

• for ν ∈ RL and ω ∈ RLJ , define, if n < Cij ,
rϕj,n(ν,ω) := µj(n) − e∗εj(n) −

∑
ℓ: j∈Jℓ

νℓα
ϕ
ℓ,j(n);

otherwise, rϕj,n(ν,ω) := µj(n)−e∗εj(n)−
∑
ℓ: j∈Jℓ

(νℓ+

ωℓ,j)α
ϕ
ℓ,j(n); and let rϕj (ν,ω) := (rϕj,n(ν,ω) : n ∈

Nij );
• let iϕ := (I(ᾱϕℓ ) : ℓ ∈ [L]), aϕ = (αϕℓ,jℓ : ℓ ∈ [L]) and
I = (I(1−Aℓ) : ℓ ∈ [L]).

The Lagrangian dual function of the relaxed problem is

L(ν,ω, γγγ) = maxϕ∈Φ̃

∑
j∈[J]

πϕj · r
ϕ
j (ν,ω)− ν ·aϕ

− γγγ · iϕ + ν · 1+ γγγ · I, (14)

with Lagrangian multipliers ν, ω and γγγ corresponding to (10),
(12) and (13), respectively. Here, x ·y is the inner product of
vectors x and y. In the same vein of [20], for given multipliers
ν, γγγ and ω, the optimal solution of the maximization problem
in (14) is also optimal for

max
ϕ∈Φ̃

∑
j∈[J]

πϕj · r
ϕ
j (ν,ω)− ν ·aϕ − γγγ · iϕ

=
∑

j∈[J]
max

αϕ
j ∈[0,1]

L|Nij
| π

ϕ
j · r

ϕ
j (ν,ω)

+
∑

ℓ∈[L]
maxαϕ

ℓ,jℓ
∈[0,1](−νℓα

ϕ
ℓ,jℓ
− γℓI(ᾱϕℓ )), (15)

where αϕj = (αϕℓ,j(n) : n ∈ Nij , ℓ ∈ [L]). Since the
constraints of action variables are now interpreted by the
multipliers, the problem described in (15) can be decomposed
into the following J + L independent sub-problems. For j ∈
[J ],

max
αϕ

j ∈[0,1]
L|Nij

| π
ϕ
j · r

ϕ
j (ν,ω), (16)

where the steady state distribution πϕj is determined by only
the action vector αϕj associated with the underlying process
{Nϕ

j (t), t ≥ 0}. Similarly, for ℓ ∈ [L],

maxαϕ
ℓ,jℓ

∈[0,1](−νℓα
ϕ
ℓ,jℓ
− γℓI(ᾱϕℓ )). (17)

Define Φ̃1 as the set of policies determined by action variables
αϕj ∈ [0, 1]L|Nij

| (j ∈ [J ]) and αϕℓ,jℓ ∈ [0, 1] (ℓ ∈ [L]).
Remark The sub-problems in (16) and (17) are independent
problems, each of which has only one-dimensional state space
and thus experiences remarkably lower computation time than
the original problem. Nonetheless, non-trivial properties are
generally required to establish theoretical connections between
these one-dimensional sub-problems and the high-dimensional
original problem. A detailed survey about RMABP has been
provided in Section II.

B. Whittle Indexability

For a standard RMABP, Whittle [20] proposed the well-
known Whittle index policy when a non-trivial property related
to each bandit process was satisfied. This property was later
referred to as the Whittle indexability. More precisely, for our
problem defined in Section IV, when L = 1, the bandit process
{Nϕ

j (t), t ≥ 0}, for j ∈ [J ], reduces to a bandit process for a
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standard RMABP. In this special case, based on [20], for each
j ∈ [J ], if there exist an optimal solution ϕ∗ for the problem
described in (16) and a vector of real numbers υ∗

j = (υ∗ℓ,j(n) :
n ∈ Nij , ℓ ∈ [L]), satisfying, for all n ∈ Nij\{Cij},

αϕ
∗

ℓ,j(n) =


1, if νℓ < υ∗ℓ,j(n),

a, if νℓ = υ∗ℓ,j(n),

0, otherwise,
(18)

where a can be any number in [0, 1] and ℓ = L = 1, then
we say the bandit process {Nϕ

j (t), t ≥ 0} associated with
j ∈ [J ] is Whittle indexable and the real number υ∗ℓ,j(n) is
the Whittle index for state n ∈ Nij of the process. If all
the bandit processes of an RMABP are Whittle indexable,
then the RMABP is Whittle indexable. Note that, in (18), the
real number υ∗ℓ,j(n) must be independent from νℓ. Although
the policy ϕ∗ is optimal for the sub-problem described in
(16), which is usually not applicable to the original problem,
the Whittle index υ∗ℓ,j(n) intuitively represents the marginal
reward of taking aϕℓ,j(N

ϕ(t)) = 1 when Nϕ
j (t) = n and hence

brings a bird’s-eye view of approximating optimality for the
original problem. Whittle [20] proposed a scalable index policy
by prioritizing states n ∈ Nij of bandit processes j ∈ [J ]
according to the descending order of their Whittle indices,
which was subsequently referred to as the Whittle index
policy. In [20], Whittle conjectured asymptotic optimality of
the Whittle index policy, and it was proved by Weber and
Weiss [22] under another non-trivial condition - the existence
of a global attractor related to the original stochastic process.
As indicated in Section I, asymptotic optimality acts as an
important performance guarantee for scalable policies in large-
scale optimization problems.

Recall that, in general, bandit processes are not necessar-
ily Whittle indexable, so does an RMABP. Please refer to
Section II for a detailed survey of past studies on Whittle
indexability. Here, we focus on the server farm problem
described in Section IV.

Definition 1: We say a physical component j ∈ [J ] in
cluster i ∈ [I] is energy-efficiently unimodal if, for any
n1, n2 ∈ Ni\{Ci} with n1 < n2,(

µi(n2+1)−µi(n2)
)(
εi(n1+1)µi(n1)−εi(n1)µi(n1+1)

)
≤

(
µi(n1+1)−µi(n1)

)(
εi(n2+1)µi(n2)−εi(n2)µi(n2+1)

)
(19)

Intuitively, the energy-efficient unimodality implies a mild
relationship of the component energy efficiency, µi(n)/εi(n),
in different states n ∈ Ni: there is at most one bump on the
curve of µi(n)/εi(n) as n tends from 0 to Ci. For example, if
there exists n1 ∈ Ni\{Ci, Ci− 1} with µi(n1) = µi(n1 +1),
then (19) indicates either εi(n1) = εi(n1 + 1) or, for all
n2 = n1+1, n1+2, . . . , Ci−1, µi(n2) = µi(n2+1); that is,
the curve of µi(n)/εi(n) is flat as n tends from n1 to Ci. For
n1 < n2, if µi(n1) < µi(n1 + 1) and µi(n2) = µi(n2 + 1),
then (19) holds all the time. For any n1, n2 ∈ Ni\{Ci} with
n1 < n2, µi(n1) < µi(n1 + 1) and µi(n2) < µi(n2 + 1),
from (19), if µi(n1 + 1)/εi(n1 + 1) ≤ µi(n1)/εi(n1) then
µi(n2 + 1)/εi(n2 + 1) ≤ µi(n2)/εi(n2). As a consequence,
the curve of µi(n)/εi(n) has at most one bump as n tends
from 0 to Ci. The energy-efficient unimodality is only a

mild condition because for real-world computing components,
such as CPUs and GPUs, energy efficiency increases with
processing speed - µi(n)/εi(n) increases with n [19], [38].

Proposition 1: When the job sizes are exponentially dis-
tributed and all computing components are energy-efficiently
unimodal, if, for all ℓ ∈ [L], if νℓ = νλℓ for some ν ∈ R,
then there exist H ∈ R and a policy ϕ∗ satisfying, for
n ∈ Nij\{Cij}, j ∈ Jℓ, ℓ ∈ [L],

αϕ
∗

ℓ,j(n) =



1, if νℓ < max
n′=n+1,
n+2,...,Cij

λℓ

µij
(n′)

(
Rij (n

′)− g∗j (ν)
)
,

a, if νℓ = max
n′=n+1,
n+2,...,Cij

λℓ

µij
(n′)

(
Rij (n

′)− g∗j (ν)
)
,

0, otherwise,
(20)

where a is any value in [0, 1], Ri(n) := µi(n)− e∗εi(n), and

g∗j (ν) := maxϕ∈Φ̃1
limT→+∞

1

T
E
∫ T

0

(
Rij (N

ϕ
j (t))

−
∑

ℓ∈[L]
νℓα

ϕ
ℓ,j(N

ϕ
j (t))

)
dt, (21)

such that, for all h > H , the policy ϕ∗ is optimal for the
maximization problem in (14).

The proof of Proposition 1 is provided in Appendix I.
Here, the real number g∗j (ν) is equal to the maximized
average reward gained by the process {Nϕ

j (t), t ≥ 0} for
j ∈ [J ], where the reward rate for state Nϕ

j (t) = n is
µj(n)− e∗εϕj (n)−

∑
ℓ∈[L] νℓα

ϕ
ℓ,j(n). For an MDP, the g∗j (ν)

in (20) is usually referred to as the attached criterion used
to translate the maximization of the average reward to the
maximization of the expected cumulative reward of the same
process [35].

Equation (20) has the same form as (18) except that g∗j (ν) is
dependent on ν. Unlike the simplified case discussed in [23],
the g∗j (ν) cannot be offset or expressed in a closed form. This
dependence between g∗j (ν) and ν significantly complicates
the analysis of indexability and the computation of the indices
and prevents the same technique in [23] from being applied
directly. For the purpose of the server farm problem, instead
of seeking perfect Whittle indexability, we consider a less
stringent property referred to as the asymptotic indexability.

Definition 2: For j ∈ [J ], if there exist a real vector υ∗
j :=

(υ∗ℓ,j(n) : ℓ ∈ [L], n ∈ Nij ), a policy ϕ∗ with action variables
αϕ

∗

ℓ,j(n) (n ∈ Nij\{Cij} and ℓ ∈ [L]) satisfying (18), and H >
0 such that, for all h > H , ϕ∗ is optimal for the maximization
problem in (16), then we say that the process {Nϕ

j (t), t ≥ 0}
is asymptotically indexable with indices υ∗

j .
Proposition 2: When the job sizes are exponentially dis-

tributed, if there exists H > 0 such that, for all h > H ,
an optimal solution ϕ∗ for the maximization problem in (14)
exists and satisfies (20), then, for any j ∈ [J ], the process
{Nϕ

j (t), t ≥ 0} is asymptotically indexable.
The proof of Proposition 2 is provided in Appendix II.

