
International Journal of Control, Automation, and Systems (2014) 12(2):221-230 
DOI 10.1007/s12555-014-9001-2 

 

ISSN:1598-6446  eISSN:2005-4092
http://www.springer.com/12555

Invited Paper 

 

Pinning Control and Synchronization on Complex Dynamical Networks 

 

Guanrong Chen 

 

Abstract: This article offers a survey of the recent research advances in pinning control and pinning 

synchronization on complex dynamical networks. The emphasis is on research ideas and theoretical 

developments. Some technical details, if deemed necessary for clarity, will be outlined as well. 

 

Keywords: Complex network, controllability, pinning control, synchronizability, synchronization. 

 

1. INTRODUCTION 

 

The study of modern network science can be traced 

back to 1736, when Euler solved the interesting 

Königsberg seven bridge problem thereby laying down 

the foundation of graph theory [1]. A unified framework 

for in-depth studying the subject is the random graph 

theory, established by Erdös-Rényi in the late 1950s [2]. 

More recently, Watts-Strogatz described their small-

world network model in Nature in 1998 [3], and 

Barabási-Albert formulated their scale-free network 

model in Science in 1999 [4], which together had marked 

a new milestone in the network science development, 

stimulating a great deal of interests and efforts in 

pursuing networks theory and its applications. All this is 

particularly significant in the present big-data era. In fact, 

network science and engineering has become a self-

contained and standalone research paradigm in the realm 

of science and technology today. 

Control theory, on the other hand, is a relatively well-

established subject on systems science and engineering, 

with a rapid development since the 1960s under the 

unified state-space framework attributed to Kalman (see, 

e.g., [5]). Controllability, in particular, is the core notion 

of the whole theory because it determines if a system is 

controllable and, if not, under what conditions one can 

make it controllable. It has a dual concept, the observ-

ability, and a core component of optimal control [5], as 

well as many other important relevant issues such as 

stability and synchronization. 

Network science and control theory are gradually 

merged through their individual and interactive develop-

ments. Today, control theory concerns more and more 

with controlling networks (e.g., power grids, robot teams, 

traffic networks) and networked control namely exe-

cuting control tasks through wired and wireless networks 

(e.g., communication networks, ethernets, sensor net-

works). Meanwhile, more and more large-scale networks 

are embedded with various controllers. However, 

classical control theory typically focuses on control 

problems and methods for a single albeit higher-

dimensional dynamical system, paying little attention to 

directed and irregularly-connected networks of many of 

such dynamical systems. Although a dynamical system 

as the underlying platform for control can be very 

complex (higher-dimensional, stochastic and nonlinear), 

it was not being investigated in a networking framework, 

especially not emphasizing on its internal topological 

connectivity and directionality. This was due mainly to 

historical especially technical reasons, because half a 

century ago there were no technical supports and 

demands from things like today’s Internet, wireless com-

munication networks, power grids, global transportation 

systems, biological gene regulation networks, and so on; 

and there were no facilities and resources like today’s 

supercomputers, huge databases, GPS services and cloud 

computing environments. As a result, there were very 

few research activities and achievements in control 

theory formulated in the complex dynamical network 

setting in the past until very recently. 

The current rapid development of network science and 

engineering has created a corpus of new opportunities as 

well as challenges to classical control systems theory. 

Usually, a dynamical network is considered complex if it 

is large-sized (with many nodes and edges), higher-

dimensional (every node is a higher-dimensional dynam-

ical system) and connected in an indefinite or irregular 

manner (such as random, small-world or scale-free 

structures), especially with nonlinearity in a time-varying 

(growing, evolving, impulsive, time-delayed) form, and 

even in multiple spatiotemporal scales. For such a 

complex network of nonlinear dynamical systems, it is 

obviously expensive and practically impossible to 

control all its nodes (dynamical systems) to achieve a 

certain desired objective. Hinted by this observation, the 

concept and notion of pinning control were introduced in 

[6,7], as an effective control strategy that takes into 

account both the node dynamics and the network 
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topology in control systems design and implementation.  

The idea of pinning control was motivated particularly 

by biology. One example is about the worm C. elegans, 

which has a simple but rather complete neural network in 

its body with statistically some 300 neurons and some 

5000 synapse connections depending on the age and size 

of the warm in consideration. For such a worm, the 

question of stimulating (controlling) how many neurons 

one can expect to provoke its whole body has a rather 

surprising answer - 49 on average [8] - less than 17% of 

the total. Another example is about fish schools and bee 

hives who migrate to forage [9]: “Relatively few 

informed individuals within fish schools are known to be 

able to influence the foraging behaviour of the group and 

the ability of a school to navigate towards a target. 

