
1

Music-Driven Choreography Based on Music
Feature Clusters and Dynamic Programming

Shuhong Lin, Moshe Zukerman, Life Fellow, IEEE, Hong Yan, Fellow, IEEE

Abstract—Generating choreography from music poses a sig-
nificant challenge. Conventional dance generation methods are
limited by only being able to match specific dance movements to
music with corresponding rhythms, restricting the utilization of
existing dance sequences. To address this limitation, we propose a
method that generates a label, based on a probability distribution
function derived from music features, that can be applied to
music segments of varying lengths. By using the Kullback-Leibler
divergence, we assess the similarity between music segments
based on these labels. To ensure adaptability to different musical
rhythms, we employ a cubic spline method to represent dance
movements. This approach allows us to control the speed of
a dance sequence by resampling it, enabling adaptation to
varying rhythms based on the tempo of newly input music.
To evaluate the effectiveness of our method, we compared the
dances generated by our approach with those generated by other
neural network-based and conventional methods. Quantitative
evaluations demonstrated that our method outperforms these
alternatives in terms of dance quality and fidelity.

Index Terms—Choreography, Music-driven Dance, Dynamic
Programming, Cubic Spline

I. INTRODUCTION

For centuries dancing has played a significant role in human
entertainment and culture as an artistic expression. Dancers on
a stage may present a harmonious visual beauty by swaying
their bodies according to the rhythm of the background music,
so that participants, both dancers and spectators, enjoy the
performance. Because of this feature, dancing is still popular
even when people enter a virtual world. However, it is costly
and challenging to create a virtual dance that looks natural
based on a given piece of music.

Producers of virtual reality and game applications that in-
volve virtual dancing often incur significant costs in employing
professional choreographers and hiring motion-capture equip-
ment. To achieve cost savings researchers have considered
the development of computer-based choreography by using
existing motion data as important [1]–[3]. The main challenge
arises from the relationship between music and human motion.
There have been several approaches to address this.

Neural network-based approaches are currently popular. The
encoder-decoder framework [4], which is used successfully in
cross-model learning, such as natural language processing and

The work described in this paper was supported by the Hong Kong
Innovation and Technology Commission (InnoHK CIMDA) and Research
Grants Council of Hong Kong (CityU 11204821) (Corresponding author:
Shuhong Lin.)

Shuhong Lin, Moshe Zukerman, and Hong Yan are with the Department of
Electrical Engineering, and Center for Intelligent Multidimensional Data Anal-
ysis, City University of Hong Kong, Kowloon, Hong Kong SAR, PRC (e-mail:
shuhonlin2-c@my.cityu.edu.hk; m.zu@cityu.edu.hk; h.yan@cityu.edu.hk).

time series prediction, has also been applied to choreography
generation [3]. In this method, the encoder projects the human
pose and music parameters into a latent vector space. The
decoder restores the vectors in the latent vector space to
the human pose parameters. Existing publications, e.g., [5]–
[7], have focused on finding a better network structure to
improve the time consistency of the generated dance music
and movement and the generation of human movement that
appears more real and natural. The former requires that the
generated dance and corresponding music can be synchronized
on the beat, and the latter requires that the generated human
posture can meet human dynamic constraints.

These approaches require a large amount of dance move-
ment data. Public dance datasets obtained from professional
dancers using motion capture equipment are highly accurate
but rare [8] because of the significant cost.

Currently, most data sets are based on posture estimation of
dance videos [9], [10], giving dance movement data that are
often noisy. Results obtained by estimating real 3D positions
from the 2D positions in the video will inevitably contain
larger errors than those obtained by motion capture equipment
[11]. These datasets often adopt different human skeletal
models, so researchers can choose only one dataset as the
training set of neural networks.

Unlike neural network-based approaches which suffer from
freezing the action, approaches based on artificially designed
features have better robustness. These approaches [1], [2]
establish a relationship between dance movement and music
segmentation. After building a music-motion database, a new
dance can be produced according to the similarity of the fea-
tures extracted from input music. Methods based on dynamic
programming [12] and motion graph [1], [13] can be applied
to organize candidate motions to avoid an exponential search
space.

In this paper, we propose a new dance generation method
based on dynamic programming and the similarity of musical
features. In the pre-processing phase, we use the dance’s
background music as the label of the dance movements to build
a database of dance segments. In the generation phase, the
same process is used to generate labels for dance background
music input by the user. Then candidate dance segments are
selected according to the similarity of the labels of the input
dance and those in the dance database. Finally, we organize
the candidate dance motions by dynamic programming and
generate transition motions between adjacent segments.

The key contributions of this paper are:
1) We generate a new music label based on the probability

distribution function using music features. This label can

2

be applied to music segments of different lengths, and by
using the Kullback-Leibler divergence (KL divergence),
we can determine the similarity of music segments based
on this label. The music similarity measurement we have
proposed can be applied to dance segments of varying
lengths. This distinguishes our approach from existing
methods for dance generation, as we are not constrained
by the duration of the music segments. Consequently, it
significantly broadens the range of dance segments that
can be selected, offering more possibilities to create new
dances.

2) To make the motion sequences adaptable to different
music rhythms, we employ cubic splines [14] to rep-
resent dance movements. This allows us to control the
speed of a dance sequence by resampling it, thereby
adapting to different rhythms based on the tempo of
newly input music.

3) We conducted a comparative analysis between our
method and other neural network-based and conven-
tional dance generation methods [2], [9], [10], [15]. This
quantitative evaluation demonstrated the superiority of
our method over these existing methods.

The remainder of this paper is organized as follows. Section
II reviews existing methods from related publications. In
Section III, we present the details of the new method to
generate dance based on music. Section IV contains extensive
quantitative results of its comparison against existing methods
and a discussion.

II. RELATED WORK

Existing methods for choreography generation can be di-
vided into two categories: (1) conventional methods based on
feature similarity, and (2) methods based on neural networks.
We provide a new method for the first category and compare
it with existing methods. Below, we review the relevant
publications under these two categories.