When the process {Nϕ
j (t), t ≥ 0} reduces to a standard

bandit process with L = 1, asymptotic indexability indicates
Whittle indexability with sufficiently large h. Similar to the
Whittle indices, in a large system, for ℓ ∈ [L], j ∈ [J ],
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and n ∈ Nij\{Cij}, the real number υ∗ℓ,j(n) represents the
marginal reward of admitting a new job of class ℓ when there
are n jobs being served by physical component j. For ℓ ∈ [L],
j ∈ [J ] and n ∈ Nij\{Cij}, we refer to υ∗ℓ,j(n) as the index
of state n of the process {Nϕ

j (t), t ≥ 0} for job class ℓ.
Asymptotic indexability plays an important role in proposing
an asymptotically optimal and scalable policy for the original
problem defined in (9), (1), (2) and (3). From Propositions 1
and 2, when the job sizes are exponentially distributed and all
computing components are energy-efficiently unimodal, if, for
all ℓ ∈ [L], if νℓ = νλℓ for some ν ∈ R, then, for any j ∈ [J ],
the process {Nϕ

j (t), t ≥ 0} is asymptotically indexable.

C. Existence of Indices

More importantly, we are interested in the exact values of
the indices υ∗ that impose asymptotic indexability and further
lead to a scalable, near-optimal policy for the original problem.

Proposition 3: When the job sizes are exponentially dis-
tributed and all computing components are energy-efficiently
unimodal, if, for all ℓ ∈ [L], if νℓ = νλℓ for some ν ∈ R, then,
for any j ∈ [J ], the process {Nϕ

j (t), t ≥ 0} is asymptotically
indexable with indices satisfying

υ∗ℓ,j(n) = max
n′=n+1,
n+2,...,Ci

λℓ

(
1−

e∗εij (n
′) + Γj(υ

∗
j (n))

µij (n
′)

)
(22)

where υ∗
j (n) = (υ∗ℓ,j(n) : ℓ ∈ [L]), and

Γj(υ
∗
j (n)) := max

n∈Nij
\{Cij

}
π
ψj(n)
j · rψj(n)

j (υ∗
j (n), ·), (23)

with policy ψj(n) satisfying, for all ℓ ∈ {ℓ′ ∈ [L]|j ∈ Jℓ′} and
n′ ∈ Nij\{Cij}, α

ψj(n)
ℓ,j (n′) = 1 if n′ ≤ n; and αψj(n)

ℓ,j (n′) =
0 otherwise.
The proposition is proved in Appendix III. The policy ψj(n)
satisfies constraints in (12) and thus is not affected by ω; we
write the reward vector rϕj (ν,ω) as rϕj (ν, ·) since it becomes
independent of the second argument under ψj(n).

The index values υ∗ℓ,j(n) mentioned in Proposition 3 can be
obtained by solving Equations (22) and (23). Observing (23),
function Γj(ν) is dependent on j ∈ [J ] and ν ∈ RL only
through ij and the sum

∑
ℓ:ij∈Iℓ

νℓ, respectively. We rewrite
Γj(ν) as Γj(ηj) with ηj =

∑
ℓ:ij∈Iℓ

νℓ, and, for η ∈ R, i ∈ [I]

and any j ∈ Ji, define Γ̄hi (η
0) := Γj(hη

0). Let Γ̄h,EXP
i (η0)

represent the value of Γ̄hi (η
0) with assumed exponentially

distributed job sizes. For n ∈ Ni\{Ci} and i ∈ [I], define

fhi,n(η
0) := η0 + λ̂0i min

n′=n+1,
n+2,...,Ci

( Γ̄h,EXP
i (η0) + e∗εi(n

′)

µi(n′)
− 1

)
(24)

where λ̂0i =
∑
ℓ:i∈Iℓ

λ0ℓ . For n ∈ Ni\{Ci}, j ∈ Ji,
i ∈ Iℓ and ℓ ∈ [L], given η0i,n satisfying fhi,n(η

0
i,n) = 0,

we obtain that υ∗ℓ,j(n) = ῡ∗ℓ,i(n) := hη0i,nλ
0
ℓ/λ̂

0
i . From (22)

and (23), for any i ∈ [I], υ∗ℓ,j(n) remains the same for all
j ∈Ji. In this context, solving (22) and (23) is equivalent to
finding a zero point of function fhi,n(η

0). Proposition 3 ensures
the existence of such a zero point when the sub-processes
are asymptotically indexable. Without assuming asymptotic

indexability, a solution also exists for fhi,n(η
0) = 0, so do

the indices υ∗ℓ,j(n) satisfying (22) and (23).
Proposition 4: For h ∈ N+ ∪ {+∞}, n ∈ Ni\{Ci}, and

i ∈ [I], fhi,n(η
0) is Lipschitz continuous in η0 ∈ R, and there

exists η0i,n ∈ R such that fhi,n(η
0
i,n) = 0.

The proposition is proved in Appendix IV.

VI. MULTIPLE POWER MODES WITH PRIORITIES

For the original problem described in (9), (1), (2) and
(3), we propose a policy that prioritizes the components and
jobs according to the descending order of the indices υ∗ :=
(υ∗ℓ,j(n) : ℓ ∈ [L], j ∈ [J ], n ∈ Nij ) satisfying (22) and (23)
for all j ∈ [J ]. These indices represent marginal rewards of
serving the various jobs. Define a policy φ satisfying

aφj,ℓ(N
φ(t)) =


1, if Nφ

j (t) < Cij and

j = arg max
j′∈Jℓ

[
1
hυ

∗
ℓ,j′(N

φ
j (t))

]
,

0, otherwise,
(25)

where υ∗ℓ,j(n) (ℓ ∈ [L],j ∈ [J ], n ∈ Nij ) is derived from (22)
and (23), and

aφℓ,jℓ(N
φ(t)) = 1−

∑
j∈Jℓ

aφj,ℓ(N
φ(t)). (26)

Here, the 1
h before υ∗ℓ,j′(N

φ
j (t)) is used to keep the value

finite for all h ∈ N+ ∪ {+∞} and will not change the order
of the indices υ∗. In (25), tie-breaking rules can be arbitrary
if argmax returns more than one argument. Note that all the
theoretical results presented in this paper hold for arbitrary
tie-breaking rules. Nonetheless, beyond the theoretical results,
the policies φ with different tie-breaking rules can potentially
have different performance. In Section VIII, for the numerical
results, we will consider specific tie-breaking rules to complete
the simulations and provide numerical setting details. Such a
policy φ is a feasible policy in Φ; that is, the action variables
determined by (25) and (26) satisfy constraints (1), (2) and
(3). For implementation in a server farm system, φ is scalable
with computational complexity at most linear to the number
of physical components for each arriving job. Equation (25)
indicates that, for an ℓ-job newly arrived at time t, policy φ
always selects the component j with the highest index value
υ∗ℓ,j(N

φ
j (t)), among all components j ∈ Jℓ with at least a

vacant slot (Nφ
j (t) < Cij ). If all components j ∈ Jℓ are fully

occupied, then, from (26), the virtual component jℓ is selected
to reject this job. In Section VII, we prove in Proposition 7
that φ is asymptotically optimal under certain conditions.

A. Indices with Known Criterion

Recall that the server farm problem in (7), (1), (2) and (3)
has been translated to the problem described in (9), (1), (2) and
(3) by introducing a given real number e∗ ∈ R that satisfies
(8). As mentioned in Section V-C, from Proposition 4, with
given e∗ ∈ R, the indices υ∗ satisfying (22) and (23) can
always be obtained by solving fhi,n(η

0) = 0 (n ∈ Ni\{Ci},
i ∈ [I]). In particular, υ∗ℓ,j(n) = ῡ∗ℓ,ij (n) = hη0ij ,nλ

0
ℓ/λ̂

0
ij

where η0ij ,n satisfies fhij ,n(η
0
ij ,n

) = 0. Such zero points of fhi,n
(n ∈ Ni\{Ci}, i ∈ [I]) can be computed through a bisection
method with a precision parameter ϵ > 0. A pseudo-code
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with detailed steps for the zero points of fhi,n (n ∈ Ni\{Ci},
i ∈ [I]) is provided in [39, Algorithm 1].

Definition 3: For e ∈ R, h ∈ N+, ℓ ∈ [L], i ∈ [I], j ∈
Ji, and n ∈ Ni\{Ci}, let uℓ,i(n, e) represent an estimate of
1
h ῡ

∗
ℓ,i(n), i.e., an estimate of the index 1

hυ
∗
ℓ,j(n) of state n of

the process {Nϕ
j (t), t ≥ 0} for job class ℓ with given e∗ = e,

through a bisection method with a precision parameter ϵ > 0.
Define u(e) := (uℓ,i(n, e) : n ∈ Ni\{Ci}, i ∈ Iℓ, ℓ ∈ [L]).

If we simplify our problem by allowing e∗ to be any given
non-negative real number, the resulting objective defined in
(9) becomes the maximization of the difference between the
job throughput Lϕ and the power consumption Eϕ weighted
by the known e∗. Such an objective is popular and has been
widely considered and studied in the literature [24], [40],
[41]. In this simplified problem, based on later results in
Section VII, the policy φ with indices υ∗ approximated by
u(e∗) is asymptotically optimal under certain conditions.

B. Approximating the Unknown Criterion

The value of e∗ satisfying (8) is not known a priori. For
the purpose of this paper, we need to obtain this specific e∗,
for which the optimal solution maximizing objective (9) also
maximizes (7). From the definition of e∗ in (8), we obtain

maxϕ∈Φ

(
Lϕ − e∗Eϕ

)
/h = 0, (27)

where the maximization is subject to (1), (2) and (3), and the 1
h

is used to keep the value at the left-hand side of (27) finite for
all h ∈ N+∪{+∞}. Following similar ideas of [11], e∗ can be
approximated by a bisection method with stopping condition
(27). Nonetheless, as mentioned in Section IV, because of the
complexity of solving the maximization in the left-hand side
of (27) (or the right-hand side of (8)), the optimal solutions
are intractable. We thus resort to scalable techniques that
effectively approximate e∗.