Similarly, very few individuals (approximately 5%) 

within honeybee swarms can guide the group to a new 

nest site.” 

From a control theoretic point of view, these 

approximately 17% of neurons and 5% of bees can be 

seen as controlled individuals through which the entire 

network will be manageable. Such a control strategy is 

obviously very efficient and economical. Inspired by 

these examples, a sensible question arises naturally: to 

achieve some objective on a given and fixed network of 

dynamical systems, how many nodes one needs to 

control and at which nodes to apply the controllers can 

achieve a pre-designated objective most effectively? To 

answer this sort of questions, the so-called pinning 

control strategy was introduced in [6,7], aiming at 

developing an effective control approach that can “pull 

one hair to move the whole body.” 

To be more precise, suppose that a directed network 

has been given, which has a certain structure (e.g., in a 

scale-free topology) with nodes being some higher-

dimensional nonlinear dynamical systems. Suppose also 

that an objective has been assigned (e.g., to achieve 

synchronization) with some optimality requirements (e.g., 

using shortest time, consuming minimum energy, having 

smallest oscillations) and, moreover, assume that the 

type of controllers has been determined (e.g., linear state-

feedback controllers). Under this well-defined frame-

work, a typical control theoretic problem is: how many 

controllers are needed and where to locate them can 

achieve the control objective with an optimal 

performance? This problem is referred to as pinning 

control, which means to find how many controllers to 

pin and where to pin them in the given network of 

dynamical systems can achieve the control objective 

most effectively. 

It is clear that any answer to the above question 

depends upon the structure (e.g., regular, random-graph, 

small-world, scale-free topology) of the given network 

and its node systems (e.g., nonlinear, impulsive, hybrid 

dynamics). It can be easily imagined that there are some 

other questions of similar nature that can be formulated 

for complex dynamical networks, while these kinds of 

questions would not be asked by, or did not even exist in 

classical control theory. It is also clear that to answer 

such questions is by no means easy, for which the 

classical control theory is likely insufficient. This 

motivates the current attempts to extend the control 

theory and practice from complex systems to complex 

networks of such systems. 

This article will not survey on complex network syn-

chronization alone, which is a huge subject in its own 

right (see, e.g., [1,10]), but will use synchronization as 

the control objective to illustrate the notion of pinning 

control of complex dynamical networks, thereby present-

ing the state-of-the-art development of pinning-con-

trolled synchronization on such networks. For this pur-

pose, the concept and model of network synchronization 

are first briefly introduced in the next section. 

 

2. A GENERAL MODEL FOR NETWORK 

SYNCHRONIZATION 

 

A general undirected and unweighted continuous-time 

dynamical network of N identical nodes can be described 

by 

1

( ) ( ), 1,2,..., ,
N

i i ij j

j

x f x c a H x i N

=

= + =∑�  (1) 

where ( )f ⋅  is a nonlinear function typically satisfying a 

local Lipschitz condition namely || ( ) ( ) ||f x f y− ≤  

|| ||x yρ −  for some constant 0ρ >  and for all ,x y  

in their confined domain in Rn (which is global if for all 

, ),

n

x y R∈
(1) (2) ( )  

[ , , , ]
n T n

i i i i
x x x x R= ∈�  is the state vector, 

constant 0c >  is the coupling strength, :
n n

H R R→  

is the inner coupling matrix (here, for simplicity, it is 

assumed to be a constant matrix, i.e., ( ) ),H x Hx=  and 

[ ]
N N

ijA a R
×

= ∈  is the outer coupling matrix defined as 

follows: If there is a connection between node i and node 

j then 1
ij ji
a a= =  otherwise aij = 

aji = 

0 for all ;i j≠  

the diagonal elements 
1,

N

ii ijj j i
a a

= ≠

= −∑  for all 1,i =  

2,..., ,N  which is referred to as a diffusive condition. 

The Laplacian matrix of the network is ,L A= −  which 

for a connected network is irreducible with eigenvalues 

1 2
0 .

N
λ λ λ= < ≤ ≤�  Here, 

2
0λ >  can be used as the 

algebraic connectivity index of the network. For directed 

networks, however, L is generally asymmetrical, so its 

eigenvalues are usually not real but complex values. 
 

Note that the general network model (1) can describe 

all kinds of complex networks, including such as various 

regular networks, random-graph networks, small-world 

networks, and scale-free networks [1]. 
 

Network (1) is said to achieve complete (asymptotic) 

synchronization, if (see, e.g., [11]) 

lim   ( ) ( ) 0
i j

t

x t x t

→∞

− =  for all , 1, 2,..., ,i j N=  (2) 

where || ||⋅  is the Euclidean norm.  