A. Conventional Methods Based on Feature Similarity

These follow a decomposition-combination process: (1)
decompose the complete dance in the dance database into
small segments, each of which consists of several frames; (2)
extract musical and motion features from each segment; (3)
select candidate segments, and combine them according to the
similarity of their features. After Kim et al. [16] proposed
a temporal correspondence between musical and kinematic
beats, the segmentation of music data based on musical
rhythm has been widely utilized in later music-driven motion
generation studies [5], [6], [12] because rhythm is a key factor
in how people perceive the speed of movement. Shiratori et al.
[1], [13] applied synchronization of music and motion intensity
to select candidate motion segments and utilize a motion graph
[17] to generate a new dance. Chu et al. [18] proposed a
new algorithm to extract the rhythm of music and motion
and applied it to background music replacement. Ofli et al.
[19] suggested a many-to-many relationship between dance
movements and musical data and treated musical measures
as the smallest compositional unit of music to divide the

entire dance into segments. To address the many-to-many
relationship between music and dance, two statistical models
were proposed. One learns a many-to-one mapping from music
to dance, while the other focuses on a one-to-many mapping
from music to dance. Fan et al. [12] utilized correlation
coefficients between musical and motion features as indicators
of the music-motion relationship, and introduced a two-way
dynamic programming procedure for simultaneous forward
and backward searching processes. Such an approach can be
used if both the initial pose and ending pose are known.
Lee et al. [2] directly used music features to detect the
boundary of the dance segments and measured the similarity of
dance segments to aid artificial selection. Their main pipeline
for dance generation is similar to our pipeline. They first
establish a dance database and extract a music feature as the
label of dance movement. The key difference between the
two methods is that our method can generate vibrant dances
automatically without any human intervention, while their
method requires human selection to organize dance segments,
as an aid for manual choreography. Specific methodological
differences between the two approaches are their use of the
average of music feature vectors within corresponding time
intervals to generate motion data labels and our incorporation
of the distribution function of music feature vectors within
the corresponding time intervals. This allows our algorithm
to consider finer details of dance features during the dance
generation process. For segment labeling, Lee et al. [2] directly
used the average over the frames within each segment so that
each music segment is represented by a single feature vector.

The method we propose first performs clustering on all
frames of the music in the database. Then, the distribution
function of the clusters in each segment is used as the label for
that segment. Based on our method, the data labels obtained
can preserve more temporal information.

Conventional methods based on feature similarity decom-
pose the entire dance into several segments and then reorganize
these segments to generate a new dance according to the input
music. Because dance movements directly come from ground-
truth data, the generated dance movements are realistic.

However, the entire dance is divided into segments accord-
ing to the rhythm which decides the length of the segment,
and these methods can not adjust the length of segments. As a
result, specific motion segments can only be synchronized with
music that has specific rhythms. This may adversely affect
efficiency when using the already limited dance motion data.

B. Methods Based on Neural Networks

A Recurrent Neural Network (RNN) predicts the next frame
according to its last output and its current hidden states, which
makes it popular for motion generation [10], [20], [21].

In the conventional RNN training phase, the RNN is re-
cursively given a sequence of ground truth motion data rather
than its own training output. This method increases the speed
of training but leads to error accumulation in the test phase
because the RNN is unaware of the ground-truth data in this
phase [21]. Zhou et al. [21] proposed an auto-conditioned
Recurrent Neural Network (acRNN) to utilize its own output

3

periodically as the following input and gradually increase the
proportion of its output to overcome the freezing of motion
caused by error accumulation. Huang et al. [10] followed Zhou
et al. [21] and used a dynamic auto-condition learning ap-
proach to alleviate error accumulation by the recurrent neural
network so that their neural network was able to generate a
long-term dance movement without freezing motion.

After Vaswani et al. [22] proposed a new neural network
model, named transformer, and achieved success in sequence-
to-sequence generation tasks in Natural Language Processing
(NLP), the transformer became a popular method in time series
prediction. It may also be applied to human motion prediction
and generation. Li et al. [9] proposed the largest public dance-
music paired dataset, AIST++. In existing studies on dance
generation [10], [23], the specific dance motion is usually
paired with unique music. It is also possible to match several
different dance motions with the same music in the dance
dataset, AIST++. Li et al. [9] proposed the Full Attention
Cross-Modal Transformer (FACT) which uses a short motion
seed and musical data to synthesize future dance motions so
that the network can learn the many-to-many relationships
between musical data and dance. FACT uses two transformers
to encode music features and human pose features separately
to two embedding vectors and then concatenates them as
the input of the cross-model transformer. To address motion
freezing, the cross-model transformer predicts several frames
in the future rather than just single frames. Zhang et al. [24]
first extract the musical rhythm and melody and use a musical
style classifier. Their network uses musical style, melody and
rhythm as control signals. They [25] proposed a new concept,
the dance melody line, as a control signal. The dance melody
line is extracted from dance motion directly and shared by
different dance motions. Li et al. [15] designed a 3D-pose
Vector Quantised-Variational AutoEncoder (VQ-VAE) to sim-
ulate a codebook, using elements in this codebook to present
any dance motion pieces. To present a wide range of dance
movements based on a limited dance data set, they trained
two 3D-pose VQ-VAEs, for the upper and the lower body,
separately. To address the one-to-many relationship between
music and dance, Sun et al. [26] proposed an adversarial
learning framework based on a generative adversarial network
(GAN).

The above studies usually generate the dance motion frame
by frame. The dance is regarded as a sequence of poses so
that the neural networks are trained to learn the relationships
between poses. However, a short dance combines hundreds of
poses. So this strategy makes it easier for errors to accumulate
and makes the training process of neural networks more time-
consuming. Ye et al. [7] considered the work process of
human choreographers who treat a dance as a combination
of choreographic action units (CAU) which are indivisible
clips of dance movements. The unchanged CAU allows neural
networks to ignore all the minor details of the whole dance and
use fewer steps to generate the dance. This strategy reduces
error accumulation and computational time. However, the
CAU is a more sophisticated concept and determining a CAU
is the most crucial step in such a method. Current methods
often collect CAUs designed by professional choreographers.

Another challenge of this method is to generate the transitions
between CAUs. Ye et al. [7] proposed a U-shape neural
network inspired by image inpainting [27] to inpaint the tran-
sition gap between adjacent CAUs. Lee et al. [23] proposed
a decomposition-to-composition framework consisting of a
Variational Autoencoder (VAE) and a Generative Adversarial
Network (GAN) to model CAUs and to learn how to organize
them. Li et al. [8] proposed a two-stage approach. The first
stage selects the keyframes and generates poses in between
them, and the second stage generates the motion curve with
a similar effect between two adjacent keyframes. Chen et al.
[6] designed an embedding module to capture music-dance
connections. Aristidou et al. [5] used the dance units and
considered the distribution of the motion motif to keep the
dance style consistent.

III. PROPOSED METHOD

In this section, we describe in detail the process of our dance
synthesis method. The entire process consists of two main
stages. The first stage is to establish a dance motion database
consisting of a sufficiently large number of dance segments
with their corresponding musical labels, and the second stage
is to synthesize a new dance according to the particular audio
signal input digital data provided by the user.