Definition 4: For e ∈ R, h ∈ N+, ℓ ∈ [L], i ∈ [I], and
n ∈ Ni\{Ci}, let u∗ℓ,i(n, e) ∈ R represent a solution of

fhi,n
( λ̂0

i

λ0
ℓ
u∗ℓ,i(n, e)

)
= 0 with e∗ = e. Let u∗(e) := (u∗ℓ,i(n, e) :

ℓ ∈ [L], i ∈ [I], n ∈ Ni\{Ci}).
From Proposition 4, u∗(e) also represents a vector of the
estimates u(e) obtained through a bisection method with an
ideal precision parameter ϵ ↓ 0. For the system with scaling
parameter h ∈ N+, we consider a policy ψh(ν,ah, e) ∈ Φ̃1

with given ν ∈ RL, e ∈ R0 and ah ∈ {0, 1}J , satisfying, for
ℓ ∈ [L], j ∈Jℓ and n ∈ Nij\{Cij},

α
ψh(ν,ah,e)
ℓ,j (n) =


1, if

∑
ℓ′:j∈Jℓ′

νℓ′ <
∑

ℓ′:j∈Jℓ′

u∗ℓ′,ij (n, e),

ahj , if
∑

ℓ′:j∈Jℓ′

νℓ′ =
∑

ℓ′:j∈Jℓ′

u∗ℓ′,ij (n, e),

0, otherwise,
(28)

α
ψh(ν,ah,e)
ℓ,j (Cij ) = 0 for ℓ ∈ [L] and j ∈Jℓ, and for ℓ ∈ [L],

α
ψh(ν,ah,e)
ℓ,jℓ

= max
{
0,

1−
∑

j∈Jℓ

∑
n∈Nij

π
ψh(ν,ah,e)
j (n)α

ψh(ν,ah,e)
ℓ,j (n)

}
, (29)

where πϕj (n) is defined in Section V-A and represents the
steady state probability of state n ∈ Nij under a policy ϕ. For

such a policy ψh(ν,ah, e), the process {Nψh(ν,ah,e)
j (t), t ≥

0} is a birth-and-death process with state transition rates linear
to h and finitely many states, leading to the existence of
limh→+∞ π

ψh(ν,ah,e)
j . Define, for ℓ ∈ [L], Ah,ψ

h(ν,ah,e)
ℓ :=∑

j∈Jℓ∪{jℓ}
∑
n∈Nij

π
ψh(ν,ah,e)
j (n)α

ψh(ν,ah,e)
ℓ,j (n), which is

the expected average sum of the action variables, namely the
left-hand side of (10), under the policy ψh(ν,ah, e) in the
asymptotic regime. Since Aψ

h(ν,ah,e)
ℓ is decreasing in ν and

increasing in ah, there exist ν ∈ RL and ah ∈ {0, 1}J

such that limh→∞A
h,ψh(ν,ah,e)
ℓ = 1 for all ℓ ∈ [L]; that

is, constraints (10) are satisfied by substituting the policy
ψh(ν,ah, e) for ϕ. More precisely, let V represent the set
of (ν,ah) such that limh→∞A

h,ψh(ν,ah,e)
ℓ = 1. Define

(ν̄, āh) = argmax(ν,ah)∈V limh→∞
∑

j∈Jℓ∑
n∈Nij

π
ψh(ν,ah,e)
j (n)α

ψh(ν,ah,e)
ℓ,j (n). (30)

For ϕ ∈ Φ̃, h ∈ N+ and e ∈ R, define Γh,ϕ(e) :=
1
h

∑
j∈[J] π

ϕ
j · r

ϕ,e
j , where x · y represents the inner product

of vectors x and y, and rϕ,ej :=
(
µij (n) − eεij (n) : n ∈

Nij

)
. The policy ψh(ν̄, āh, e) is applicable to the relaxed

problem but not necessarily to the original problem. We will
discuss in Section VII that, when job sizes are exponentially
distributed, for any given real number e∗, Γh,φ(e∗) converges
to Γh,ψ

h(ν̄,āh,e∗)(e∗) as h→ +∞. In the asymptotic regime,
if the policy ψh(ν̄, āh, e∗) is coincidentally optimal for the
relaxed problem, it must also be optimal for the original prob-
lem because Γh,φ(e∗) ≤ maxϕ∈Φ Γh,ϕ ≤ maxϕ∈Φ̃ Γh,ϕ. In
this case, due to the simplicity of computing Γh,ψ

h(ν̄,āh,e)(e),
we can approximate the value of e∗ satisfying (8) by utilizing
the condition in (27). For e ∈ R, let

Γ(e) := limh→+∞ Γh,ψ
h(ν̄,āh,e)(e). (31)

Proposition 5: When job sizes are exponentially dis-
tributed, if, for a given e ∈ R,

limh→∞
∣∣Γh,ψh(ν̄,āh,e)(e)−maxϕ∈Φ̃ Γh,ϕ(e)

∣∣ = 0, (32)

then Γ(e) is Lipschitz continuous and piece-wise linear in e ∈
R, there exists a unique solution e0 ∈ R for Γ(e0) = 0, and,
for the unique e0 satisfying Γ(e0) = 0,

e0 = limh→+∞ e∗ ≥ 0. (33)
The proposition is proved in Appendix V. Note that e∗

defined in (8) is dependent on the scaling parameter h. The
proposition indicates that, if, for any given e ∈ R, the policy
ψh(ν̄, āh, e) is optimal for the relaxed problem described in
(9), (10), (12) and (13) in the asymptotic regime (that is,
(32) is satisfied), then e∗ can be approximated by the zero
point e0 asymptotically. When (32) does not hold, Γ(e) may
be discontinuous at some points and there may not exist e0
satisfying Γ(e0) = 0. For clarify, define

e0 := inf{e ∈ R | ∀e′ > e, Γ(e′) < 0}. (34)
From Proposition 5, if job sizes are exponentially distributed
and (32) holds, then e0 defined in (34) coincides with the
unique solution for Γ(e) = 0.

Condition 1: Aℓ ≤ 1 in the asymptotic regime for all ℓ ∈
[L].
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Condition 1 implies that the system is in heavy traffic with
positive blocking probabilities of all job classes under policy
ϕ0 in the asymptotic regime.

Lemma 1: When job sizes are exponentially distributed, if
the components are energy-efficiently unimodal and Condi-
tion 1 or L = 1, then (32) holds.
The lemma is based on Proposition 3 and proved in Ap-
pendix VI. From Lemma 1 and Proposition 5, when job sizes
are exponentially distributed, if the components are energy-
efficiently unimodal, and Condition 1 holds or L = 1, then
(33) holds, e0 defined in (34) is the unique solution for
Γ(e0) = 0, and Γ(e) is Lipschitz continuous and piece-wise
linear in e ∈ R.

Given the simple form of ψh(ν,ah, e) defined in (28) and
(29), we can fit the values of ν̄ ∈ RL and Γ(e) to satisfy
(10). See pseudo-code for fitting the values of ν̄ ∈ RL and
Γ(e) in [39, Algorithm 2]. We can also estimate the value of
e0 through a bisection method with the precision parameter
ϵ > 0. See pseudo-code in [39, Algorithm 3]. Let ē0 represent
such an estimate of e0. Lemma 1 and Proposition 5 guarantee
that the estimate ē0 is within [e0 − ϵ, e0 + ϵ], where e0 is
the unique zero point of Γ(e0) = 0, and e0 is equal to e∗ in
the asymptotic regime, when the computing components are
energy-efficiently unimodal and Condition 1 holds or L = 1.

Definition 5: For e0 defined in (34), we construct a policy
φ(e0) by substituting φ(e0) and u∗ℓ,ij (n, e0) for φ and υ∗ℓ,j(n),
respectively, in (25) and (26). We refer to it as the Multiple
Power Modes with Priorities (MPMP) policy.
Similar to φ, defined in (25) and (26), the policy φ(e0)
prioritizes physical components according to the descending
order of u∗(e0). This policy is applicable to the original
problem, described in (9), (1), (2) and (3). From Lemma 1 and
Proposition 5, if components are energy-efficiently unimodal,
and Condition 1 holds or L = 1, MPMP asymptotically
approaches φ, which will be proved to be optimal in the
asymptotic regime in Proposition 7. For cases without as-
suming energy-efficient unimodality, Condition 1 or L = 1,
numerical results are presented in Section VIII to demonstrate
the effectiveness of MPMP.

In Algorithm 1, we provide a pseudo-code for implementing
MPMP for each arrived job. In Algorithm 1, as an example,
we select the component with the smallest label in the tie case
for implementing MPMP. Recall that, based on the definition
of φ(e0) (i.e., MPMP) above, the indices used for MPMP are
expected to be u∗(e0), considered as an ideal estimate with the
precision parameter ϵ→ 0. All the theoretical results presented
in this paper apply to MPMP, i.e., φ(e0). For the numerical
results in Section VIII, with slightly abused notation, we still
refer to the policy output by Algorithm 1 as the MPMP policy
although the indices are estimated with a small ϵ > 0.

For any e ∈ R and its estimate e + ϵ with a small
ϵ > 0, the indices u∗(e) and u∗(e + ϵ) may be completely
different. Nonetheless, even if ∥u∗(e) − u∗(e + ϵ)∥ is large,
the performance deviation of the resulting policies can still be
negligible. For e ∈ R, define a policy φ(e) by substituting
φ(e) and u∗ℓ,ij (n, e) for φ and υ∗ℓ,j(n), respectively, in (25)
and (26).

Proposition 6: When job sizes are exponentially dis-

Input : The class label ℓ of an arrived job, the indices
u∗ℓ,j(n) ∈ R for j ∈Jℓ and n ∈ Nij , and
current system state NMPMP(t) upon the
arrival.

Output: The selected component j in Jℓ ∪ {jℓ} to
accommodate this job.

