in the logic block, the output \(PZ \) should be low (connected to \(V_n \)) in the case of \(n \)-logic and high (connected to \(V_p \)) in the case of \(p \)-logic.

In the case of static CMOS, the presence of a stuck-on transistor may result in both \(p \)- and \(n \)-networks being conducting. The output voltage thus depends on the resistance of the \(p \)- and \(n \)-network and hence increases the complexity of fault detection. Such cases do not happen in NORA CMOS because the \(p \)- and \(n \)-network cannot be both conducting at the same time even if stuck-on occurs in the logic block. This is because the clock (\(\phi \) or \(\phi' \)) is applied to both the \(p \)-MOS and the \(n \)-MOS transistor that are in series with the logic block and thus prevent both transistors to be conducting at the same time. Hence the output voltage is not dependent on the resistance of the networks and, therefore, it is easier to detect stuck-on faults. The procedure for testing stuck-on is similar to those described for other faults. For the circuit with \(n \)-logic block shown in Fig. 2, \(TEST_2 \) is charged high prior to the evaluation phase. A low \(TEST_2 \) during the evaluation phase with appropriate test vector inputs \(TV_1 \) applied prior to, and kept constant at the evaluation phase indicates a stuck-on condition. Similarly, for the circuit with \(p \)-logic block as shown in Fig. 3, a low \(TEST_4 \) during the evaluation phase with appropriate test vector inputs \(TV_2 \) indicates a stuck-on condition. It can again be seen that the test for stuck-on fault and the test for stuck-at fault are overlapped to some extent, because a device stuck-on could result in the output to be either stuck-at-one or stuck-at-zero.

V. AREA AND TIME CONSIDERATIONS

The additional circuits (shown in Figs. 2 and 3) used to detect stuck-at, stuck-open, and stuck-on faults occupy only a small amount of area overhead and is independent of the complexity of the gate to be tested. The amount of contact cuts for the layout is also very small. This is favorable because contact cuts occupy large areas and degrade reliability of the circuit. However, by connecting many \(n \)-MOS devices or \(p \)-MOS devices in series may reduce the speed of operation for testing. This disadvantage is not so important because the clock can be slowed down for testing. Moreover, buffers can be inserted between the devices to reduce the delay.

VI. APPLICATIONS AND CONCLUSIONS

This testability enhancement technique is employed in implementing a testable serial-parallel multiplier. A prototype of multiplier with 4-bit multiplicand and 3-bit multiplier has been implemented using 4-\(\mu \)m CMOS (NORA) technology, Fig. 4, the total layout area is found to be 3.89 mm\(^2\). The multiplier takes around 11 ns to produce the product and the error signal. The additional cost for the error detection circuitry is only in the range of 10 percent of the total area.

The testability enhancement technique is useful especially where the internal nodes of the system are difficult to test. It can also be used for probe testing of wafer. In conclusion, the proposed error detection circuit, based on the structure, properties, and operations of NORA CMOS, can detect stuck-at, stuck-open, and stuck-on faults. It occupies only a small amount of area overhead and is independent of the complexity of the cell to be tested.

REFERENCES

The LUD Approach to Switched-Capacitor Filter Design

LI PING AND J. I. SEWELL

Abstract — A new design method for switched-capacitor filters (SCF) is presented. It is based upon an L-U matrix decomposition technique and has the distinct advantage of producing SC filter realizations containing no delay free loops. These are formed traditionally by capacitors and op-amps in leapfrog realizations. It is demonstrated that this feature should render reduced dependence of the filter response to nonideal effects such as finite amplifier GB and switch resistance. Results from realistic leapfrog and LUD SC filter realizations confirm this.

Manuscript received May 6, 1987; revised August 12, 1987. L. Ping was supported by the Royal Society and British Telecom.

The authors are with the University of Glasgow, Glasgow G12 8QQ, United Kingdom.

IEEE Log Number 8717625.

0098-4094/87/1200-1611$01.00 ©1987 IEEE
INTRODUCTION
Passive terminated LC ladder simulations are popular techniques in switched-capacitor filter (SCF) design, as they retain the low sensitivities of the prototype passive ladders. Among various simulation methods, the leapfrog-type SCF has received most attention because of its strays insensitive property [1]–[3].