A. Dance Dataset

We used a dance dataset called AIST++ [9]. To the best of
our knowledge, AIST++ is the largest human dance motion
dataset. It contains 1,408 sequences of 3D human dance
motions paired with corresponding music data. Each frame of
the sequence is represented by a human skeleton which is a
popular representation of the human pose. It consists of bones
and joints. Each joint represents a key point of the human
body, and each bone represents a link between two different
joints (Fig. 2). There are two kinds of human skeletons in
AIST++: (1) Common Objects In Context (COCO) format
with 17 joints [28], and (2) Skinned Multi-Person Linear
Model (SMPL) format with 24 joints [29].

Li et al. [9] divided AIST++ into several non-overlapping
parts for cross-modal analysis between human motion and
music data. They chose 998 sequences from the dataset and
divided them into a training and a testing dataset. We only
used the AIST++ training dataset to establish the dance motion
database.

A dance motion sequence in AIST++ is a time series
of human poses and denoted as X = {x1, x2, ..., xT }.
Each human pose is represented by a vector xt =
(pt,0,qt,0,qt,1, · · · ,qt,23) which describes an SMPL skeleton
containing a root node and 23 joint nodes as shown in Fig.
2. The root node of the SMPL skeleton is represented by a
3-dimensional coordinate pt,0 ∈ R3 and a unit quaternion
qt,0 ∈ R4. The 3-dimensional coordinate and the unit quater-
nion represent the position of the skeleton and the global
rotation of the skeleton, respectively. The structure of the
SMPL skeleton and the correspondence between SMPL joint
names and indices are shown in Fig. 2. For each joint node,
we used a unit quaternion qt,j ∈ R4 to indicate its relative

4

Music Feature Extrac�on

Music and mo�on
from AIST++

Segmenta�on by musical
beats

Input music

Music Feature Extrac�on

Segmenta�on by musical
beats

Choose candidate mo�on by
label similarity

Generate the label for
segments

Generate dance from
candidate mo�on

Dance Database

Generate the label for
segments

Fig. 1: The overview of our method.

rotation with respect to its parent joint. To represent each
human pose in our motion sequences, we created a vector
by concatenating a 3-dimensional position vector and 24 4-
dimensional quaternions. This results in a vector with a total
dimensionality of 3 + 24× 4 = 99 for each human pose.

B. Dance Segmentation

Here we describe how we divide the entire dance sequence
into segments.

According to [16], there is a strong correlation between mu-
sical and kinematic beats along the time axis. We assume that
the original dance in the database is well synchronized with
the corresponding music, and dancers will start or terminate
actions at the time of musical beats. Thus, musical beats are
clues to detect the boundaries of a dance segment. As shown
in Fig. 3, we extracted the raw musical features from the raw
music signal and generated the same number of music feature
vectors as the number of poses. In Fig. 3, each rectangle
represents a music feature vector and the red blocks represent
music feature vectors corresponding to the musical beats. We
used these musical beats as boundaries to divide the entire
dance into several short segments. These dance segments have
an advantage over poses as units for choreography because the

0

6

3

9

1

4

7

10

2

5

8

11

12

15

13 16

18

20

22

1417

19

21

23 root

le� hip

le� knee

right hip

belly

spine

right knee

right ankle le� ankle

le� toesright toes

le� hand

le� wrist

le� elbow

le� shoulder

le� inshoulder

chest

head

neck

right shoulder

right elbow

right wrist

right hand

right inshoulder

Fig. 2: The structure of the SMPL skeleton and the correspon-
dence between SMPL joint names and indices.

…… ……

music clip
1

music clip
2

music clip
3

Music raw signal

Music feature extrac�on

Fig. 3: The feature vectors are extracted from audio signals and
synchronized with the dance motion. The red blocks indicate
the beats.

kinematic beats can always synchronize with the musical beats
within the same dance segment.

C. Music Features

Previous studies have used many musical features to analyze
musical structure, music generation, and choreography gen-
eration. We selected 20-dimensional Mel-frequency cepstral

5

Music feature Dimension Feature function
Onset Strength Envelope 1 The amplitude variations over time in an audio signal.
Mel-Frequency Cepstral Coefficients 20 Simulate the auditory characteristics of the human ear.
Chroma Energy Normalized 12 Quantify the distribution of musical pitch classes.
Peak of Onset Strength Envelope 1 The presence of peaks or prominent local maxima in a given spectrogram.

TABLE I: The music features we used.

coefficients (MFCC), 12-dimensional chroma, a 1-dimensional
envelope and a 1-dimensional one-hot peak as the raw music
features. The details are shown in Table I.

The selection of these features is based on their ability to
capture different aspects of music, including spectral content,
pitch information, dynamics, and specific frequency compo-
nents. By combining these features, a comprehensive repre-
sentation of each audio signal can be obtained. Algorithms for
tracking beats in audio signals have been well-studied. In our
implementation, we used the realization of Librosa [30] which
is a widely used library in audio analysis and processing.

D. Segment Label Synthesis

…… ……

music clip 1 music clip 2 music clip 3

0
1
2
3
4
5

a b c d
0
1
2
3
4
5

a b c d
0
1
2
3
4
5

a b c d

…… ……

music
clip 1

music
clip 2

music
clip 3

Musical feature cluster

Music clip label genera�on

a b a d b b d a a a b d d a b b b a c c a b c c c b d a a c

…… ……

music clip 1 music clip 2 music clip 3

Fig. 4: The music labels of dance segments based on musical
beats and the music feature clustering.

Existing publications usually use the musical and kinematic
features together as the label of the dance segments, e.g., [12],
[13], [19]. There are two representations for pose similarity
measures: the positions and rotations of joints. The problem
with the position of joints is how to keep spatial invariance
when Euclidean distance is used to measure the similarity of
postures. For example, the Euclidean distance between two
similar poses facing different directions may be significant.
The local rotation of joints is a better presentation than the
3D position if we want to keep the spatial invariance because

similar poses always have similar local rotations of joints,
even if they face different directions. However, Pavllo et al.
[31] pointed out that it is crucial to consider prediction errors
(caused by differences between the ground-truth poses and
the predicted poses) in different joints, and it is difficult to
determine the weight of each joint in the similarity measure.
For example, the same rotational difference has a more signif-
icant effect in spinal joints than in limb joints. To address this
issue, we used only music features to measure the similarity
between segments because the audio signal has less noise and
is more robust. In the AIST++ dataset [9], each dance genre
has several background music tracks and there exists a one-
to-many relationship between background music and dance
motion in the AIST++ dataset. [9]. Thus, the music features
are enough for the dance genre and motion selections.