Function ImplementingMPMP:
j ← jℓ and u← −∞
for ∀j′ ∈Jℓ do

if NMPMP
j′ (t) < Cij′ AND u∗ℓ,j′(N

MPMP
j′ (t)) > u

then
j ← j′ and u← u∗ℓ,j′(N

MPMP
j′ (t))

end
end

return

Algorithm 1: Implementing MPMP with given indices.

tributed, for e ∈ R, if (32) holds, then, for any ϵ > 0, there
exists a constant C > 0 such that

lim
h→+∞

∣∣∣Γh,φ(e)(e)− Γh,φ(e+ϵ)(e+ ϵ)
∣∣∣ ≤ Cϵ. (35)

The proposition is proved in Appendix VII. Together with
Lemma 1, if the components are energy-efficiently unimodal,
and Condition 1 holds or L = 1, then (35) holds. Although
∥u∗(e) − u∗(e + ϵ)∥ may be sensitive to e, the performance
deviation of the resulting policies is negligible for sufficiently
small ϵ. When the estimate ē0 of e0 is subject to a small ϵ > 0,
the performance deviation between policies φ(ē0) and φ(e0)
(i.e., MPMP) is bounded by Cϵ.

The MPMP policy is scalable and applicable to the original
server farm problem. Let C =

∑
i∈[I] Ci. The computational

complexity of computing u(ē0) is O
(
P2(P1C+C lnC+IL)

)
where P1 and P2 are the depths of the convergence trees for
the bisection processes implemented for estimating u∗(e0) and
e0, respectively, and only dependent on the precision parameter
ϵ. This complexity is linear in the number of clusters I and
the number of job classes L, and log-linear in the capacity of
each component Ci, resulting in a reasonably fast procedure
of obtaining the estimated indices u(ē0). Recall that the esti-
mated indices u(ē0) are pre-calculated, and the computational
complexity for pre-computing u(ē0) is different from that of
implementing MPMP. As mentioned earlier in this section, for
implementing MPMP, the computational complexity is at most
linear to the number of physical components.

VII. ASYMPTOTIC OPTIMALITY

For given e ∈ R, we say a policy ϕ ∈ Φ, applicable to
the original problem described in (9), (1), (2) and (3) with
substituted e for e∗, is asymptotically optimal if

limh→∞
∣∣Γh,ϕ(e)−maxϕ′∈Φ Γh,ϕ

′
(e)

∣∣ = 0. (36)
If a policy is asymptotically optimal, it approaches optimality
for the server farm problem as h → +∞. Recall that, when
the parameter e = e∗ satisfies (8), a policy optimal for the
problem described in (9), (1), (2) and (3) is also optimal for the
server farm problem described in (7), (1), (2) and (3) aiming
to maximize the ratio of the long-run average job throughput
to the long-run average power consumption.

Definition 6: For any given e ∈ R, let φ(e) represent the
policy described in (25) and (26) with substituted φ(e) and
u∗ℓ,ij (n, e) for φ and υ∗ℓ,j(n), respectively.



10 TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024

Proposition 7: For the problem described in (9), (1), (2)
and (3) with given e ∈ R substituting for e∗, when job sizes
are exponentially distributed, if (32) holds, then the policy
φ(e) is asymptotically optimal.
The proposition is proved in Appendix VIII. Together with
Lemma 1, when job sizes are exponentially distributed, if the
components are energy-efficiently unimodal, and Condition 1
holds or L = 1, then the policy φ(e) is asymptotically optimal.
The problem, described in (9), (1), (2) and (3) with given
e ∈ R substituting for e∗, aims to maximize the difference
between the long-run average job throughput and the long-
run average energy consumption rate weighted by the given e.
Since we assume quite general e ∈ R and µi(n) and εi(n) for
the component clusters, the average job throughput and energy
consumption rate can be directly generalized as the average
reward and cost of the process. This is a popular objective and
has been widely used in the literature, such as [24], [40], [41].
For such an objective, the simple policy φ(e) is asymptotically
optimal under the provided conditions.

From Lemma 1 and Propositions 5 and 7, for the problem
defined by (7), (1), (2) and (3), when job sizes are exponen-
tially distributed, if the computing components are energy-
efficiently unimodal, and Condition 1 holds or L = 1, then the
policy φ(e0), i.e., the MPMP policy, is asymptotically optimal;
that is, (36) holds with substituted φ(e0) for ϕ.

Asymptotic optimality implies that MPMP is approaching
optimality as the system becomes large. Unlike previous work
in [24], [25], Proposition 7 and the asymptotic optimality of
MPMP apply to systems with a less stringent relationship
between power consumption, service rate, and traffic load.

We now further discuss the relationship between the sub-
optimality of the index policy φ(e) and the scaling parameter
h of the server farm system. We rank the state-component
(SC) pairs (n, i), n ∈ Ni\{Cij} and i ∈ [I], according to the
descending order of ηi,n where ηi,n satisfies fhi,n(ηi,n) = 0
with fhi,n defined in (24). Recall that the indices υ∗ℓ,j(n) =

ῡ∗ℓ,ij (n) = λ0ℓηij ,n/λ̂
0
ij

for ℓ ∈ [L], j ∈ [J ], and n ∈
Nij\{Cij}. Then, we place the remaining SC pairs (n, i)
with n = Ci for all i ∈ [I] afterwards. To emphasize this
ranking, we refer to the kth SC pair as SC pair k, where
k = 1, 2, . . . ,K for K =

∑
i∈[I] |Ni|. Let Zϕ,hk (t) represent

the proportion of processes {Nϕ
j (t), t ≥ 0} (j ∈ [J ]) that are

in the kth SC pair at time t under policy ϕ; that is,

Zϕ,hk (t) =
1

J

∣∣∣{j ∈ [J ] | ij = ik, N
ϕ
j (t) = nk}

∣∣∣ , (37)

where ik ∈ [I] and nk ∈ Nik are the cluster and state labels
of SC pair k. Recall that J is defined in Section III and is
dependent on h. Define Zϕ,h(t) := (Zϕ,hk (t) : k ∈ [K]). For
any given h ∈ N+, the stochastic process {Nϕ(t), t ≥ 0}
can be translated to the process {Zϕ,h(t), t ≥ 0}. Consider
a server farm that starts with no job (that is, Nϕ(0) = 0)
and, correspondingly, we have Zϕ,h(0) = z0 for this empty
system. Let Z := [0, 1]K represent a probability simplex.

Proposition 8: When job sizes are exponentially dis-
tributed, for given e ∈ R, there exists zφ(e) ∈ Z such that,
for any δ > 0, there exist s > 0 and H > 0 satisfying, for all

h > H ,

lim
T→∞

1

T

∫ T

0

P
{
∥Zφ(e),h(t)− zφ(e)∥ > δ

}
dt ≤ e−sh, (38)

where Zφ(e),h(0) = z0.
The proposition is proved in Appendix IX. Proposition 8
indicates that, under the policy φ(e), the underlying stochastic
process {Zφ(e),h(t), t ≥ 0} converges to a global attractor
zφ(e) almost surely as h → ∞, and, more importantly,
the deviation between Zφ(e),h(t) and zφ(e) is diminishing
exponentially in h. Define r(e) := (µik(nk) − eεik(nk) :
k ∈ [K]). Then, for given h ∈ N+ and policy ϕ ∈ Φ, the
normalized long-run average reward

Γϕ,h(e) =
∑

i∈[I]
M0
i r(e) · limt→∞ E[Zϕ,h(t)]. (39)

From Proposition 8, when job sizes are exponentially dis-
tributed, limh→∞ Γφ(e),h(e) =

∑
i∈[I]M

0
i r(e)·zφ(e). If zφ(e)

coincides with an optimal point of the relaxed problem, de-
scribed in (9), (10), (12) and (13) with e substituting for e∗, in
the asymptotic regime, then the policy φ(e) is asymptotically
optimal. Together with asymptotic indexability discussed in
Section V, Proposition 8 can lead to Proposition 7. Apart
from asymptotic optimality, Proposition 8 also implies that,
for a system with large h, if φ(e) is asymptotically optimal,
the performance deviation between φ(e) and optimality in
the asymptotic regime diminishes exponentially as h → ∞.
This conclusion extends [23, Proposition 2] to the more
generalized server farm model discussed in this paper, and,
as a straightforward result of Proposition 8, when job sizes
are exponentially distributed, (38) also applies to the MPMP
policy by setting e = e0.

VIII. NUMERICAL RESULTS

Without assuming energy-efficient unimodality or Condi-
tion 1, we numerically demonstrate the effectiveness of MPMP
by comparing it with two baseline policies. For all simulation
results, the 95% confidence intervals based on the Student t-
distribution are within 3% of the observed mean. We consider
exponentially distributed job sizes in Section VIII-A and other
job-size distributions in Section VIII-B.

A. Effectiveness of MPMP

We consider a scenario with Google cluster traces of job
arrivals in 2011 [42], [43], where there are 12,500 physical
components with arriving jobs classified into four groups (L =
4). We divide the system into ten clusters (I = 10), each of
which includes 1,250 components; that is, setting M0

i = 1 for
all i ∈ [I] with scaling parameter h = 1250. In this scenario,
we no longer assume Poisson arrivals, and instead, consider
the job arrivals of the Google cluster traces. The capacities of
physical components are set to ten (Ci = 10) for all i ∈ [I].
For other detailed settings see Appendix X.

In Figure 1, we present the energy efficiencies of MPMP,
PAS, and JSQ, averaged over an hour, where MPMP signifi-
cantly outperforms PAS and JSQ. The total energy efficiency
of MPMP is around 13% higher than that of PAS. For the same
settings, we plot in Figure 2, the job throughput, normalized
by the scaling parameter h, of MPMP, PAS, and JSQ. Given
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the clear advantages of MPMP against PAS and JSQ with
respect to energy efficiency, they still achieve almost the same
job throughputs. It is because the blocking probabilities of the
three policies are likely to be negligible, although the capacity
for each component is relatively small.

As mentioned in Section VI, all the theoretical results in
this paper apply to the index policy φ(e) with arbitrary tie-
breaking rules. Note that different tie-breaking rules may lead
to different performance. Consider a tie-breaking rule that
selects the component with the lowest label, and refer to it
as the Lowest-Label Tie-Breaking (LLTB). In Figure 3, we
explore the effects of different tie-breaking rules for the same
setting as before. We consider another tie-breaking rule that
always selects the component with the least number of holding
jobs in the tie-breaking cases and refer to it as the Shortest-
Queue Tie-Breaking (SQTB). In Figure 3, we demonstrate the
energy efficiency of MPMP with LLTB and SQTB and observe
that LLTB achieves slightly higher energy efficiency than that
of SQTB. The total energy efficiency for LLTB is around
5% higher than that of SQTB. Based on Proposition 8, when
job sizes are exponentially distributed, MPMP with different
tie-breaking rules approaches the same performance as h
increases and, for a large system, the performance deviation
between different tie-breaking rules diminishes exponentially
in h. The 5% difference in Figure 3 between SQTB and LLTB
is marginal, considering our 95% confidence intervals. This
paper focuses on scalable and asymptotically optimal policies
in large-scale server farms. A thorough discussion on the
effects of different tie-breaking rules in relatively small and
practical systems is a fundamentally interesting topic on its
own, which is beyond the scope of this paper.