Physically, throughout the synchronization process all 

node states will be continuously governed by the 

differential equations of the node dynamical systems, 
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therefore if all node states finally reach synchrony then 

the synchronized state must be one of the evolving states 

of the node system, namely one solution orbit of the node 

dynamical system. For this reason, as suggested in [10] 

(see also [1]), synchronization may also be defined as 

lim   ( ) ( ) 0
i

t

x t s t

→∞

− =  for all 1,2,...,i N=  (3) 

for some s(t) satisfying ( ) ( ( )),s t f s t=� ( ) .ns t R∈  It is 

noted that for synchronization, this s(t) is not specified, 

since (3) always leads to (2); but if this s(t) is specified 

then (3) becomes a typical “tracking” problem in 

classical control systems theory. 
 

Mathematically, definition (2) is equivalent to the 

following definition: 

lim ( ) ( ) 0
i

t

x t x t

→∞

− =  for all 1,2,..., ,i N=  (4) 

where 
1

( ) ( ),
N

i ii
x t x tβ

=

=∑  which was first introduced 

in [12-14] and used by many others later on (see, e.g., 

[15]), with 
1 2

[ , , , ]
T

N
β β β�  being the left eigenvector 

of the zero eigenvalue of the network Laplacian matrix L. 

In fact, 

1 1 1

1 1

0 || ||     

 ( ) || || 0   ( )

N N N

i i j j j i j j

j j j

N N

j i j j i j

j j

x x x x x x

x x x x t

β β β

β β

= = =

= =

≤ − = − = −

= − ≤ − → →∞

∑ ∑ ∑

∑ ∑

 

for all 1,2,..., .i N=  Therefore, (2) implies (4). On the 

other hand,  

1

|| || || ||  

|| || || || 2max || ||,

i j i j

i j i N i

x x x x x x

x x x x x x
≤ ≤

− = − + −

≤ − + − ≤ −

 

which, by taking limits on both sides, shows that (4) 

implies (2). 
 

Now, one can also easily verify that definition (3) is 

equivalent to (2) at least for two general cases: (i) f (·) is 

linear homogeneous in the sense that 
1

( )
N

j jj
f xα

=

∑  

=
1

( )
N

j jj
f xα

=

∑  for arbitrary constants αi, 1,2,..., ,i N=  

which includes linear systems as a special case; (ii) f (·) 

satisfies a local (or global) Lipschitz condition in the 

sense that || ( ) ( ) || || ||f x f y x yρ− ≤ −  for some con-

stant ρ > 0 and for all x, y in their confined domain in Rn, 

as indicated in the network model (1). For these two 

cases, it can be shown that the two definitions (3) and (4) 

are indeed equivalent [16]: 
 

(i) If f (·) is linear homogeneous then it can be shown 

that ( ) ( ),x t s t=  namely, ( ) ( ( )).x t f x t=
�  Indeed, one 

has 

1 1 1

( ) ( )
N N N

j j j j jk k

j j k

x x f x c a H xβ β
= = =

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∑ ∑ ∑�

�  
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1
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1
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j j k

N

j j N

j

N

f x c a H x

H x

H x
f x c A

H x

β β

β β β β

= = =

=

= +

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥= +⎜ ⎟

⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∑∑

∑ �
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Since 
1 2

[ , , , ]
T

N
β β β�  is the left eigenvector of the 

zero eigenvalue of matrix L, one has 
1 2

[ , , , ]
N

Aβ β β =�  

0, so that ( )1
( )

N

j jj
x f x f xβ

=

= =∑� . 

 

(ii) If f (·) satisfies the Lipschitz condition, then 

1

( )  ( ) 
N

j j

j

x f x x f xβ
=
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1 1 1
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= = =

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

= + −

∑ ∑

∑ ∑∑

 

1

2

1 2

1

( )

( )
( ) [ , , , ]  ( ) 

( )

N

j j N

j

N

H x

H x
f x c A f x

H x

β β β β
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= + −
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑ �
�

 

( ) ( )
1 1

( ) ( )   ( ) )  

N N

j j j j

j j

f x f x f x f xβ β
= =

= − ≤ −∑ ∑  

1

|| || .
N

j j

j

x xρ β

=

≤ −∑  

Therefore, by taking limits on both sides, one has 

lim || ( ) ( ( )) || 0.
t

x t f x t
→∞

− =�  

 

It is further remarked that for a very special case of 

network (1), if the network is synchronized to a constant 

state vector s, then by taking the time limit on both sides 

of (1), due to the diffusive coupling of the network, one 

has ( ).s f s=�  Here, since s is a constant vector, one has 

0,s =�  so ( ) 0,f s =  namely this constant state vector s 

is an equilibrium of the node dynamical system. 

