Organizes a Seminar on

Slow Light, Pulse Compression and Pulse Train Generation in Fibre Bragg Gratings

by

Mr. Joe Mok
School of Physics, University of Sydney, Australia

Abstract
Fibre Bragg gratings in transmission exhibit extremely large group delay and large dispersion at wavelengths near their reflection band. In the linear regime, the large group delay can be exploited to demonstrate slow light, which has potential applications in all-optical routers and quantum computers. In the nonlinear regime, the large dispersion interacts with nonlinearity and results in various nonlinear pulse shaping phenomena including soliton pulse compression and pulse train generation via modulation instability. All these effects occur in an optical waveguide no longer than 10 cm. Experimental results demonstrating these effects will be presented.

Brief Biography
Mr. Joe Mok is a Ph.D. student at the School of Physics, University of Sydney, Australia. He received the Bachelor of Technology degree with honours in optoelectronics in 2001, and the MSc in physics with honours in 2003 at the University of Auckland, New Zealand. His current research area is linear and nonlinear pulse propagation in fibre Bragg gratings.

Date : 24 February 2005 (Thursday)
Time : 4:00p.m. – 5:00p.m.
Venue : ORC Multi-Function Room MMW4441
Optoelectronics Research Centre
4/F., Mong Man Wai Bldg
City University of Hong Kong, Kowloon Tong

ALL ARE WELCOME
This seminar will be given in English

Enquiry : Ms Vivian Lee, Optoelectronics Research Centre, City University of Hong Kong
Tel. : 2788 9743 Fax : 2784 4674