B. Sensitivity

The theoretical results presented in this paper are based
on exponential job-size distributions. From past studies [44],
[45], real-world online applications exhibit job sizes that have
heavy-tailed distributions. Here, we numerically demonstrate
the performance of MPMP considering a heavy-tailed job-size
(Pareto) distribution, as well as a mixed version with different
job-size distributions for different job classes. In particular,
we consider simulations involving three non-exponential job
size distributions with unit mean: deterministic, Pareto with
shape parameter 2.001 and Pareto with shape parameter 1.98.
We refer to the Pareto distributions with shape parameters
2.001 and 1.98 as Pareto-F and Pareto-INF for short, as they
have finite and infinite variances, respectively. Apart from
the above-mentioned distributions, define a mixed case where
different job classes have different job-size distributions.

Consider a server farm with ten clusters (I = 10) and four
job classes (L = 4), where the peak service rate for each clus-
ter (that is, µi(Ci) for i ∈ [I]) is uniformly randomly generated
from [10, 15] and the capacities Ci are set 5 for all i ∈ [I]. For
cluster i ∈ [I], we uniformly randomly generate the energy
efficiency of its fully-occupied component, µi(Ci)/εi(Ci),
from [0.5, 1], and set the power consumption of its idle
component εi(0) to be 0.3εi(Ci)(0.9− 0.1i). For other states
n ∈ Ni\{Ci} of cluster i, the service and energy consumption
rates are obtained by setting µi(n) = µi(n + 1) n

n+1 and
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εi(n) = (εi(n+1)−εi(0))
√

n
n+1 +εi(0), respectively. In this

case, a higher service rate indicates higher power consumption
and higher energy efficiency, which follows realistic situations
in [46], [47]. We take the scaling parameter h = 10 and the
number of components in each cluster M0

i = 1 for all i ∈ [I].
For job class ℓ ∈ [L], we uniformly randomly generate

an integer κℓ ∈ [I] as the number of clusters involving
available components for ℓ-jobs, and then randomly select
κℓ clusters: all the components within the selected clusters
are available components for ℓ-jobs and join the set Jℓ.
Define the normalized offered traffic of job class ℓ ∈ [L] as
ρℓ := λℓ/

∑
j∈Jℓ

µij (Cij ) and the relative difference of policy
ϕ1 to ϕ2 (ϕ1, ϕ2 ∈ Φ) with respect to energy efficiency as
(Lϕ1/Eϕ1 −Lϕ2/Eϕ2)/(Lϕ2/Eϕ2). In this subsection, we set
ρℓ = 0.35 for all ℓ ∈ [L] and compute the arrival rates of
different job classes.

Define TMPMP,D and EMPMP,D as the long-run average job
throughput and power consumption under MPMP with job-
size distribution D, respectively. In Figure 4, we present the
cumulative distribution of the relative difference of energy
efficiency with job size distribution D from the one with
exponentially distributed job sizes; that is, the cumulative
distribution of

TMPMP,D/EMPMP,D − TMPMP,exponential/EMPMP,exponential

TMPMP,exponential/EMPMP,exponential ,

with D = deterministic, Pareto-F, Pareto-INF and mixed. For
the case of mixed, we set the job-size distributions for the job
classes 1-4 as deterministic, exponential, Pareto-F, and Pareto-
INF, respectively. In Figure 4, we observe that the relative
differences of energy efficiency for all the tested simulation
runs are within ±3%, indicating similar energy efficiencies
for tested D and the exponential case. It follows that the
energy efficiency of MPMP is not very sensitive to the tested
distributions, including the heavy-tailed Pareto-INF.

IX. CONCLUSIONS

We have proposed the MPMP policy that always prioritizes
physical components with the highest indices satisfying (22).
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The indices are computable within linear time in the number
of clusters I and the number of job classes L. It is log-linear
in the capacity of each component, and the implementation of
the MPMP policy is at most linear in the number of physical
components. It follows that MPMP is scalable as we have
demonstrated its applicability to a large-scale server farm with
tens or hundreds of thousands of abstracted servers.

When job sizes are exponentially distributed and all the
components are energy-efficiently unimodal, we have proved
that, if L = 1 or Condition 1 holds, MPMP approaches
optimality as the scaling parameter h tends to infinity; that
is, MPMP approaches optimality as the numbers of com-
ponents in clusters and the arrival rates of jobs increase
proportionately to infinity. We have provided an analysis of
the entire system, including discussions on the indexability
and the global attractor for proving asymptotic optimality in
the continuous-time case. For a large system, we have proved
that the performance deviation between MPMP and an optimal
solution in the asymptotic regime diminishes exponentially in
the scaling parameter h. That is, MPMP becomes already close
to optimality in a relatively small system.

For the non-asymptotic regime without assuming energy-
efficient unimodality and the heavy traffic condition, we
have numerically demonstrated the effectiveness of MPMP by
comparing it to JSQ and PAS. When the job throughputs are
compatible, MPMP has shown substantial advantages against
the baseline policies with respect to energy efficiency. We have
further investigated the performance of MPMP considering
different job-size distributions and demonstrated that MPMP
is robust in all the cases we tested.

APPENDIX I

For ℓ ∈ [L], j ∈ Jℓ, let ωℓ,j > −νℓ all the time, such that an
optimal solution of sub-problem (16) always has αϕℓ,j(Cij ) =
0: constraints (12) are satisfied. In this context, we replace
rϕj (ν,ω) with rϕj (ν) := rϕ,e

∗

j (ν) (defined in Section VI-B)
for the remainder of this appendix.

Consider the underlying stochastic process of the problem
defined in (16) for component j ∈ [J ]: it is a birth-and-death
Markov process {Nϕ

j (t), t ≥ 0}, for which Nϕ
j (t) represents

the number of jobs being served by this component at time t
and rϕj,n(ν) (n ∈ Nij ) is the reward rate in state n. We refer
to this process {Nϕ

j (t), t ≥ 0} as the sub-process associated
with component j or sub-process j.

Let V ϕ,νj (n) and Tϕ,νj (n) represent the expected accumu-
lated reward and time, respectively, of sub-process j starting
from state n and ending in state 0 under policy ϕ, where the
reward rate in state n is rϕj,n(ν) and V ϕ,νj (0) = Tϕ,νj (n) ≡ 0.
For given g ∈ R, define V ϕ,g,νj (n) = V ϕ,νj (n) − gTϕ,νj (n)

and V g,νj (n) = maxϕ∈Φ̃1
V ϕ,g,νj (n).

Lemma 2: When job sizes are exponentially distributed,
there exists a g ∈ R such that, for any policy ϕ∗ ∈ Φ̃1 that is
optimal for the maximization problem in (14),

αϕ
∗

ℓ,j(n) =


1, if νℓ < λℓ

(
V g,νj (n+ 1)− V g,νj (n)

)
,

a, if νℓ = λℓ
(
V g,νj (n+ 1)− V g,νj (n)

)
,

0, if νℓ > λℓ
(
V g,νj (n+ 1)− V g,νj (n)

)
,

(40)

for recurrent states n ∈ Nij\{Cij}, j ∈ Jℓ, ℓ ∈ [L], where a
can be any real number in [0, 1].

Proof. As described in (15), the maximization problem in
(14) consists of J + L independent sub-problems: the J sub-
problems described in (16) and the L sub-problems described
in (17) subject to αϕ

∗

ℓ,j(Cij ) ≡ 0 (j ∈ [J ],ℓ ∈ [L]) and
αϕ

∗

ℓ,j(n) ≡ 0 (n ∈ Nij\{Cij}, j ̸= Jℓ, ℓ ∈ [L]). Equation
(40) is obtained by solving sub-problems in (16).

For a constant g = g∗j (ν) (defined in (21)), n ∈
Nij\{Cij , 0}, j ∈ Jℓ and ℓ ∈ [L], equation (40) is obtained
by solving the Bellman equations for V g,νj (n) (n ∈ Nij\{0})
in the cases with αϕ

∗

ℓ,j(0) = 1 for at least one ℓ ∈ {ℓ′ ∈ [L] :
j ∈ Jℓ′}. We refer to the extended version of this paper [39,
Equation (50)] for the description of the Bellman equations
for V g,νj (n). If αϕ

∗

ℓ,j(0) = 0 for all ℓ ∈ {ℓ′ ∈ [L] : j ∈ Jℓ′},
then sub-process j will stay in state 0 all the time whatever
the action variables of other states will be. Hence, the policy
satisfying (40) is still optimal.

It remains to discuss (40) for n = 0. For ℓ ∈ {ℓ′ ∈ [L]|j ∈
Jℓ′}, j ∈ [J ], let λ̄ℓj =

∑
ℓ′:j∈Jℓ′ ,ℓ

′ ̸=ℓ λℓ′α
ϕ∗

ℓ′,j(0) and ν̄ℓj =∑
ℓ′:j∈Jℓ′ ,ℓ

′ ̸=ℓ νℓ′α
ϕ∗

ℓ′,j(0). If λ̄ℓj > 0, from the Bellman equa-
tion, we obtain that (40) holds for n = 0.

It remains to prove (40) for n = 0 when λ̄ℓj = 0. Let
r̄ϕj represent the average reward received when the process
{Nϕ

j (t), t ≥ 0} is in the states n ∈ Nij\{0} under ϕ. Since
(40) holds for n ∈ Nij\{Cij}, r̄

ϕ∗

j with any optimal solution
ϕ∗ ∈ Φ̃1 is independent from the value of αϕj (0). When λ̄ℓj =

0, if Rj(0) ≤ 1

1+
λℓ

µj(1)

(
Rj(0)− νℓ+ λℓ

µj(1)
r̄ϕ

∗

j

)
with Rj(n) =

µj(n)− e∗εj(n), then αϕ
∗

ℓ,j(0) = 1; that is,

νℓ ≤ λℓ(r̄ϕ
∗

j −Rj(0))/µj(1). (41)

Because g∗j (ν) ≥ Rj(0) (based on its definition in (21)) and

V
g∗j (ν),ν

j (1) = λℓ(r̄
ϕ∗

j − g∗j (ν))/µj(1) (Bellman equation), if

νℓ ≤ λℓV
g∗j (ν),ν

j (1) then (41) holds: αϕ
∗

ℓ,j(0) = 1.