In performing pinning control to achieve synchroni-

zation of network (1), for instance when the network is 

scale-free [17], if the controllers are pinned at the 

network nodes according to the descending order of the 

node degrees, the needed number of controllers will be 

much smaller than that if they are randomly placed in, 

just to gain the same effects. For small-world networks 

[18], however, even if the controllers are randomly 

applied to some nodes, as the coupling probability 

increases, which creases more long-range edges, the 

number of needed controllers will decrease.  

Next, consider the local synchronization problem for 

the dynamical network (1) with a constant matrix H, 
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namely H(x) = Hx. Linearizing the node dynamical 

system at its solution (e.g., equilibrium) s, which satisfies 

( ) ( ( ))s t f s t=�  as mentioned above, yields a master 

stability equation [19],  

[ ( ) ] , 2,3,..., ,
k k k
y Df s c H y k Nλ= − =�  

where λ1= 0. The maximum Lyapunov exponent Lmax of 

these equations is called the master stability function. A 

common criterion for determining the stability of the 

above network synchronization manifold is that its Lmax 

is negative [19,20]. The common region S = Smax for all 

k
cλ  values in which Lmax is negative is called the 

synchronized region of the network, which is obviously 

determined by both f (·) and H. Thus, if  

, 2,3,..., ,
k

c S k Nλ ⊆ =  

then the largest (hence, every) Lyapunov exponent will 

be negative, Lmax < 0, implying that the synchronization 

manifold is stable, so the network synchronizes. 

According to different situations, synchronized regions 

can be classified into the following types (Fig. 1) [1,10]: 

 

Type 1 [17,18]: The corresponding synchronized 

region is 
1 1

( , ),S α= ∞  where 
1

0 α≤  is determined by 

max
( ) 0.L α =  For this type of networks, if the product of 

the coupling strength c > 0 and the smallest nonzero 

eigenvalue λ2 of the Laplacian matrix satisfies 

1 2
,cα λ<  

then the network synchronizes. Therefore, the synchroni-

zability of this kind of networks can be characterized by 

the eigenvalue λ2 of the Laplacian matrix L: the larger 

the λ2, the smaller the coupling strength c > 0 is needed, 

hence the stronger the network synchronizability.  

 

Type 2 [20]: Its corresponding synchronized region is 

2 2 3
( , ),S α α=  where 

2 3
0 α α≤ < < ∞  is determined by 

the equation 
max

( ) 0.L α =  If 

2 2 3
,

N
c cα λ λ α< ≤ <  

then the network synchronizes. Therefore, the synchroni-

zability of this kind of networks is characterized by the 

ratio 
2
/

N
λ λ  of the eigenvalues of the Laplacian matrix 

L: the more closer to each other between λ2 and λN, the 

easier this inequality is satisfied, so the larger the ratio 

2 2 3
/ / ,

N
λ λ α α>  the stronger the network synchroni-

zability.  

 

Type 3: The corresponding synchronized region is an 

empty set, 
3

.S ϕ=  In this case, no matter how strong 

the coupling strength c > 0 is, the network will not 

synchronize by itself (unless external control is applied, 

as further discussed below). 

 

Type 4 (see, e.g., [21]): The corresponding syn-

chronized region is a union of several regions of the 

forms 
1 1

( , )S α= ∞  and 
2 2 3

( , ).S α α=  In this case, 

only if all 
i

cλ  fall into these sub-regions the network 

will synchronize. This situation is fairly complicated, but 

also rather rare. 

It is worth noting that graph theory, especially digraph 

theory, is a powerful mathematical tool which classical 

control theory did not intend to take advantage of. 

Studying control theory under complex dynamical 

network environments, for example studying the 

synchronizability and stability of various dynamical 

networks, these tools are particularly important and 

useful - oftentimes they could provide new results and 

criteria that classical control theory did not or could not 

offer [21]. This is especially true for controlling directed 

networks, a topic to be further discussed next. 

 

3. CONTROLLABILITY OF DIRECTED 

DYNAMICAL NETWORKS 

 

The (complete) controllability is a fundamental concept 

and basic notion in classical control theory, which is 

attributed to Kalman and has been well documented (see, 

e.g., [5]). For a linear system, there is an elegant 

necessary and sufficient condition for controllability; that 

is, the system controllability matrix has a full rank. For 

linear time-invariant systems, x Ax Bu= +�  with x∈Rn 

and ,

m

u R∈ 1 ,m n≤ ≤  denoted as (A, B), the corres-

ponding controllability matrix is 1
[ ].

n

B AB A B
−

�  

For linear time-varying systems it has an integral form; 

for nonlinear systems, the situation is much more 

complicated where usually only case studies can provide 

max
L  

 
(a) Type 1. 

max
L  

 
(b) Type 2. 

max
L  

 
(c) Type 3. 