There are two kinds of transformations commonly adopted in designing leapfrog SCF’s: LDI and bilinear transformations [1]. LDI SCF’s have the problem of strictly unrealizable terminations. Some approximation must be made and this limits their applications. Bilinear leapfrog SCF’s using LDI integrators are more favorable. However, there is a major drawback for the bilinear leapfrog SCF (and, also, for LDI leapfrog SCF when the transfer function has finite transmission zeros) that there always exist delay-free loops formed by capacitors and op-amps. This increases the op-amps settling times. As a result, some considerable distortion of the transfer function may be caused by the finite GB product of op-amps and on-resistance of switches [3], [4], [6]. Incidentally, the existence of delay-free loops makes digital circuit realization difficult [7]–[9].

In this paper, the matrix form derivation of leapfrog SCF is viewed first. Then a new structure of SCF based on LU decomposition is presented and the corresponding digital circuit realization is briefly discussed. No delay-free loops exist in these circuits. Examples are given to show that the new approach produces circuits with better performances than leapfrog-type circuits when nonideal effects of op-amps and MOS switches are considered.

DERIVATION OF LEAPFROG SCF IN MATRIX FORM
The first bilinear leapfrog SCF’s were sensitive to stray capacitance. A further development [1] allowed application of the bilinear transformation whilst using modified LDI integrators which are completely strays insensitive. We shall derive this kind of SCF as the preliminary to the new approach.

Starting from a passive RLC prototype network which can be described by nodal equation:

\[
(sC + \frac{1}{s\Gamma} + G)V = J
\]

where \(C\), \(\Gamma\), and \(G\) stand for the contribution of capacitors, inductors, and conductors respectively. Performing the bilinear transformation on (1) we have (when \(T = 2\) for simplicity)

\[
\left(1 - z^{-1}\right)A + \left(1 + z^{-1}\right)B + \left(1 - z^{-1}\right)C + \frac{1 + z^{-1}}{1 - z^{-1}}G + \frac{1}{1 - z^{-1}}J = \left(1 - z^{-1}\right)V
\]

Equation (2) is equivalent to

\[
AV = \left(-\frac{4z^{-1}}{(1 - z^{-1})^2}A - \frac{2z^{-1}}{1 - z^{-1}}G\right)V + \frac{1 + z^{-1}}{1 - z^{-1}}J
\]

with

\[
A = C + \Gamma + G.
\]

The inverse inductance matrix \(\Gamma\) in (3) can be decomposed into

\[
\Gamma = A_lD_lA_l^T
\]

where \(A_l\) is the incidence matrix of the network obtained by removing all elements except inductors, and \(D_l = \text{diag}(1/L_c)\). Let

\[
A = D_l + B
\]
TABLE I

Normalized Data for the LC Ladder of Fig.(1a)

1) Fifth order Lowpass Elliptic Case
 passband edge 1.034
 stopband edge 0.967
 lower stopband edge 0.895
 passband ripple 0.025 dB
 stopband attenuation > 34 dB
 C1 = C2 = C3 = C4 = C5 = 0.908285
 L1 = 1.008471
 C6 = 1.351268
 C7 = 0.451687
 L2 = 0.563504
 C8 = 1.000000
 C9 = 1.000000
 C10 = 1.000000
 C11 = 1.000000
 C12 = 1.000000
 C13 = 1.000000
 C14 = 1.000000
 C15 = 1.000000
 C16 = 1.000000
 C17 = 1.000000
 C18 = 1.000000
 C19 = 1.000000
 C20 = 1.000000
 C21 = 1.000000
 C22 = 1.000000
 number of capacitors 26
 number of switches 26
 total capacitance 115.8751
 capacitance spread 15.8751