Dance segments obtained after segmentation have different
lengths because the rhythms of the background music in
the AIST++ are different. Drawing on [32], we proposed a
music-feature-based label that can be used to measure the
similarity between music segments of varying lengths. As
shown in Fig. 4, we first extracted the raw music features
from the audio signal, and then principal component analysis
(PCA) was applied for dimensionality reduction. Next, we
used the K-means clustering algorithm to divide the music
feature vectors into clusters. In Fig. 4, we used different
letters as labels to represent the different clusters. To measure
the musical similarity of dance segments, we calculated the
discrete probability distribution of each segment and used
the average Kullback–Leibler (KL) divergence to measure the
similarity of the two music pieces. For two discrete probability
distributions Q and P , the distance between them is obtained
by

Dis(P,Q) =
1

2
(DKL (P∥Q) +DKL (Q∥P)) (1)

where DKL (P∥Q) is the KL divergence from Q to P :

DKL (P∥Q) =

K∑
x=1

P (x) log

(
P (x)

Q (x)

)
(2)

and P (x) and Q (x) are the discrete probability distribution
functions (PDFs) of the labels of the input music and the music
from the database (ground truth), respectively. K is the number
of clusters and is set by the user. This music-feature-based
label was used to analyze the structure of music. As shown
in Fig. 5, we used a piece of music in AIST++ to generate
the self-distance matrix. Both vertical and horizontal axes are
time indexes. Dark colors represent high similarity and light
colors represent low similarity. The pattern of diagonal lines
in the self-distance matrix represents repetitive parts of the
music data.

6

Fig. 5: A self-distance matrix corresponding to background
music called “mWA4” in the AIST++.

As shown in Fig. 5, the self-distance matrix of the sample
music can describe its structure.

E. Motion Features

We utilized the 3-dimensional position for segment connec-
tion and transition motion generation.

Since we chose the SMPL skeleton with 24 joints as our
human skeleton and the SMPL skeleton is described by joint
rotation, we need to obtain the 3D positions of all joints by
forward kinematics [33]. Because the length of the bones that
connect adjacent joints is assumed to be constant, the pose of
the human body is determined by the global position of the
root joint and the orientation of all joints.

The motion capture data in AIST++ comes from different
dancers with different body shapes. To facilitate the motion
analysis, we need to adjust the lengths of the skeletons for
different dancers so that the same bones on different dancers
have the same length. we calculated the average lengths
of the bones from different dancers and then adjusted the
bone lengths to their average lengths. After we obtained
the information on the lengths of all of the bones and the
position of the root joint determining the global position of the
skeleton, we calculated the positions of the remaining 23 joints
using forward kinematics, which employs the rotational data
of the joints relative to each other to determine their respective
positions.

Because a person may have similar poses in different
directions, we used the joints’ relative position with respect
to the root joint and applied the method of [34] to connect
the adjacent motion segments to obtain the total 3D-position
distance, denoted Dpose, between two human poses, pa and
pb, as:

Dpose (pa,pb) = ∥pa −Tθ,xo,zopb∥ (3)

where

θ =arctan

(∑
j wj (xa,jzb,j − xb,jza,j)− (x̄az̄b − x̄bz̄a)∑
j wj (xa,ixb,j + zb,jza,j)− (x̄x̄b + z̄bz̄a)

)
(4)

xo =x̄a − x̄b cos θ − z̄b sin θ (5)
zo =z̄a + x̄b sin θ − z̄b cos θ (6)

where x̄a =
∑

j wjxa,j and
∑

j wj = 1. The linear trans-
formation Tθ,xo,zo rotates a human pose pb about the vertical
axis by θ and translates it by (xo, 0, zo) so that the initial pose
of the next motion segment can be adjusted to a position and
orientation as similar as possible to the current pose.

The 3D positions of all joints are not enough for character
animation generation. For instance, the 3D position alone
cannot fully capture the twisting motion of a bone. Thus, the
final result of the generated dance by our method is described
by the global position of the root joint and the orientation of
all joints.

F. Cubic Spline

To make the same dance segment fit music with different
rhythms, we transferred the discrete pose sequence to a
continuous motion curve. Then we can modify the length of
the motion segments and the movement speed by resampling
to address the insufficiency of the limited data. The motion
features contain the local rotation of 24 joints and their global
position. Accordingly, we obtained 25 cubic splines as motion
curves for each segment. For the trajectory of the root joint,
we used a cubic Hermite spline. On a given time interval,
the position of the root joint p(t) can be expressed by a
polynomial, as follows.

p(t) =h00(t)p0 + h10(t)(x1 − x0)m0 + h10(t)p1

+ h11(t)(x1 − x0)m1

(7)

where t = x−x0

x1−x0
. The m0 and m1 are the tangents of p(t) at

its endpoints p(x0) and p(x1), respectively.

h00(t) =2t3 − 3t2 + 1 (8)

h01(t) =t3 − 2t2 + t (9)

h10(t) =− 2t3 + 3t2 (10)

h11(t) =t3 − t2. (11)

One advantage of the cubic Hermite spline is that it can keep
the velocity and the position in the keyframes and produce
smooth curves. For the rotation, we used the quaternion cubic
spline which can produce a smooth curve between two poses
and keep the angular velocity of the endpoints. The main idea
of the quaternion Cubic Spline is based on the Cubic Spline,
and both are widely used in animation.

The cubic spline was also applied in motion transition. After
we determined two adjacent dance segments, we used the last
five frames from the last segment and the first five frames from
the next segment to generate a three-frame transition motion
between the two segments.

7

G. New Dance Generation

When the user inputs new music data, we followed the
same steps to divide it into segments and used the same
parameters for the PCA and K-means clustering to generate
labels for these segments, as shown in Fig. 4. To speed up the
generation, we compared the probability distribution function
of the complete input music data with that of the music data
(ground truth) in the training dataset and chose the n-closest
music data, where n is set by the user. We only selected the
segments from these music data as the candidate segments so
that we did not need to search for candidate segments among
the entire training dataset.

Having selected the n-closest music data, we applied dy-
namic programming to select candidate dance segments by
minimizing a cost function that contains two terms: the music
distance and the pose distance. The optimization problem is
formulated as follows.

min

(
N∑
i=2

[
Dpose

(
pend
i−1,p

start
i

)
+ λ ·Dis (P0,i, Q0,i)

]
+Dpose

(
pinitial,pstart

1

))
,

(12)

where pinitial is the initial pose, and pstrart
i and pend

i are the
first and last poses of ith segment, respectively. The variable
P0,i is the music label’s PDF of the first i selected segments,
and Q0,i is the PDF of the first i music segments of the input
music. When we determined the i-th candidate segment, we
did not use the pairwise KL divergence between the PDFs of
the i-th input music clips and the i-th candidate segment from
the database. Instead, we used the PDFs on the time interval
from the first beat to the i-th beat as shown in Fig. 6.