Fig. 1. Synchronized regions. 



Pinning Control and Synchronization on Complex Dynamical Networks 

 

225

some useful criteria, which are both beyond the scope of 

this survey therefore will not be further discussed below. 

In the investigation of controllability for linear time-

invariant dynamical systems under the framework of 

directed networks, there were already some encouraging 

successes in the 1970-80s, referred to as the “structural 

controllability” [22,23]. Yet, not too much progress was 

made thereafter, and unfortunately not much attention 

was received from the control theory community for 

some historical reasons. Today, spurred by the demands 

from network science and engineering, the same question 

was revisited from a network perspective and it brought 

up more interesting problems and also new challenges to 

both the networks and the control communities. First, the 

networks under consideration are directed; hence, one 

cannot simply consider a directed network of multiple 

dynamical systems as one single huge-dimensional over-

all system and then tackle it by using the conventional 

system-decoupling techniques. Second, complex net-

works have various models and forms, such as random-

graph, small-world, scale-free, weighted, evolutionary, 

impulsive and hybrid networks; therefore, the descrip-

tions and conditions on their controllability would be 

fairly different from one to another, even in the case of 

linear node systems, for which existing results and tools 

from the classical control theory are insufficient or even 

inapplicable, at least not in a straightforward manner.  

A distinct feature of directed networks is that it is very 

important to decide where to locate the controllers. A 

trivial example is a two-node network with a directed 

edge pointing from one node to another. Obviously, if a 

controller is put at the latter then the former will not be 

affected by any control input. Usually, a node with only 

one input is called an (independent) driver node. Clearly, 

if every node is a driver then the network can be 

(completely) controllable. However, a practical question 

will be: Is there a minimum number ND of driver nodes 

using which the whole network is controllable? More-

over, choosing which ND nodes as drivers can achieve a 

control objective most effectively? This is a typical 

pinning control problem discussed above. 

To be more precise, consider a directed network of 

identical linear time-invariant dynamical systems, with 

every node being described by the same (A, B). It is said 

to be structurally controllable if there exist a set of 

elements in matrices A and B such that the networked 

system (A, B) is controllable in the classical sense. 

Furthermore, if for all nonzero elements of (A, B) the 

networked system is always controllable, then it is said 

to be strongly structurally controllable [22,23]. 

For illustration, consider the simple example shown in 

Fig. 2, which has four 3-dimensional systems with X1, X2, 

X3 representing their state variables [22-24]. Their 

controllability matrices are, respectively, given by 

 

1 21

32 21

1 0 0

0 0

0 0

b a

a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
1 21

31

1 0 0

0 0

0 0

b a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

(a) (b) (c) (d) 

Fig. 2. An example illustrating the structural control-

lability [22-24]. 

 

1 21

31 33 31

1 0 0

0 0 ,

0

b a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1 21 23 31

31 32 21

1 0 0

0 .

0

b a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In Fig. 2, networked systems a and c are strongly 

structurally controllable, since for any choice of nonzero 

elements their corresponding controllability matrices 

have a full rank. System d is structurally controllable but 

not strongly, because for elements satisfying 2

32 21
a a =  

2

23 31
,a a  its controllability matrix is not of full rank, yet 

for other choices of elements it is so. This case also 

explains the importance of the weights in determining 

the network controllability. System b is simply uncon-

trollable, since for whatever choice of nonzero elements, 

its controllability matrix is not of full rank. Notice that, 

compared to system b, system c has an extra self-loop in 

state X3, but this small difference in structure leads to an 

essential change in the nature of the controllability. Thus, 

to some extent, this case reflects the complexity and 

difficulty in the study of controllability for directed 

networks. 

The minimum number of driver nodes needed to 

successfully control a given directed network can be 

determined by the maximum matching set [1,10]. A 

(sub)set of directed edges, E*, is called a matching set if 

every pair of edges in E* do not have common starting 

nodes nor common ending nodes. A node is called a 

matched node if it is the end point of an edge in E*; 

otherwise, it is unmatched. In a directed network, a 

matching set with the largest number of matched nodes is 

called a maximum matching set. Further, a matching set 

is said to be perfect if all its nodes are matched nodes; 

thus, the largest possible perfect matching set is the 

network itself. 