2) Sixth order Bandpass Elliptic Case
 upper passband edge 1.034
 lower passband edge 0.967
 upper stopband edge 1.08 kHz
 lower stopband edge 0.829 kHz
 passband ripple 0.025 dB
 stopband attenuation > 34 dB
 C1 = C2 = C3 = C4 = C5 = C6 = 0.908285
 L1 = 1.008471
 C7 = 1.351268
 C8 = 0.451687
 L2 = 0.563504
 C9 = 1.000000
 C10 = 1.000000
 C11 = 1.000000
 C12 = 1.000000
 C13 = 1.000000
 C14 = 1.000000
 C15 = 1.000000
 C16 = 1.000000
 C17 = 1.000000
 C18 = 1.000000
 C19 = 1.000000
 C20 = 1.000000
 C21 = 1.000000
 C22 = 1.000000
 number of capacitors 26
 number of switches 26
 total capacitance 115.8751
 capacitance spread 15.8751

where D_n is diagonal and all diagonal elements in R are zeros.

Then (3) can be written as

$$D_n V = -B V - \frac{2 z^{-1}}{1 - z^{-1}} G V - \frac{1}{1 - z^{-1}} A_n X + \frac{1}{1 - z^{-1}} J$$

(6a)

$$X = \frac{4 z^{-1}}{1 - z^{-1}} D_n A_n^T V.$$

(6b)

These equations can be represented in signal-flow-graph form.

LU DECOMPOSITION (LUD)-TYPE SCF

In the last section it was shown that a leapfrog-type signal-flow-graph is formed by decomposing matrix A and realizing all nondiagonal elements in A by feedthrough branches. If A is of upper triangle or lower triangle form then these branches will not form delay-free loops. Unfortunately, A is neither of these cases for a practical ladder prototype.

One way to solve this problem is to decompose A into IIU form. Let

$$A = LU$$

(7a)

$$Y = \frac{1 - z^{-1}}{z^{-1}} UV.$$

(7b)

From (3) and (7) we have

$$LY = \left(\frac{-4}{1 - z^{-1}} \Gamma - 2 G\right) V + (1 + z) J$$

(8a)

$$UV = \frac{z^{-1}}{1 - z^{-1}} Y.$$

(8b)

A signal-flow-graph can be drawn to represent (8); Fig. 2(a) shows one for the prototype given in Fig. 1(a).

The SCF implementation is shown in Fig. 2(b). Normally for a prototype network with n nodes, $2n$ op-amps are required. It seems that for a prototype having more loops than nodes, we can start from a loop equation instead of the nodal equation in (1). In more general cases, a hybrid description of the prototype network can be used.
Approximately $3n$ (n is the number of the nodes) coefficients need to be stored and $4n$ multiplications performed in each period. It can be shown that this kind of digital filter is highly insensitive to finite length of coefficients.

Examples

A program named SCNDP (SC network design program) has been developed using LUD as well as leapfrog approaches. This is used in conjunction with analysis programs SCNAPIF and SCNAPNIF [5].

Some typical filter realizations are shown in Figs. 1 and 2. The extra components in the passive prototype are required for the bandpass realization. The calculated capacitance values are listed in Table I. In the LUD realization it can be seen that one extra amplifier is only required for low-pass filters, the bandpass case utilizes the same circuit topology with changed component values and is canonical in number of amplifiers. A leapfrog bandpass realization would require a changed topology and a simple comparison does not follow. The one extra amplifier in the low-pass case will require more chip area, but this difference reduces in significance as the filter order increases. The op-amp's outputs in all circuits are adjusted to give the same level as the input. No attention has been given to minimizing the capacitance spread.

Fig. 3(a) shows the ideal filter response. Fig. 3(b) gives a comparison between ideal performance and non-ideal responses in the passband for LUD and leapfrog realizations with typical amplifier and switch parameters. The LUD realization demonstrates some improvement in performance over the equivalent leapfrog circuit for typical parameter values.

Preliminary sensitivity studies indicate that the LUD realization possesses similar properties to the leapfrog structure, except at $\omega = 0$ in the low-pass case where a drop in magnitude response is observed. This is a subject of further work.

CONCLUSION

A new kind of structure for SC filters is presented. Results obtained show that the proposed circuits demonstrate better performance than leapfrog circuits in certain non-ideal cases. It can be observed also that the particular ranges of non-ideal parameters pose serious influence on both circuits. Work is being undertaken to formally eliminate these effects in the design procedure.

REFERENCES