The latter approach is more appropriate in our case because
the former approach will make the dynamic programming
process focus on matching the music features of the current
segment selection, while the latter considers matching the
music features of the entire dance sequence.

…… ……

music clip 1 music clip 2 music clip 3

b0 b1 b2 b3

Q0,1

Q0,2

a b a d b b d a a a b d d a b b b a c c a b c c c b d a a c

Q0,3

Fig. 6: Derivation of the probability distribution functions.

In Fig. 6, we illustrate how we derived the PDFs for the
Dynamic Programming procedures. The symbol Q0,i is the
PDF of the first i music segments of the input music. The
symbols b0, b1, etc. represent the locations of the music beats.
The clusters corresponding to the music features of each frame

are represented by different lowercase letters. Because we use
the music beats as the boundaries of the segment, the locations
of these beats are important to calculate the PDF as it is based
on the music features from the start of the dance up to the
current beats, rather than just the music features between the
current and previous beats.

We applied Equation (3) to obtain the difference, Dpose,
between the final pose of the last segment and the first pose
of the next segment, instead of the Euclidean distance of the
coordinates of the corresponding joints, because the Euclidean
distance may include a difference in a position that is not
related to the change of pose. For example, if there is no
change in the pose, i.e., Dpose = 0, there can be a change in
position, so the Euclidean distance will not be zero.

IV. EXPERIMENTS

We compared our method to three neural network-based
state-of-the-art methods: DanceRevolution [10], FACT [9]
and Bailando [15]. DanceRevolution [10] uses its own dance
dataset. Thus, we retrained DanceRevolution [35] on the
AIST++ dataset to achieve a fair comparison with our method.
We used the same parameters for DanceRevolution as used by
the authors [10]. Li et al. [9] provided the AIST++ dataset
and proposed FACT which is a transformer-based method.
Bailando [15] proposed by Li et al. is the latest work on music-
driven dance generation based on the AIST++ dataset. For
FACT [9] and Bailando [15], we downloaded the pre-trained
model from the authors’ GitHub pages [36], [37].

A. Implementation Details

The AIST++ dataset provides 992 pieces of dance paired
with music. There are 952 pieces of dance motion for training,
20 pieces for testing and 20 pieces for evaluation. Including the
data in the test group, Li et al. [9] also used randomly paired
music and motion seeds. Because users may use randomly
paired music and dance motions as input in practice, the
test dataset we used also contains the randomly paired music
and dance motions. We used the same dance movements and
music combinations that Li et al. used. FACT uses a 10-
second motion seed from the ground-truth dance motion so
that they can generate different dances based on the same
music and different motion seeds. Similarly, we used the first
frame from the ground-truth dance motion as the initial pose
of our method. The method described in Lee et al.’s paper
[2] aims to assist mutual choreography. In their study, they
employed two methods: random generation (selecting dance
movements recommended according to music features by their
algorithm) and manual choreography based on the algorithm’s
recommendations. In our implementation of the method of
[2], we replicated exactly the first method based on random
selection as described in [2], but for the implementation of
the second method of [2], we conducted a manual selection
of dance movements selection as in [2].

DanceRevolution proposed by Huang et al. [10] uses a
skeleton with 25 joints, and the human poses are represented
by the position of the joints. For a fair comparison, we adjusted
the number of output action parameters and retrained the

8

model using the AIST++ training dataset rather than using
the pre-trained model provided by the authors. The dances in
AIST++ have varying lengths, while all the dance clips in the
DanceRevolution dataset are one minute long. Thus, we take
10-second overlapping clips every two seconds to make all the
training dance clips have equal lengths to facilitate network
training. DanceRevolution always begins each dance with the
same initial pose, regardless of the specific dance performed.
Another difference between our method and DanceRevolution
is that the music from the DanceRevolution dataset contains
lyrics while ours does not. The hyperparameters used in our
neural network training were the same as those in the original
paper [10].

B. Evaluation Metrics

We measured the performance of our method from three
perspectives by five metrics.

1) Motion quality: The Fréchet Inception Distances (FID)
[38] have been popular for measuring the similarity between
ground-truth and synthetic images using generative models
(e.g., a GAN). In this paper, as in [8], [9], we used FID to
assess the similarity between features of the generated dance
and all ground-truth dances in AIST++. The lower the FID,
the more similar the synthetic dance is to the ground-truth
dance.

Below, we provide the details of the FID calculation to
measure the distance between two features extracted from
two datasets. These details are similar to an equivalent FID
calculation presented in [38], where the FID was introduced
as an evaluation metric for synthetic data, and it is included
here for completeness.

FID (Sgt, Sgen) =∥µgt − µgen∥22
+ tr

(
Σgt +Σgen − 2 (ΣgtΣgen)

1
2

) (13)

where Sgt, Sgen are the sets of features extracted from the
ground-truth and generated datasets and have mean vectors
µgt, µgen and covariance matrices Σgt, Σgen, respectively. The
trace of a square matrix is denoted by tr(·). The first term of
Equation (13) is the squared Euclidean distance between the
two mean vectors, µgt, µgen, and the second term is the trace
of the following square matrix.[

Σgt +Σgen − 2 (ΣgtΣgen)
1
2

]
.

Accordingly, the FID will be different depending on the
features used. In this paper, we calculated two kinds of FID,
denoted FIDk and FIDg , that were obtained based on the
distributions of the kinetic [39] and geometric features [40],
respectively. The kinetic features represent the velocity of the
motion, and the geometric features represent the geometric
relative position between different joints. Both FIDs, FIDk

and FIDg , are widely used in research publications on human
motion generation [8], [9], [15].

2) Motion diversity: To measure the diversity of the gen-
erated motion, we calculated the average Euclidean distances
for kinetic and geometric features as Distk and Distg , re-
spectively. For each feature type, kinetic and geometric, we

calculated the Euclidean distances between any two features
for the generated dance motions and then averaged them to
obtain our evaluation of motion diversity.

3) Music-dance alignment: As in previous studies, we
calculated the average temporal distance between each music
beat and its closest kinematic beat as follows.

1

|Bm|
∑

tm∈Bm

exp

(
−
mintd∈Bd

∥∥td − tm
∥∥2

2σ2

)
(14)

where Bm and Bd are the sets of the times of music and
kinematic beats, respectively. The parameter σ was set to be
3.

C. Results

The quantitative results on the AIST++ test set are shown
in Table II. We compared our method with fourstate-of-the-art
methods: the method proposed by Lee et al. [2], DanceRevo-
lution [10], FACT [9] and Bailando [15]. Bailando, proposed
by Li et al. [15], is the latest work on music-driven dance
generation to our knowledge.