In investigating the controllability of directed net-

works, there was an attempt [24] that received a lot of 

attention. In its supplementary materials, there is a 

“minimum input theorem” saying that for a directed 

network to be controllable, the needed minimum number 

of driver nodes is max{ | * |,1},
D

N N E= −  where | * |E  

is the number of elements in E*. In particular, if a 

network has a perfect matching set, then ND =1, and in 

this case every node can be chosen to be the driver. Yet, 

if a network does not have a perfect matching set, then 

| * |DN N E= − ; that is, ND is the number of unmatched 

nodes in any maximum matching set of the network. In 

this case, one should choose unmatched nodes as drivers 
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for pinning control of the network. Of course, this is 

quite intuitive since otherwise the unmatched nodes will 

never be controlled. If a network does not have perfect 

matched sets, one may apply some control means to 

create a perfect matching set in it [24].  

In [24], it was pointed out, that “Here we develop 

analytical tools to study the controllability of an arbitrary 

complex directed network, identifying the set of driver 

nodes with time-dependent control that can guide the 

system’s entire dynamics. We apply these tools to 

several real networks, finding that the number of driver 

nodes is determined mainly by the network’s degree 

distribution. We show that sparse inhomogeneous net-

works, which emerge in many real complex systems, are 

the most difficult to control, but that dense and homoge-

neous networks can be controlled using a few driver 

nodes. Counterintuitively, we find that in both model and 

real systems the driver nodes tend to avoid the high-

degree nodes.” Note that, here, “using a few driver 

nodes” is in fact a pinning control strategy discussed 

above. Of course, the next step is to answer questions 

like “how many (to pin)? ” and “which ones (to pin)? ” 

Before the paper [24] appeared in Nature, a staff 

writer of Science, Mr Adrian Cho, sent me the galley and 

then called me for a discussion. Afterwards, he wrote a 

commentary [8] and said: “The work is both more 

general and more practical than earlier efforts to apply 

control theory to networks, says Guanrong Chen, an 

electrical engineer at City University of Hong Kong. … 

The new work treats the more common case of directed 

networks. … Also, Chen says, the algorithm for finding a 

set of control nodes is very important because it’s 

useful.”  

It is fair to say that the publication of the timely article 

[24] has in effect provoked the current active research on 

the controllability of directed dynamical networks. 

Therein, it shows some insightful observations on 37 

empirical examples from 12 different types of real-world 

networks, such as the aforementioned observation “the 

driver nodes tend to avoid the high-degree nodes”. These 

deserve special attention from classical control theorists. 

It is also worth mentioning that, from a control-cost 

perspective, similar conclusions could be made [25]: 

better driver nodes typically are not hub nodes with large 

degrees. Moreover, there are some recent reports on this 

commonly-concerned subject. For example, in [26] it is 

pointed out that scale-free directed networks are easier to 

control than those directed networks with low degree-

degree correlations; in [27] an analytical framework is 

developed to identify critical intermittent or redundant 

nodes, leading to the discovery of two distinct control 

modes in complex systems: centralized versus distributed 

controls; in [28] the concept of control capacity is 

introduced to quantify the likelihood that a node is a 

driver, and it demonstrates that the possibility of being a 

driver node decreases with its in-degree, which however 

is independent of its out-degree. Along the same line, in 

[29] it studies minimizing the number of controllers 

towards the network controllability by optimizing struc-

tural perturbations, and in [30] it investigates the con-

trollability of directed and weighted networks which in a 

way generalizes some results of [24]. 

In retrospect, as earlier as in 1974, Lin [22] was the 

first to consider the controllability of networked linear 

time-invariant dynamical systems from a graph-theoretic 

approach, deriving some necessary and sufficient condi-

tions in terms of graph theory. In 1976, the notion was 

extended to multi-input systems [31]. In 1977, Lin [32] 

further introduced the concept of minimal structural 

controllability, giving a necessary and sufficient condi-

tion in both graphic and algebraic terms. These stimu-

lated a great deal of interest in the important subject of 

system structural controllability for a while [33]. 

After a silent period of about two decades, in 2007 

Lombardi and Hörnquist [34] revisited the controllability 

of digraphs, and Liu et al. [35] studied the controllability 

of a leader-follower dynamic network with switching 

topology, prior to which there were already some studies 

on the controllability of leader-follower networks [36-

39]. However, these studies were essentially based on the 

Kalman criterion in terms of the controllability matrix 

rank. When the size of a network is large, it becomes 

extremely difficult if not impossible to verify, so graph-

theoretic criteria become more desirable.  

Also noticeably, most of the aforementioned research 

efforts essentially ignored the node dynamics while 

concentrating on the effects of the network topologies on 

the networks controllability. An early study to introduce 

a structural measure for the controllability of undirected 

networks by taking node dynamics into consideration 

was reported in [40]. The main idea is to introduce a 

virtual node to the network, related to control, thereby 

augmenting the system to have one higher dimension, so 

that the powerful master stability function method 

[19,20], mentioned above regarding network synchroni-

zability, can be applied for controllability analysis. It was 

pointed out that this structural measure depends not only 

on the information about the network topology but also 

on the choice of the controlled nodes and their control 

gains.  