We then show that νℓ ≤ λℓV
g∗j (ν),ν

j (1) is necessary for
αϕ

∗

ℓ,j(0) = 1. If αϕ
∗

ℓ,j(0) = 1, (41) holds, and g∗j (ν) =
(
Rj(0)−

νℓ + λℓr̄
ϕ∗

j /µj(1)
)(
1 + λℓ/µj(1)

)
. Together with (41), we

obtain νℓ ≤ λℓV
g∗j (ν),ν

j (1). This proves the lemma.

Proof of Proposition 1. Consider a policy ϕ∗ ∈ Φ̃1

satisfying (40). There exists another policy ϕ1 such that,
for n ∈ Nij\{Cij}, α

ϕ1

j (n) = αϕ
∗

j (n), if n < m where
m = min

{
m′ ∈ Nij |α

ϕ∗

j (m′) = 0
}

; otherwise, αϕ1

j (n) = 0.
Since all states n > m under policy ϕ∗ are transient, policy
ϕ1 leads to the same stationary distribution as ϕ∗, which is
optimal for the maximization in (14).

For state n ∈ Nij\{Cij} (j ∈ [J ]), let m∗
j (n) ∈ {n, n +

1, . . . , Cij−1} represent the state such that αϕ
∗

j (m∗
j (n)+1) =

0, and, if m∗
j (n) ≥ 1, αϕ

∗

j (n+ 1) = . . . = αϕ
∗

j (m∗
j (n)) = 1.

If αϕ
∗

j (n′) = 0 for all n′ ≥ n + 1, then m∗
j (n) = n. From

Lemma 2, for n ∈ Nij\{Cij}, we obtain that, if m∗
j (n) = n,
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then

V
g∗j (ν),ν

j (n+ 1)− V g
∗
j (ν),ν

j (n) =
Rj(n+ 1)− g∗j (ν)

µij (n+ 1)
; (42)

otherwise,

V
g∗j (ν),ν

j (n+ 1)− V g
∗
j (ν),ν

j (n) =
Rj(n+ 1)− g∗j (ν)

µij (n+ 1)

+

m∗
j (n)−n∑
k=1

k∏
ι=1

λ̂ij
µij (n+ ι)

(Rj(n+ k + 1)− g∗j (ν)
µij (n+ k + 1)

− ν
)
,

(43)

where λ̂ij := λ̂0ijh =
∑
ℓ:ij∈Iℓ

λℓ, and g∗j (ν) is a given
real number satisfying (21). We refer to a detailed exposition
for achieving (43) in the extended version of this paper [39,
Equations (59)-(64)]. Recall that V

g∗j (ν),ν

j (0) ≡ 0. If

ν ≥ maxn′=n+1,
n+2,...,Cij

(
Rj(n

′)− g∗j (ν)
)
/µij (n

′), (44)

where Rj(n) = µj(n) − e∗εj(n) for n ∈ Nij , then, from

(42)-(43), V
g∗j (ν),ν

j (n + 1) − V g
∗
j (ν),ν

j (n) ≤ ν; together with
Lemma 2, αϕ

∗

j (n) = 0 = αϕ1

j (n). It remains to prove that
there exists a H ∈ R such that, for all h > H and n ∈
Nij\{Cij}, if (44) does not hold, αϕ1

j (n) = 1; equation (20)

is then led by Lemma 2 and the continuity of V
g∗j (ν),ν

j (n +

1)− V g
∗
j (ν),ν

j (n)− ν in ν, where ν = λν.
For n = Cij−1, if (44) does not hold, then, from Lemma 2,

V
g∗j (ν),ν

j (Cij )−V
g∗j (ν),ν

j (Cij − 1) =
Rj(Cij

)−g∗j (ν)
µij

(Cij
) > ν; that

is, αϕ
∗

j (Cij − 1) = 1 and (20) holds for n = Cij − 1.
We prove the remaining case with n < Cij − 1 through

iterations. Assume that, for sufficiently large h, (20) holds
for n + 1, n + 2, . . . , Cij − 1. If m∗

j (n) > n, then, ν ≤
Rj(m

∗
j (n)+1)−g∗j (ν)

µij
(m∗

j (n)+1) . By (42)-(43) and Lemma 2, if m∗
j (n) > n

and

ν <

Rj(n+1)−g∗j (ν)
µij

(n+1) +
m∗

j (n)−n∑
k=1

k∏
ι=1

λ̂ij

µij
(n+ι)

Rj(n+k+1)−g∗j (ν)
µij

(n+k+1)

1 +
m∗

j (n)−n∑
k=1

k∏
ι=1

λ̂ij

µij
(n+ι)

,

(45)
then αϕ

∗

j (n) = 1. Let vj(n) represent the value of the right-
hand side of (45). If (44) does not hold and component j is
energy-efficiently unimodal, for any σ > 0, there exits H ∈ R
such that, for all h > H , vj(n) > ν. Accordingly, αϕ1

j (n) =

αϕ
∗

j (n) = 1. If m∗
j (n) = n and (44) does not hold, then,

together with the Bellman equation for V
g∗j (ννν),ννν

j (m∗
j (n)) and

Lemma 2, αϕ
∗

j (n) = 1. This proves the proposition.

APPENDIX II

For j ∈ [J ] and n ∈ Nij\{Cij}, define, for ν ∈ R,

f̄j,n(ν) := ν +minn′=n+1,
n+2,...,Cij

(g∗j (νλ)
µj(n′)

− Rj(n
′)

µj(n′)

)
. (46)

Lemma 3: For any j ∈ [J ], n ∈ Nij\{Cij}, there exists
ν ∈ R such that f̄j,n(ν) = 0. In particular, if job sizes are

exponentially distributed and all computing components are
energy-efficiently unimodal, there exists H ∈ R and υhj,n ∈ R
such that, for all h > H ,

f̄j,n(ν)


> 0, if ν > υhj,n,

= 0, if ν = υhj,n,

< 0, otherwise.
(47)

Proof. From the definition, g∗j (νλ) is piece-wise linearly
decreasing and continuous in ν ∈ R. From the definition in
(46), f̄j,Cij

−1(ν) is piece-wise linear and continuous in ν ∈ R.

For ν ∈ R, d−

dν f̄j,Cij
−1(ν) = 1 + d−

dν

g∗j (νλ)

µj(Cij
) > 0, where d−

dν

takes the left derivative. Together with the piece-wise linearity
of f̄j,Cij

−1(ν), f̄j,Cij
−1(ν) is monotonically increasing in

ν ∈ R. Since f̄j,Cij
−1(ν) is also continuous in ν ∈ R and

f̄j,Cij
−1(ν) tends to ±∞ as ν → ±∞, there exists ν such that

f̄j,Cij
−1(ν) = 0. For any n ∈ Nij\{Cij , Cij − 1}, from the

definition in (46), for any ν ∈ R, f̄j,n(ν) ≤ f̄j,Cij
−1(ν). Since

f̄j,n(ν) tends to ±∞ as ν → ±∞ and with the continuity in
ν ∈ R, there exists a ν ∈ R such that f̄j,n(ν) = 0 for any
n ∈ Nij\{Cij , Cij − 1}. Let υj,n represent the value of such
a ν with f̄j,n(ν) = 0 for n ∈ Nij\{Cij}.

We now discuss the uniqueness of the zero point υj,n. When
job sizes are exponentially distributed and the components are
energy-efficiently unimodal, for n ∈ Nij\{Cij} and ν ∈ R, if
f̄j,n(ν) ≥ 0, then, by Proposition 1, there exists H such that,
for all h > H , an optimal policy ϕ∗ exists and satisfies that,
for any n′ ≥ n+1, αϕ

∗

j (n′) = 0. For such ν with f̄j,n(ν) ≥ 0,
d−

dν f̄j,n(ν) > 0, where πϕ
∗

j (n′) is the stationary distribution of
sub-process j under ϕ∗, for which the sub-process achieves the
maximal average reward g∗(νλ). Accordingly, the zero point
υj,n is unique and (47) is achieved by setting υhj,n = υj,n.

Proof of Proposition 2. It is proved invoking Proposition 1
and Lemma 3 by substituting υ∗ℓ,j(n) = λℓυ

h
j,n.

APPENDIX III

Proof of Proposition 3. From Proposition 2, for any j ∈
[J ], if ν = νλ for some ν ∈ R, then there exist a policy
ψj(n) ∈ Φ̃1 satisfying, for all ℓ ∈ {ℓ′ ∈ [L]|j ∈Jℓ} and n′ ∈
Nij\{Cij}, α

ψj(n)
ℓ,j (n′) = 1; and α

ψj(n)
ℓ,j (n′) = 0 otherwise,

and H > 0 such that, for all h > H , ψj(n) is optimal for the
problem described in (16). In other words, for given j ∈ [J ],
n ∈ Nij and multipliers ν = νλ, there exists H > 0 such
that, for all h > H , Γj(ν) = g∗j (ν). Substituting Γj(υ

∗
j (n))

for g∗j (υ
∗
j (n)) in (47), together with Proposition 1, we prove

the proposition. In particular, the indices υ∗ℓ,j(n) = λℓυ
h
j,n

where υhj,n is the zero point for f̄j,n(υhj,n) = 0.