According to the comparison, our proposed approach con-
sistently outperformed all other existing approaches in the vast
majority of evaluations.

Our method performed significantly better than Lee et
al.’s method [2] in terms of the similarity of kinetic and
geometric features between the ground-truth and generated
dances. The random selection shows a weak ability in dance
generation because their method simply replicates the dance
clips from the dance dataset. The human manual selection
significantly improves the scores in all evaluation metrics,
but Lee et al.’s method still suffers the same problems as
manual selection. The lower score in music-dance alignment
indicates our segmentation algorithm performs better than
segmentation based on the novelty function used by Lee et
al. Specifically, our method improved by 20.33 (58.93%)
over the best-compared baseline model, FACT [9], on FIDk

that evaluates the similarity of the kinetic features between
a ground-truth and generated dance by using kinetic features
related to the velocity of all joints to calculate the similarity.
Directly using the dance movements from the dataset does
not yield a lower FIDk score. The method proposed by Lee
et al. also uses dance clips from the dataset to organize a
new dance. Through experiments, We still find a high FIDk

score when manually selecting appropriate dance segments.
Hence, replicating dance segments from the dataset alone
does not yield satisfactory results. Previous studies [1], [9],
[23] have shown a significant relationship between musical
rhythm and joint velocity in dance. In our approach, we
utilize cubic splines to regulate the speed of joint movements
based on the background music’s rhythm rather than just a
replication from the dataset. For FIDg , we achieved a 1.09
(9.71%) improvement over Bailando which achieved the best
performance among the three baseline methods. Lower FIDk

and FIDg means the difference in the statistics of the kinetic
and geometric features between the generated motion and the
ground-truth motion is smaller. Thus, the generated motion

9

Fig. 7: Examples of dance motions generated by our method. Each row represents a different dance motion.

FIDk ↓ FIDg ↓ Distk ↑ Distg ↑ BeatAlign ↑
AIST++ (Ground Truth) 10.0212 7.3223 0.283
Lee et al. (random) [2] 497.3034 32.2086 22.8797 3.6424 0.202
Lee et al. (manual) [2] 68.1100 22.7618 11.9332 5.1348 0.215
DanceRevolution [10] 85.1973 44.9465 1.7390 4.2113 0.203
FACT [9] 34.4971 16.4088 7.9224 6.1689 0.217
Bailando [15] 62.3286 11.2768 9.5037 6.5164 0.194
Ours 14.1669 10.1839 9.8634 5.6391 0.263

TABLE II: Quantitative results on the AIST++ test set with random pairs of music and initial pose; ↑ means the larger score
is better while ↓ means the lower score is better; bold values represent the best results for each column.

sequences of our method have a more similar distribution to
the ground-truth motion sequences in AIST++.

In terms of motion diversity, we obtained a better result
for Distk (9.86 versus 9.50), while Bailando and FACT have
better performance than our method in Distg (5.64 versus
6.52). However, Bailando has a relatively high value for FIDk

and shows a lower score for music-dance alignment. The
diversity of motion we generate is better than the baseline
in the kinetic feature space. In the geometric feature space,
the neural network-based approaches show better performance.
The beat-alignment score in Table II shows better performance
by our method than the baseline methods in synchronization
between musical and kinematic beats. The third row is a kick
action from the dance.

In Fig. 7, we present twelve frames to demonstrate our
generated dance motion. Each row of four frames represents

a motion from a generated dance. The animation comprises
60 frames per second and the presented frames were extracted
every 10 frames and are separated by 1

6 second time-periods.
Different bones are distinguished by different colors. The first
and second rows show two dance motions in a standing and a
sitting state, respectively, while the motion in the third row is
a kick, demonstrating our method can generate complex dance
motions.

In Fig. 8, we compared a dance achieved by our method
against dances generated by the following state-of-the-art
methods: the method of Lee et al. [2], DanceRevolution [10],
FACT [9] and Bailando [15]. The first row displays the ground-
truth dance movement from the test dataset. Then, each row
displays a short sequence of dance generated by a specific
method, with each column aligned in time. The time interval
between adjacent frames remains constant. Based on Fig. 8,

10

Ours

DanceRevolution

Bailando

Lee et al.

FACT

Time

Ground Truth

Fig. 8: Examples of dance motions generated by our method and other state-of-the-art methods.

we observe that we have achieved a significantly better perfor-
mance relative to the conventional method proposed by Lee et
al. and that FACT has achieved the best performance among
the three neural network-based methods. Our method performs
better than FACT in some of the metrics. For instance, in the
third column, the generated pose of the left forearm using our
method exhibits a closer resemblance to the real data than the
pose generated by FACT.

To further compare to Bailando, we present the results of
two other experiments. The first experiment was to generate
a 20-second output, while the other one aimed to generate an
entire dance. The results of the generated dance based on the
first 20-second output are shown in Table III, and those on
the entire dance are shown in Table IV. In Tables III and IV,
we observe that our method performed significantly better than

FIDk ↓ FIDg ↓ Distk ↑ Distg ↑
Bailando* 28.1616 9.6258 7.8373 6.3446
Ours* 12.1742 11.0592 8.7406 5.8964

Bailando 27.7354 9.5659 7.5485 6.1969
Ours 11.7145 8.3338 8.3129 5.8381

TABLE III: Comparison based on the first 20-seconds of
generated dance. The symbol * indicates that the test dataset
does not contain random pairs of music and initial poses, and
↑ indicates that larger is better while ↓ indicates that lower is
better.

Bailando when the test dataset contains random pairs of music
and initial poses. When the test dataset does not contain the
random pairs of background music and initial poses, Bailando

11

FIDk ↓ FIDg ↓ Distk ↑ Distg ↑
Bailando* 64.8358 11.2058 9.8364 6.6346
Ours* 18.5848 12.6156 9.7680 5.4900

Bailando 62.3286 11.2768 9.5037 6.5164
Ours 14.1669 10.1839 9.8634 5.6391

TABLE IV: Comparison based on the complete generated
dance. The symbols *, ↑ and ↓ have the same meaning as
in Table III.

has a slightly better performance in about half of the metrics
such as FIDg . The clear advantage of our method is in the
case where the test dataset contains random pairs of music
and initial poses. This demonstrates that our method is more
robust, which is especially important because users may use
their background music and initial poses as input, and we
cannot assume that the pair of background music and initial
poses they use is the same as in AIST++.

There is a one-to-many relationship between background
music and dance movement in AIST++. Bailando may not
have considered the impact of this relationship, which may
be the reason for their lower score observed in Tables III and
IV for the test dataset with random pairs of music and initial
pose.