Moreover, in [41] the controllability problem for non-

symmetrical weighted scale-free networks was investi-

gated, revealing a threshold for pinning control: when the 

ratio of pinning-controlled nodes increases to be over 

this threshold, the pinning controllability will be 

achieved and also the control performance will be 

improved.  

Very recently, the pinning control problem for non-

diagonalized directed networks with non-identical nodes 

was studied in [42], using the network algebraic 

connectivity (defined in network model (1) above) as the 

controllability index. It was shown that the controlla-

bility is closely related to both the node dynamical func-

tions and the control gains, revealing a key issue and also 

some essential difficulty in controllability analysis of 

directed dynamical networks. More precisely, a general 

linear leader-followers network is considered, which can 

be represented in a compact form by 

( ) [( ) ] ( ) ( ) ( )X t C L H X t B U t= − ⊗ + Δ⊗
� , 
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where X(t) is the state vector composing of all node-state 

vectors, U(t) is the pinning control input vector com-

posing of all pinning-controller input vectors, Δ is a 0-1 

diagonal matrix determining which node to pin, C is a 

diagonal matrix of all the coupling constants, L is the 

overall Laplacian matrix, H is the inner coupling matrix, 

B is the control gain matrix, and ⊗  is the Kronecker 

product. It was proved in [42] that this network is 

controllable if and only if the following two conditions 

are satisfied simultaneously: (i) (H, B) is a controllable 

matrix-pair (in the classical sense); (ii) there exists no 

left-eigenvector of matrix [L – C] with the first q entries 

being zeros, where q is the number of pinning-controlled 

followers. As consequences, this theorem implies several 

known and unknown results, such as: (i) a directed path 

is controllable if the beginning node is selected to be the 

only leader; (ii) a directed cycle with a single leader is 

always controllable; (iii) a complete digraph (of size > 2) 

with a single leader is uncontrollable; (iv) a star digraph 

(of size > 2) is uncontrollable even with the center node 

being the leader (consistent with Fig. 2(b) discussed 

above).  

In summary, the subject of directed and weighted 

network controllability is extremely important and there 

are many fundamental theoretic and applied research 

problems awaiting for further exploration under a uni-

form framework of complex dynamical networks. Never-

theless, some research progress has been made recently, 

as reported in, e.g., [43-48]. 

As a side note, the (complete) observability is a dual 

concept to (complete) controllability [5], which means 

the ability to determine a system’s initial state from its 

outputs thereby enabling reconstruction of all the states 

of the system. The observability has a simple and elegant 

necessary and sufficient condition for linear systems; that 

is, the system observability matrix has a full rank. There 

are already some attempts to extend this classic notion to 

directed networks with a graph-theoretic approach to 

determining the necessary number of observers needed to 

reconstruct all full internal states of a networked system, 

verified by biochemical reaction systems in [49]. 

To this end, the focal issue of pinning controlled 

synchronization of complex dynamical networks is fur-

ther discussed, which will be detailed in the next section. 

 

4. PINNING-CONTROLLED NETWORK 

SYNCHRONIZATION 

 

Once again, consider network model (1) for simplicity 

of presentation and discussion.  

The objective here is to let the network synchronize to 

some desired state of the node system, for example an 

equilibrium state s∈Rn satisfying ( ) 0.s f s= =�  If, under 

certain conditions as reviewed above, the network can 

self-synchronize to s∈Rn, then no external control input 

is needed. However, if the network is unable to self-

synchronize to s∈Rn, then one needs to apply external 

control such as pinning control to force the network to 

achieve the objective. 

Without loss of generality in applying the pinning 

control strategy, suppose that the first l nodes are 

selected to pin. Then, referring to network (1), the 

controlled network is described by 

1

( )
N

i i ij j i

j

x f x c a Hx u

=

= + +∑� , 1,2,..., ,i l=  (5a) 

1

( )
N

i i ij j

j

x f x c a Hx
=

= + ∑� , 1, 2,..., .i l l N= + +  (5b) 

For simplicity here, the following linear state-feedback 

controllers are used:  

( )
k k k

u c H x sκ= − − , 1,2,..., ,k l=  (5c) 

where { }
k

κ  are positive constant feedback gains to be 

determined. Let 
1 2

{ , ,..., ,0,...,0}.lD diag κ κ κ=  Then, 

some local and global criteria for the above pinning 

controllability of network synchronization can be 

established. 