APPENDIX IV

Proof of Proposition 4. From the definition, for given h ∈
N+, i ∈ [I], and n ∈ Ni\{Ci}, fhi,n(η0) is piece-wise linear
and continuous in η0 ∈ R, and∣∣∣ d−

dη0
fhi,n(η

0)
∣∣∣ ≤ 1

+
hλ̂0

µi(n+ 1)

1∑
n′=n+

n′∏
n′′=n+

µi(n
′′)

hλ̂0
π
ψj(n

+−1)
j (n+), (48)
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where j is any element in Ji, n+ ∈ Ni\{0} is the state
such that the state n+ − 1 maximizes the right-hand side of
(23), πψj(n

+−1)
j (n+) is the steady state distribution of state

n+ under the policy ψj(n+− 1). It follows that | d
−

dη0 f
h
i,n(η

0)|
is bounded with some finite constant C ∈ R+, where the
j is any element in Ji. Along similar lines, for the limit
case with h→ +∞, | d

−

dη0 f
h
i,n(η

0)| is still bounded with some
finite constant. Thus, fhi,n(η

0) is Lipschitz continuous for given
h ∈ N+ ∪ {+∞}, i ∈ [I], and n ∈ Ni\{Ci}.

Observing that, for given h ∈ N+ and any j ∈ Ji,
f̄j,n(ν) =

1
λ̂0
fhi,n(λ̂

0ν). From Lemma 3, there exists η0 ∈ R
such that fhi,n(η

0) = 0. Since, for any h ∈ N+ ∪ {+∞},
fhi,n(η

0) is Lipchitz continuous in η0 ∈ R, is bounded with
bounded η0 ∈ R and approaches ±∞ as η0 → ±∞, there
exists η0 ∈ R such that fhi,n(η

0) = 0 when h→ +∞.

APPENDIX V
Define, for e ∈ R,

zψ(e) := limh→+∞ limt→+∞ E[Zψh(ν̄,āh,e),h(t)],

where Zϕ(t) has been defined in (37), and the existence of
the limit is ensured by the existence of limh→+∞ π

ψh(ν̄,ā,e)
j

(j ∈ [J ]).
Proof of Proposition 5. From [24, Propositions 4 and 5], we

obtain that, when the job sizes are exponentially distributed,
for any δ > 0,

lim
h→+∞

lim
T→+∞

1

T
P
{
∥Zφ(e),h(t)− zψ(e)∥ > δ

}
= 0, (49)

where Zφ,h(0) = z0 and the policy φ(e) ∈ Φ is the index
policy defined in (25) and (26) with substituted φ(e) and u∗(e)
for φ and υ∗, respectively. From (39) and (49), for any δ > 0,
there exists H > 0 such that, for all h > H ,

Γh,ψ
h(ν̄,āh,e)(e)− δ ≤ Γh,φ(e)(e) ≤ maxϕ∈Φ Γh,ϕ(e), (50)

where the second inequality comes from φ(e) ∈ Φ. Together
with (32), for δ > 0, there exists H > 0 such that, for h > H ,

max
ϕ∈Φ̃

Γh,ϕ(e)− δ ≤ max
ϕ∈Φ

Γh,ϕ(e) ≤ max
ϕ∈Φ̃

Γh,ϕ(e), (51)

where the second inequality is based on Φ ⊂ Φ̃.
Recall that, for any j ∈ [J ] and e ∈ R, the

existence of limh→+∞ π
ψh(ν̄,āh,e)
j leading to the ex-

istence of limh→+∞ Γh,ψ
h(ν̄,ā,e)(e). When (32) holds,

limh→+∞ maxϕ∈Φ̃ Γh,ϕ(e) also exists. Based on (51) and
(32), for any e ∈ R,

lim
h→+∞

max
ϕ∈Φ

Γh,ϕ(e) = Γ(e) = lim
h→+∞

max
ϕ∈Φ̃

Γh,ϕ(e). (52)

Let Γh,∗(e) := maxϕ∈Φ̃ Γh,ϕ(e), which is piece-wise linear,
continuous and decreasing in e ∈ R. Since limh→+∞ Γh,∗(e)
exists for all given e ∈ R and limh→+∞ Γh,∗(e) tends
to ±∞ as e → ∓∞, there exists a solution e ∈ R for
limh→+∞ Γh,∗(e) = 0. Together with (32), there exists a zero
point e ∈ R such that limh→+∞ Γh,ψ

h(ν̄,āh,e)(e) = 0 and
limh→+∞ Γh,ψ

h(ν̄,āh,e)(e) is continuous in e ∈ R.
Let e0 represent a specific real number such that Γ(e0) = 0,

and, for h ∈ N+ and e ∈ R, let ϕh(e) represent an optimal

solution such that Γh,ϕ
h(e)(e) = maxϕ∈Φ Γh,ϕ(e). From (52),

for any δ > 0, there exists H > 0 such that, for all h > H ,

|Γh,ϕ
h(e0)(e0)| = |Lϕ

h(e0) − e0Eϕ
h(e0)| < δ. (53)

That is,
limh→+∞ Lϕ

h(e0)/Eϕ
h(e0) = e0. (54)

Based on (53), for any ϕ ∈ Φ and δ > 0, there exists H > 0
such that, for all h > H , Lϕ− e0Eϕ ≤ Lϕ

h(e0)− e0Eϕ
h(e0) <

δ. It follows that, for any ϕ ∈ Φ,
limh→+∞ Lϕ/Eϕ ≤ e0. (55)

From (54), (55) and (8), we obtain that limh→+∞ e∗ =

limh→+∞ maxϕ∈Φ
Lϕ

Eϕ = e0. This proves (33).
We then discuss the uniqueness of the zero point e0 for

Γ(e0) = 0. If there exists e1 ̸= e0 satisfying Γ(e1) = 0, then,
from the above discussion, e1 = limh→+∞ maxϕ∈Φ

Lϕ

Eϕ = e0.
Hence, e0 is the unique solution for Γ(e0) = 0.

Recall that, for given h ∈ N+, Γh,∗(e) := maxϕ∈Φ̃ Γh,ϕ(e),
which is piece-wise linear in e ∈ R with the left derivative∣∣∣d−de Γh,∗(e)∣∣∣ < C, where C ∈ R+ is a constant independent

from h, ϕ∗ is an optimal policy satisfying Γh,ϕ
∗
(e) = Γh,∗(e),

and εi := (εi(n) : n ∈ Ni) for i ∈ [I]. That is, for
given h ∈ N+, Γh,∗(e) is Lipschitz continuous in e ∈
R with a bounded Lipschitz constant independent from h.
For any given e ∈ R, from (32), the function Γ(e) =
limh→+∞ maxϕ∈Φ̃ Γh,ϕ(e) = limh→+∞ Γh,∗(e). It follows
that, for any e ∈ R, lim∆→0|Γ(e +∆) − Γ(e)| ≤ 0. That is,
Γ(e) is continuous in e ∈ R. Similarly, lim∆↑0

1
∆ |Γ(e+∆)−

Γ(e)| = lim∆↑0
1
∆ |limh→+∞

(
Γh,∗(e + ∆) − Γh,∗(e)

)
| ≤ C,

leading to the Lipschitz continuity of Γ(e).

APPENDIX VI
Proof of Lemma 1. The lemma can be proved by showing

that constructing ν, γγγ, and ϕ∗, where αϕ
∗

j and ᾱϕ
∗

ℓ maximize
the the objectives defined in (16) and (17); and showing that
such ν, γγγ, and ϕ∗ achieve the complementary slackness for
the relaxed problem defined by (9), (10), (12) and (13).

We start with the case with Condition 1. Let νℓ/λℓ = ν
where

ν = min
{
0,minj∈Jℓ

υ∗ℓ,j(Cij − 1)/λℓ
}

(56)

with υ∗ℓ,j(n) (n ∈ Nij , j ∈ Jℓ, ℓ ∈ [L]) given by (22), and
let γℓ = −λℓν, ℓ ∈ [L]. In this context, from Proposition 2,
for sufficiently large h, there is an optimal policy ϕ∗ for the
problem defined in (16), satisfying αϕ

∗

ℓ,j(n) = 1 for all n ∈
Nij\{Cij}, j ∈ Jℓ. Let ᾱϕ

∗

ℓ = 1 − Aℓ, where 0 ≤ 1 −
Aj ≤ 1 under Condition 1. In other words, constraints (10)
and (13) are satisfied with equality. Recall that Constraint (12)
has been guaranteed by setting η to be sufficiently large: the
complementary slackness of the relaxed problem is achieved.
Hence, ϕ∗ also maximizes the primal problem defined by (9),
(10), (12) and (13).

We now consider the case with L = 1. If Aℓ ≤ 1, then this
is a special case for L ≥ 1 with Condition 1. It remains to
discuss the case with L = 1 and Aℓ > 1. From Proposition 2,
for sufficiently large h, there is an optimal policy ϕ∗ that
maximizes the problem defined in (16), for which αϕ

∗

j is
determined by (18) and (22). Since Aℓ > 1, there must exist
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a νℓ such that νℓ ≥ minj∈Jℓ,n∈Nij
υ∗ℓ,j(n), where the ℓ is the

only element in [L], and
∑
j∈Jℓ

πϕ
∗

j ·α
ϕ∗

j = 1.
If Aℓ > 1, then let γℓ > max {0,−νℓ}, which guarantees

that policy ϕ∗ with ᾱϕ
∗

ℓ < 0 maximizes the objective defined
in (17). Then, I(ᾱϕ

∗

ℓ ) = 0 = I(1−Aℓ). Constraints (10) and
(13) achieve equality. The complementary slackness conditions
are also satisfied under this setting. The lemma is proved.

APPENDIX VII
Proof of Proposition 6. Along similar lines as the proof

of Proposition 5 in Appendix V, based on (32), we ob-
tain (50) and (52). In other words, for any e ∈ R,
limh→+∞ Γh,φ(e)(e) = limh→+∞ Γh,ψ

h(ν̄,āh,e)(e) = Γ(e).
From Proposition 5, if (32) holds, Γ(e) is Lipschitz continuous
in e ∈ R. It follows with (35) and proves the proposition.

APPENDIX VIII
Proof of Proposition 7. The proposition is proved by in-

voking [24, Propositions 4 and 5], which ensures the existence
of a global attractor for the process {Zφ(e),h(t), t ≥ 0},
where Zφ(e),h(t) has been defined in (37) and the index
policy φ(e) has been defined in (25) and (26) with substituted
φ(e) and u∗ℓ,ij (n, e) for φ and υ∗ℓ,j(n), respectively. More
precisely, from [24, Propositions 4 and 5], for any δ > 0,
we obtain (49) with Zφ(e),h(t) = z0. The zψ(e) is the
global attractor for the process {Zφ(e),h(t), t ≥ 0}. That is,
together with Lemma 2, we obtain limh→+∞ Γh,φ(e)(e) =
limh→+∞ maxϕ∈Φ̃ Γh,ϕ(e), which, since φ(e) ∈ Φ and Φ ⊂
Φ̃, indicates (36) with substituted φ(e) for ϕ.