The value of FIDk becomes relatively high in long-term
dance generation as shown in Table IV, suggesting difficulty in
capturing the rhythm of a longer dance. Bailando has achieved
a better result for the short-term dance generation than the
long-term dance generation. Our method can perform better
when the user inputs a random pair of music and initial pose
because our method considers the one-to-many relationship
between background music and dance movement in AIST++.

FIDk ↓ FIDg ↓ Distk ↑ Distg ↑
Our method 14.1669 10.1839 9.8634 5.6391
Without chroma 17.0012 12.1171 6.8134 5.1132
Without MFCCs 15.9165 14.6387 8.2509 5.3442

TABLE V: Ablation study of our method on musical features.
The ↑ and ↓ have the same meaning as in Table III.

We conducted an ablation study to explore the influence
of musical feature selection. In addition to using the musical
features given in Table I, a combination without chroma, and a
combination without MFCCs were tested as shown in Table V.
The performance is best if both MFCCs and chroma are used
as input musical features. All four evaluation metrics indicate
a significant performance decline without either MFCCs or
chroma. The MFCCs have a greater impact on FIDk, Disk,
and Disg , while chroma has a greater impact on FIDg .

V. CONCLUSIONS

We have proposed a new dance generation method based on
dynamic programming and the similarity of music features.
The new method generates labels of corresponding dance
segments according to the clustering of music features. To
compare the similarity between dance segments with varying
time lengths, we use KL divergence between the discrete

probability distribution functions of music features that can
indicate the structure of the background music.

We have used a cubic spline to adjust the length of the dance
segments to accommodate different musical rhythms so that
the same clip of background music can be matched with more
dance moves. Because there is a one-to-many relationship
between background music and dance movements, we used
the background music and initial pose of the dance as the
input of our method, allowing it to generate different dance
motions based on the same background music.

We have compared the dances generated by our method with
those of neural network-based methods, and the quantitative
evaluation shows superior performance by our method for
long-term dance generation.

REFERENCES

[1] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Dancing-to-music character
animation,” Computer Graphics Forum, vol. 25, no. 3, pp. 449–458,
Dec. 2006.

[2] M. Lee, K. Lee, and J. Park, “Music similarity-based approach to
generating dance motion sequence,” Multimedia Tools Appl., vol. 62,
no. 3, pp. 895–912, Feb. 2013.

[3] J. Lee, S. Kim, and K. Lee, “Listen to dance: Music-driven chore-
ography generation using autoregressive encoder-decoder network,”
arXiv:1811.00818, 2018.

[4] L. Bryan and Z. Stefan, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, vol. 379, no. 2194, Feb. 2021,
Article no. 20200209.

[5] A. Aristidou, A. Yiannakidis, K. Aberman, D. Cohen-Or, A. Shamir,
and Y. Chrysanthou, “Rhythm is a dancer: Music-driven motion syn-
thesis with global structure,” IEEE Transactions on Visualization and
Computer Graphics, vol. 29, no. 8, pp. 3519–3534, Aug. 2023.

[6] K. Chen, Z. Tan, J. Lei, S.-H. Zhang, Y.-C. Guo, W. Zhang, and
S.-M. Hu, “Choreomaster: Choreography-oriented music-driven dance
synthesis,” ACM Trans. Graph., vol. 40, no. 4, pp. 1–13, Jul. 2021.

[7] Z. Ye, H. Wu, J. Jia, Y. Bu, W. Chen, F. Meng, and Y. Wang, “Choreonet:
Towards music to dance synthesis with choreographic action unit,” in
Proceedings of the 28th ACM International Conference on Multimedia,
ser. MM ’20. New York, NY, USA: Association for Computing
Machinery, Oct. 2020, pp. 744–752.

[8] B. Li, Y. Zhao, S. Zhelun, and L. Sheng, “Danceformer: Music con-
ditioned 3D dance generation with parametric motion transformer,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 2, Jun. 2022, pp. 1272–1279.

[9] R. Li, S. Yang, D. A. Ross, and A. Kanazawa, “AI choreographer:
Music conditioned 3D dance generation with AIST++,” in Proceedings
of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV). Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2021,
pp. 13 381–13 392.

[10] R. Huang, H. Hu, W. Wu, K. Sawada, M. Zhang, and D. Jiang, “Dance
revolution: Long-term dance generation with music via curriculum
learning,” in Proceedings of the International Conference on Learning
Representations, Vienna, Austria, May 2021.

[11] L. Needham, M. Evans, D. P. Cosker, L. Wade, P. M. McGuigan, J. L.
Bilzon, and S. L. Colyer, “The accuracy of several pose estimation
methods for 3D joint centre localisation,” Scientific Reports, vol. 11,
pp. 20 673–20 683, Dec. 2021, Article no. 20673.

[12] R. Fan, S. Xu, and W. Geng, “Example-based automatic music-driven
conventional dance motion synthesis,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 18, no. 3, pp. 501–515, Mar. 2012.

[13] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Synthesizing dance per-
formance using musical and motion features,” in Proceedings of the
2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., Orlando, FL, USA, 2006, pp. 3654–3659.

[14] D. H. U. Kochanek and R. H. Bartels, “Interpolating splines with
local tension, continuity, and bias control,” in Proceedings of the
11th Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’84. New York, NY, USA: Association
for Computing Machinery, 1984, pp. 33–41. [Online]. Available:
https://doi.org/10.1145/800031.808575

12

[15] S. Li, W. Yu, T. Gu, C. Lin, Q. Wang, C. Qian, C. C. Loy, and Z. Liu,
“Bailando: 3D dance generation via actor-critic GPT with choreographic
memory,” in Proceedings of the 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
Jun. 2022, pp. 11 040–11 049.

[16] T.-h. Kim, S. I. Park, and S. Y. Shin, “Rhythmic-motion synthesis based
on motion-beat analysis,” ACM Trans. Graph., vol. 22, no. 3, pp. 392–
401, Jul. 2003.

[17] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” in Proceedings
of the ACM SIGGRAPH 2008 Classes, ser. SIGGRAPH ’08. New York,
NY, USA: Association for Computing Machinery, Aug. 2008, pp. 1–10.

[18] W.-T. Chu and S.-Y. Tsai, “Rhythm of motion extraction and rhythm-
based cross-media alignment for dance videos,” IEEE Transactions on
Multimedia, vol. 14, no. 1, pp. 129–141, Oct 2012.

[19] F. Ofli, E. Erzin, Y. Yemez, and A. M. Tekalp, “Learn2dance: Learning
statistical music-to-dance mappings for choreography synthesis,” IEEE
Transactions on Multimedia, vol. 14, no. 3, pp. 747–759, Jun. 2012.