First, the simplest possible pinning control scheme is 

to use only one single controller (with l = 1), namely, in 

(5) with 
1 1 1

( )u c H x sκ= − −  and all the other 0,
i
u =  

2,3,..., .i N=  This is possible under some local condi-

tions (e.g., using linearization and large coupling 

strength c), as shown in [50]. 

Then, to derive a global criterion, let us introduce the 

concept of V-uniformly decreasing functions (see, e.g., 

[7]): a function :
n n

R R Rφ × →  is V-uniformly decreas-

ing if there exists a square matrix V and a constant ρ > 0 

such that for all V and all 0,t ≥  

2
( ) [ ( , ) ( , )] .z y V z t y t z yφ φ ρ− − ≤ − −  (6) 

Now, consider the controlled network (5). Suppose 

that matrix ( )[ ( ) ] 0U V A D H I Tρ⊗ + ⊗ + ⊗ >  is sym-

metrical and positive semi-definite, and let T be a square 

matrix such that ( )
k k

f x Tx+  is V-uniformly decreasing 

for some symmetrical and positive definite matrix V and 

for all ,

n

k
x R∈ 1,2,..., .k N=  It can be shown that if 

there exists a positive-definite diagonal matrix U such 

that  

( )[ ( ) ] 0,U V A D H I Tρ⊗ + ⊗ + ⊗ >  (7) 

then the controlled network (5) is globally stable about a 

state x  which satisfies ( ).x f x=
�  

 

To verify the above global criterion, construct a Lya-

punov function 

1
( ) ( ) ,

2

T
W x x U V x= ⊗� � �  

where 
1 2

[ , , , ]
T T T T Nn

N
x x x x R= ∈� � � �…  with ,

k k
x x x= −� k =  

1,2,..., .N  The derivative of ( )W x�  along the state 

trajectories of the network is 

( ) ( )

( )[ ( ) ( ) ( )

T

T

W x x U V x

x U V f x f x I T xθ

= ⊗

= ⊗ − ⊗ + ⊗

��

� � �

� �
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[ ( ) ] ]

( )[ ( ) ( ) ( ) ],
T

A D H I T x

x U V f x f x I T x

ρ

θ

− + ⊗ + ⊗

≤ ⊗ − ⊗ + ⊗

�

� �

 (8) 

where [1,1, ,1]
T N

Rθ = ∈…  and 
1 2

[ , , , ]
T T T T

N
x x x x= ∈…  

,

Nn
R  and the last inequality follows from (7). Because 

( )
k k

f x Tx+  is V-uniformly decreasing and U diag=  

1 2
{ , ,..., }

N
u u u  is positive definite, it follows from (8) 

that 

1

2

1

( ) ( )[ ( ) ( ) ( ) ]

( )( )[ ( ) ( )

( ) ( )( )]

( ) [ ( ) ( ) )]

.

N

k k k k

k

N

k k

k

W x x U V f x f x I T x

x x U V f x I T x

f x I T x

u x x V f x Tx f x Tx

u x x

θ

θ

θ θ

ρ

=

=

= ⊗ − ⊗ + ⊗

= − ⊗ ⊗ + ⊗

− ⊗ − ⊗ ⊗

= − + − −

≤ − −

∑

∑

�

� � �

 

Hence, by the Lyapunov direct method, the criterion is 

proved. 

It is remarked that the criterion presented and verified 

here has corrected some minor errors in Theorem 1 of [7], 

by strengthening the requirement on matrix U as stated 

above and by simply changing (7) from originally 

“positive semi-definite” to presently “positive definite” 

and replacing D with ρD therein (see also [51]). 

A broad spectrum of research on pinning control of 

network synchronization has been carried out in the last 

few years [52,53], for example with adaptive pinning 

control [48,54-56] and on time-varying networks and 

networks with time-delayed couplings [57,58], for which 

the network may even be pinned to a rather arbitrary 

trajectory (such as chaotic orbits [59,60]), and equipped 

with digital controllers [61], towards some real-world 

engineering applications [62]. 

 

5. CONCLUSIONS 

 

This article has surveyed the recent research progress 

in pinning control and pinning synchronization on 

complex dynamical networks. The aim is to present the 

background and some new developments in the fields. 

Wherever deemed necessary, some technical details were 

provided along with key references for the readers’ 

convenience. Due to the space limitation, this article of 

modest size cannot cover all important topics; for exam-

ple, network synchronization as a standalone subject 

itself is a huge research area which was not covered 

herein. Even in regard to the topics under review, this 

short overview article is by no means comprehensive or 

exhaustive, regrettably leaving out many relevant publi-

cations without referencing and discussing. 
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