APPENDIX IX
Proof of Proposition 8. Along similar lines as the proof of

[23, Proposition 2], by invoking [48, Theorem 4.1 in Chapter
7 & Theorem 3.3 in Chapter 3], there exists a deterministic
process z(t) taking values in Z such that, for any δ > 0,
there exist s > 0 and H > 0 satisfying, for all h > H ,

lim
T→+∞

1

T

∫ T

0

P
{∥∥∥Zh,φ(e)(t)− z(t)

∥∥∥ > δ
}
dt ≤ e−sh. (57)

Together with (49), we obtain that, for δ > 0, there exist s > 0
and H > 0 such that, for all h > H , (38) is achieved.

APPENDIX X
Consider a system with I = 10 clusters, where the service

and energy consumption rates of components are instances of
pseudo-random variables:

• µ1(C1) = 2.425, ε1(0) = 0.0655, µ1(C1)
ε1(C1)−ε1(0) = 13.699

• µ2(C2) = 1.620, ε2(0) = 0.0333, µ2(C2)
ε2(C2)−ε2(0) = 15.338

• µ3(C3) = 1.758, ε3(0) = 0.0315, µ3(C3)
ε3(C3)−ε3(0) = 14.845

• µ4(C4) = 1.600, ε4(0) = 0.0189, µ4(C4)
ε4(C4)−ε4(0) = 18.562

• µ5(C5) = 1.728, ε5(0) = 0.0116, µ5(C5)
ε5(C5)−ε5(0) = 26.225

• µ6(C6) = 1.668, ε6(0) = 0.0069, µ6(C6)
ε6(C6)−ε6(0) = 33.166

• µ7(C7) = 2.390, ε7(0) = 0.0055, µ7(C7)
ε7(C7)−ε7(0) = 43.127

• µ8(C8) = 2.116, ε8(0) = 0.0026, µ8(C8)
ε8(C8)−ε8(0) = 51.306

• µ9(C9) = 2.416, ε9(0) = 0.0011, µ9(C9)
ε9(C9)−ε9(0) = 70.356

• µ10(C10) = 2.224, ε10(0) = 0, µ10(C10)
ε10(C10)−ε10(0) = 97.625

and, for all clusters i ∈ [I], the service and energy consump-
tion rates for states n ∈ Ni\{0, Ci} are given by µi(n) =

n
n+1µi(n + 1) and εi(n) =

n
n+1 (εi(n + 1) − εi(0)) + εi(0),

respectively. In particular, the unit of service rates of all the
clusters is 10−10 number of jobs per second: they are normal-
ized to be sufficiently small that we can observe a positive
number of blocked jobs and the heavy traffic condition can be
achieved during peak hours. There are L = 4 classes of jobs
and, for all the classes ℓ ∈ [L], the sets of clusters able to serve
an ℓ-job are I1 = {1, 5, 6, 10}, I2 = {1, 2, 3, 4, 5, 7, 8, 9},
I3 = {1, 6, 7, 10}, and I4 = {2}.
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[12] E. Hyytiä, R. Righter, and S. Aalto, “Task assignment in a heteroge-
neous server farm with switching delays and general energy-aware cost
structure,” Performce Evaluation, vol. 75-76, pp. 17–35, 2014.

[13] T. Lin, T. Alpcan, and K. Hinton, “A game-theoretic analysis of energy
efficiency and performance for cloud computing in communication
networks,” IEEE Syst. J., vol. 11, no. 2, pp. 649–660, Jun. 2017.

[14] X. Wei and M. J. Neely, “Data center server provision: Distributed
asynchronous control for coupled renewal systems,” IEEE/ACM Trans.
Netw., vol. 18, no. 1, First Quarter 2016.

[15] S. K. Mishra, D. Puthal, J. J. Rodrigues, B. Sahoo, and E. Dutkiewicz,
“Sustainable service allocation using a metaheuristic technique in a fog
server for industrial applications,” IEEE Trans. Ind. Informat., vol. 14,
no. 10, pp. 4497–4506, Oct. 2018.

[16] O. T. Akgun, D. G. Down, and R. Righter, “Energy-aware scheduling on
heterogeneous processors,” IEEE Trans. Automat. Contr., vol. 59, no. 3,
pp. 599–613, 2013.

[17] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, “Online auction for
IaaS clouds: Towards elastic user demands and weighted heterogeneous
VMs,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 9, pp. 2075–2089,
Sep. 2018.

[18] N. Bansal, H.-L. Chan, and K. Pruhs, “Speed scaling with an arbitrary
power function,” ACM Trans. Algorithms., vol. 9, no. 2, p. 18, Mar.
2013.



16 TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024

[19] X. Mei, Q. Wang, and X. Chu, “A survey and measurement study of
GPU DVFS on energy conservation,” Digit. Commun. Netw., vol. 3,
no. 2, pp. 89–100, May 2017.

[20] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
J. Appl. Probab., vol. 25, pp. 287–298, 1988.

[21] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queuing network control,” Math. Oper. Res., vol. 24, no. 2, pp. 293–
305, May 1999.

[22] R. R. Weber and G. Weiss, “On an index policy for restless bandits,” J.
Appl. Probab., no. 3, pp. 637–648, Sep. 1990.

[23] J. Fu and B. Moran, “Energy-efficient job-assignment policy with
asymptotically guaranteed performance deviation,” IEEE/ACM Trans.
Netw., vol. 28, no. 3, pp. 1325–1338, 2020.

[24] J. Fu, B. Moran, and P. G. Taylor, “A restless bandit model for resource
allocation, competition, and reservation,” Oper. Res., vol. 70, no. 1, pp.
416–431, 2022.

[25] J. Fu, B. Moran, J. Guo, E. W. M. Wong, and M. Zukerman, “Asymp-
totically optimal job assignment for energy-efficient processor-sharing
server farms,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, Dec. 2016.

[26] Q. Wang, J. Fu, J. Wu, B. Moran, and M. Zukerman, “Energy-efficient
priority-based scheduling for wireless network slicing,” in Proc. IEEE
GLOBECOM 2018, Abu Dhabi, UAE, Dec. 2018.

[27] Z. Yu, Y. Xu, and L. Tong, “Deadline scheduling as restless bandits,”
IEEE Trans. Automat. Contr., vol. 63, no. 8, pp. 2343–2358, 2018.

[28] V. S. Borkar, “Whittle index for partially observed binary Markov
decision processes,” IEEE Trans. Automat. Contr., vol. 62, no. 12, pp.
6614–6618, 2017.

[29] J. Wang, X. Ren, Y. Mo, and L. Shi, “Whittle index policy for dy-
namic multichannel allocation in remote state estimation,” IEEE Trans.
Automat. Contr., vol. 65, no. 2, pp. 591–603, 2019.

[30] A. Abbou and V. Makis, “Group maintenance: A restless bandits
approach,” INFORMS J. Comput., vol. 31, no. 4, pp. 719–731, 2019.

[31] J. Niño-Mora, “Restless bandits, partial conservation laws and indexa-
bility,” Adv. Appl. Probab., pp. 76–98, 2001.

[32] J. Niño-Mora, “Dynamic allocation indices for restless projects and
queueing admission control: a polyhedral approach,” Math. Program.,
vol. 93, no. 3, pp. 361–413, 2002.

[33] J. Niño-Mora, “Dynamic priority allocation via restless bandit marginal
productivity indices,” Trans. Oper. Res., vol. 15, no. 2, pp. 161–198,
2007.

[34] J. Niño-Mora, “A verification theorem for threshold-indexability of real-
state discounted restless bandits,” Math. Oper. Res., vol. 45, no. 2, pp.
465–496, 2020.

[35] S. M. Ross, Applied probability models with optimization applications.
Dover Publications (New York), 1992.

[36] W. Ouyang, A. Eryilmaz, and N. B. Shroff, “Downlink scheduling over
Markovian fading channels,” IEEE/ACM Trans. Netw., vol. 24, no. 3,
pp. 1801–1812, 2016.

[37] A. Maatouk, S. Kriouile, M. Assaad, and A. Ephremides, “Asymptoti-
cally optimal scheduling policy for minimizing the age of information,”
in 2020 IEEE International Symposium on Information Theory (ISIT).
Los Angeles, CA, USA, USA: IEEE, Jun. 2020, pp. 1747–1752.

[38] I. Takouna, W. Dawoud, and C. Meinel, “Accurate mutlicore processor
power models for power-aware resource management,” in Proc. 2011
IEEE Ninth International Conference on Dependable, Autonomic and
Secure Computing. Sydney, NSW, Australia: IEEE, Dec. 2011, pp.
419–426.

[39] J. Fu, X. Wang, Z. Wang, and M. Zukerman, “A restless bandit
model for energy-efficient job assignments in server farms,” Oct. 2023,
extended Version. [Online]. Available: https://arxiv.org/abs/2112.06275

[40] M. Pedram, “Energy-efficient datacenters,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 31, no. 10, pp. 1465–1484, 2012.

[41] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Trans. Mobile Comput., vol. 17, no. 2,
pp. 461–474, 2017.

[42] J. Wilkes, “More Google cluster data,” Google research blog,
Nov. 2011, accessed: Jan. 10, 2024. [Online]. Available: http:
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

[43] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2014-11-17 for version 2.1. Accessed: Jan.
10, 2024. [Online]. Available: https://github.com/google/cluster-data

[44] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, Dec. 1997.

[45] M. Harchol-Balter, Performance Modeling and Design of Computer
Systems: Queueing Theory in Action. Cambridge University Press,
2013.

[46] R. A. Giri and A. Vanchi, “Increasing data center efficiency
with server power measurements,” Document. Intel Information
Technology. IT@ Intel White Paper, 2010, accessed: Jan. 10,
2024. [Online]. Available: https://www.intel.co.za/content/dam/doc/
white-paper/intel-it-data-center-efficiency-server-power-paper.pdf

[47] T. Kaur and I. Chana, “Energy efficiency techniques in cloud computing:
A survey and taxonomy,” ACM Comput. Surv., vol. 48, no. 2, pp. 1–46,
2015.

[48] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical
systems. Springer Science & Business Media, 2012, translated by J.
Szücs.
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