[20] Y. Yan, B. Ni, W. Zhang, J. Xu, and X. Yang, “Structure-constrained
motion sequence generation,” IEEE Transactions on Multimedia, vol. 21,
no. 7, pp. 1799–1812, Jul. 2019.

[21] Y. Zhou, Z. Li, S. Xiao, C. He, Z. Huang, and H. Li, “Auto-conditioned
recurrent networks for extended complex human motion synthesis,” in
Proceedings of the International Conference on Learning Representa-
tions, Vancouver, BC, Canada, Feb. 2018.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
2017, pp. 6000–6010.

[23] H.-Y. Lee, X. Yang, M.-Y. Liu, T.-C. Wang, Y.-D. Lu, M.-H. Yang,
and J. Kautz, “Dancing to music,” in Proceedings of the Advances
in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.
Vancouver, USA: Curran Associates, Inc., 2019, pp. 3581–3591.

[24] W. Zhuang, C. Wang, J. Chai, Y. Wang, M. Shao, and S. Xia, “Mu-
sic2dance: Dancenet for music-driven dance generation,” ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMM), vol. 18, no. 2, pp. 1–21, Feb. 2022.

[25] W. Zhuang, Y. Wang, J. Robinson, C. Wang, M. Shao, Y. Fu, and
S. Xia, “Towards 3D dance motion synthesis and control,” arXiv preprint
arXiv:2006.05743, 2020.

[26] G. Sun, Y. Wong, Z. Cheng, M. S. Kankanhalli, W. Geng, and X. Li,
“Deepdance: Music-to-dance motion choreography with adversarial
learning,” IEEE Transactions on Multimedia, vol. 23, pp. 497–509, Mar.
2021.

[27] A. Hernandez, J. Gall, and F. Moreno-Noguer, “Human motion predic-
tion via spatio-temporal inpainting,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Los Alamitos,
CA, USA, Oct. 2019, pp. 7133–7142.

[28] M. R. Ronchi and P. Perona, “Benchmarking and error diagnosis in
multi-instance pose estimation,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, Venice, Italy, 2017, pp. 369–378.

[29] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“SMPL: A skinned multi-person linear model,” ACM Trans. Graph.,
vol. 34, no. 6, pp. 1–16, Nov. 2015.

[30] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in Python,” in
Proceedings of the 14th Python in science conference, vol. 8, Austin,
Texas, USA, 2015, pp. 18–25.

[31] D. Pavllo, D. Grangier, and M. Auli, “Quaternet: A quaternion-based
recurrent model for human motion,” in Proceedings of British Machine
Vision Conference, Newcastle, UK, 2018, pp. 1–14.

[32] P. Beaudoin, S. Coros, M. van de Panne, and P. Poulin, “Motion-motif
graphs,” in Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’08. Goslar, DEU:
Eurographics Association, 2008, pp. 117–126.

[33] S. Kucuk and Z. Bingul, Robot kinematics: Forward and inverse
kinematics. INTECH Open Access Publisher London, UK, 2006.

[34] L. Kovar and M. Gleicher, “Flexible automatic motion blending
with registration curves,” in Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, ser. SCA
’03. Goslar, DEU: Eurographics Association, 2003, pp. 214–224.

[35] R. Huang, H. Hu, W. Wu, K. Sawada, M. Zhang, and D. Jiang,
“Music-conditioned 2D dance choreography,” GitHub, [Accessed: July
19, 2021]. [Online]. Available: https://stonyhu.github.io/dancerev/

[36] R. Li, S. Yang, D. A. Ross, and A. Kanazawa, “AI choreographer:
Music conditioned 3D dance generation with AIST++,” GitHub,
[Accessed: April 18, 2023]. [Online]. Available: https://github.com/
google-research/mint

[37] L. Siyao, W. Yu, T. Gu, C. Lin, Q. Wang, C. Qian, C. C. Loy,
and Z. Liu, “Bailando,” GitHub, [Accessed: April 18, 2022]. [Online].
Available: https://github.com/lisiyao21/Bailando

[38] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, pp. 6629–6640.

[39] K. Onuma, C. Faloutsos, and J. K. Hodgins, “FMDistance: A fast and
effective distance function for motion capture data,” in Proceedings of
the Eurographics (Short Papers), Crete, Greece, Aug. 2008, pp. 83–86.

[40] M. Müller, T. Röder, and M. Clausen, “Efficient content-based retrieval
of motion capture data,” in Proceedings of the ACM SIGGRAPH 2005
Papers, ser. SIGGRAPH ’05. New York, NY, USA: Association for
Computing Machinery, Jul. 2005, pp. 677–685.

Shuhong Lin received his bachelor’s degree in
automation from the Nanjing University of Science
and Technology and master’s degree in electrical
information engineering from the City University
of Hong Kong. He is currently pursuing his Ph.D.
degree with the Department of Electrical Engineer-
ing, City University of Hong Kong, Hong Kong.
His research interests include computer graphics,
machine learning and deep learning.

Moshe Zukerman (M’87–SM’91–F’07–LF’20) re-
ceived the B.Sc. degree in industrial engineering and
management, an M.Sc. degree in operations research
from the Technion – Israel Institute of Technology,
Haifa, Israel, and a Ph.D. degree in engineering
from University of California, Los Angeles, in 1985.
He was an independent consultant with the IRI
Corporation and a Postdoctoral Fellow with the Uni-
versity of California, Los Angeles, in 1985– 1986.
During 1986–1997, he was with Telstra Research
Laboratories (TRL), first as a Research Engineer

and, during 1988–1997, as a Project Leader. He also taught and supervised
graduate students at Monash University in 1990–2001. During 1997-2008, he
was with The University of Melbourne, Victoria, Australia. Since December
2008 he has been with the Electronic (now Electrical) Engineering Department
of City University of Hong Kong (CityU) as a Chair Professor of Information
Engineering and a team leader. Between 2020 - 2022, he also served as the
Acting Chief Information Officer of CityU. He has over 300 publications in
scientific journals and conference proceedings.

Hong Yan received his PhD degree from Yale Uni-
versity. He was Professor of Imaging Science at the
University of Sydney and currently is Wong Chun
Hong Professor of Data Engineering and Chair Pro-
fessor of Computer Engineering at City University
of Hong Kong. Professor Yan’s research interests
include image processing, pattern recognition, and
bioinformatics. He has over 600 journal and confer-
ence publications in these areas. Professor Yan is an
IEEE Fellow and IAPR Fellow. He received the 2016
Norbert Wiener Award from the IEEE SMC Society

for contributions to image and biomolecular pattern recognition techniques.
He is a member of the European Academy of Sciences and Arts and a Fellow
of US National Academy of Inventors.

