

Gradient-index metamaterials and spoof surface plasmonic waveguide

Hui Feng Ma

State Key Laboratory of Millimeter Waves Southeast University, Nanjing 210096, China

City University of Hong Kong, 11 October 2016

Contents

Metamaterials

Effective Metamaterial Properties

Design of Meta-Atoms

- Resonant meta-atoms: provide extreme parameters (Narrow band and high loss)
- Nonresonant meta-atoms: provide wideband parameters with low loss
- Provide fully electromagnetic characteristics
- Provide highly anisotropic characteristics

♦ Metamaterials can be homogeneous or highly inhomogeneous

Some examples of metamaterial experiments

Verification of a Negative Index of Refraction Resonant & homogeneous

Science 292, 77 (2001)

 $\mu_r > 0$ $\mu_{\theta} = \text{const.}$ $\mathcal{E}_r = \text{const.}$

Invisible cloak **Resonant & inhomogeneous** Science **314** 977 (2006)

Ground-plane cloak Nonresonant & inhomogeneous Science 323, 366 (2009)

Problem and Motivation

Advantage

- Metamaterials Exciting topics
- A lot of new concepts, new findings

- Large amount of theoretical work and/or numerical simulations, and lack of experimental realization
- The realizable metamaterial devices are mostly narrow band with big loss
- The most experiments are limited in 2D space

- Realize metamaterial devices by using actual
 - meta structures
- 3D broadband and low loss metamaterial devices for practical applications

Gradient-index metamaterials

- Flat Lenses and Luneburg lens based on geometrical optics
- > 3D ground-carpet cloak and flatten Luneburg lens based on quasi-conformal mapping

Metamaterial Flat Lens Antennas

H. F. Ma, et al., JAP 107, 1, 2010

Gradient Index

Southeast University

Simulations

Southeast University

- Coat-Core-Coat
 Sandwich Structure
- Core: Gradient
 Index Lens
- Coat: Impedance
 Matching Layer

X. Chen, H. F. Ma, T. J. Cui, JAP, 110, 044904, 2011

Design of unit cells

Fabricated 3D Flat Lens

Aperture Size 9.6cm

-13dB from 8 to 12 GHz

Southeast University

Measured Gain 23 dBi @12 GHz 6dBi higher than the bare horn

Flat Lens: Polarization Beam Splitter

H. F. Ma, T. J. Cui, et al. Sci. Rep., 4, 6337, 2014

Southeast University

Anisotropic GRIN metamaterial lens

Flat Lens: Polarization Beam Splitter

Southeast University

Anisotropic Flat Lens: Polarization Beam Splitter

(a) $\Phi = 45^{\circ}$, E can be decomposed to $E_x(E_{\parallel})$ and $E_y(E_{\perp})$, in which $|E_x| = |E_y|$. (b) E_x and E_y are controlled by AMS1 and AMS2, respectively.

Flat Lens: Polarization Beam Splitter

Luneburg Lens

$$n = \sqrt{2 - \left(r/R\right)^2}$$

Southeast University

- Expensive
 - Discrete Multilayers with spherical shells
 - Impedance Mismatch among Layers

Luneburg Lens: 2D Experiments

H. F. Ma, T. J. Cui, et. al. *Chin. Sci. Bulletin* 55, p. 2066, 2010

Southeast University

(Degrees)

Luneburg Lens: 3D Experiments

Southeast University

H. F. Ma, T. J. Cui, et. al. IEEE Trans. Antennas Propag. 6 (5): 2561-2569, 2013

Flattened Luneburg Lens: Experiments

Flattened Luneburg Lens: Experiments

Southeast University

Measured Near Fields

Measured near-field distributions when the feeding positions are different. A beam steering is observed.

Measured at 12.5 GHz Measured at 15 GHz Measured at 18 GHz

C Southeast University

Measured Far Fields

- 1) High gain (22.7dBi);
- 2) Dual polarizations;
- 3) Large radiation angles (up to 50°);
- 4) Broad band (from 12 to 18 GHz).

Carpet cloak: Compact 2D Experiments

Carpet cloak: 3D Experiments

а

ARTICLE

Received 12 Mar 2010 | Accepted 5 May 2010 | Published 1 Jun

Three-dimensional broa cloak made of metamat

Hui Feng Ma^{1,*} & Tie Jun Cui^{1,*}

b

H. F. Ma, T. J. Cui, Nature Communications, June 2010

Ten Breakthroughs in China Science in 2010

Measured far-field patterns

Spoof surface plasmonic waveguide

- > An Ultra-thin corrugated plasmonic waveguide
- > High-efficiency conversion between guided waves and SSPPs
- Convert SSPPs to leaky waves

Spoof surface plasmon polaritons (SSPPs)

Surface plasmon polaritons (SPPs)

O. Benson, Nature, 480, 193-199, 2011

Exponential decay in both directions

- Natural SPPs only exist at optical frequencies.
- To realize SPPs at lower frequencies (GHz, THz), spoof SPPs can be suppotred by etching structures on metal surface.
- The concept of "designer" surface modes opens opportunities to control and direct the radiations at surfaces within a subwavelength region.

Pendry *et* al., *Science* 305, 847 (2004). Garcia-Vidal *et* al., *J. Opt. A: Pure Appl. Opt.* 7, S94 (2005).

Spoof Surface plasmon polaritons (SSPPs)

Spoof SPPs: Ultra-thin plasmonic waveguide

Southeast University

- Experiment results: Wideband (7GHz – 11 GHz)
- Excellent propagation properties with low loss and long propagation distance.

X. Shen, T. J. Cui, et al., PNAS, doi 10.1073, 2013.

Spoof SPPs: Ultra-thin plasmonic waveguide

Flexible Copper Clad Laminate (FCCL)

Spoof SPPs: Conversion of Guided Modes and SSPPs

H. F. Ma, et al, Laser & Photonics Review, 8. 146-151 (2014)

Spoof SPPs: Conversion of Guided Modes and SSPPs

Southeast University

$$\eta_{surf}(z) = jX_s \left[1 + M \cos\left(\frac{2\pi}{A}z\right) \right]$$

$$k_N A = nk_0 A + 2N\pi$$
, $N = 0, \pm 1, \pm 2, \cdots$

$$k_{-1} = nk_0 - \frac{2\pi}{A} = k_0 \cos\theta$$

G. S. Kong, H. F. Ma*, et al., Sci. Rep. 6, 29600, 2016

Spoof SPPs: Convert SSPPs to leaky waves

Simulated near-field distributions and far-field radiation patterns

Southeast University

The photograph of the sample and the measured results $\theta=55^{\circ}$ @ 9.3GHz

High radiation efficiency
Beam Scans from 66° to
42° as frequency changes
from 8.4GHz to 9.9GHz

Spoof SPPs: Convert SSPPs to leaky waves

Broadside Radiation @9.3GHz

continuously as frequency changes

Conclusions

- Inhomogeneous gradient-index metamaterials have been developed in microwave frequencies
- High-performance antennas
- Ground-plane cloaks
- Other devices and experiments
- Spoof surface plasmon polaritons can be supported, propagated and radiated by ultra-thin corrugated metal structure in microwave frequency

Thank you for your attention

Email: hfma@seu.edu.cn