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Fig. 2. Relationship between the field acquisition domain and the equivalent
sources on their respective surfaces.



Sub-wavelength Imaging

Fields need not be sampled at the Nyquist rate
of 0.5A. The fields can be computed further
apart.

Existence of evanescent waves improves the
resolution of the reconstruction of the sources.
The presence of evanescent waves does not
make the solution procedure unstable.

Sub-wavelength resolution of imaging as the
sampling is relegated to the source plane.

Fields need not be measured on a canonical
surface. It can be measured along a line, along
a plane, or over an arbitrary shaped surface.




Sub-wavelength Imaging

No need to mechanically move a probe. One
could place an array of receiving antennas.

Truncation error in the measurement has less
Influence on the accuracy of the source/far
fleld reconstruction.

For planar measurement planes, this method
IS more accurate than the conventional
Fourier techniques at the expense of 3 to 4
times slower computationally than the FFT as
it Is Implemented through the conjugate
gradient and the FFT technique.




Sub-wavelength Imaging

Can easily be extended to amplitude-only
data measured over one plane or over
multiple planes.

This methodology Is based on Maxwellian
Physics and therefore the transformations
are guite accurate and in most cases even
exact.
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Figure 2: Equivalent Magnetic Current Approach
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and O otherwise.
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Fig. 4. Influence of the mesh edge orientation for expanding the currents
using the RWG basis. (a) Some edges are coincident with the oriemtation
of the currents. (b} Edges and currents do no have coincident onentations.
(c) Definition of the current orientaton when using the pulse basis.
(d) Definition of the current orientation when using the RWG basis.
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Fig. 6. (a)} Number of singular values of the matrix. {b) Rate of convergence of the conjugate gradient method along with the residuals. The dashed red line
represents the 1e — 5 threshold.



Reconstructed Jz using the CG method.
MNormalized amplitude (dB)

Reconstructed Jz using the SVD method.
Mormalized amplitude (dB)
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Fig. 13. Reconstructed equivalent currents. J,, component {normalized am-
plitude, in decibels). H1 = 3.20 m: {a) f = 1.03 GHz, pulse basis; (b) f =
1.03 GHz, BWG basis; (c) f = 2.50 GHz, pulse basis; and {d) f = 2.50 GHz,
BEWG basis.
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Fig. 13. Reconstructed equivalent currents. .J,, component (normalized am-
plitude, in decibels). R1 = 3.20 m: (a) f = 1.03 GHz, pulse basis; (b) f =
1.03 GHz, BWG basis: (c) f = 2.50 GHz, pulse basis; and (d) f = 2.50 GHz,
RWG basis.
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Fig. 14. Reconstructed equivalent currents. J, component (normalized am-
plitude, in decibels). Ho = 5.25 m: {a) f = 1.03 GHz, pulse basis; (b) f =
1.03 GHz, RWG basis; (c) f = 2.50 GHz, pulse basis; and (d) f = 2.50 GHz,
RWG basis.
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Fig. 11. Measured electric field (normalized amplitude, in decibels) at dis-
tances corresponding to Ry = 3.20 m and Ry = 5.25 m and plane ¢ = 0°.
(a) f =1.03 GHz. (b} f = 2.50 GHz Blue line: field copolar component
| By ). Red line: field crosspolar component (Ex ).
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Fig. 11. Measured electric field (normalized amplitude, in decibels) at dis-
tances corresponding to Ry = 3.20 m and Ry = 5.25 m and plane ¢ = 0°.
(a) f =1.03 GHz. (b} f = 2.50 GHz Blue line: field copolar component
| By ). Red line: field crosspolar component (Ex ).
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Example 1

SOURCE: Four y-directed dipoles placed at the
corners of a 4\ x 4). planar surface

ASSUMED SOURCE: a 5\ x 5\ planar magnetic
current sheet containing M, and M, components
divided into 25 x 25 current patches.

MEASUREMENT: Near fields sampled over the
51 x 5 plane at a distance 3 A from the source.

Equivalent magnetic current patches are used to
approximate the dipoles.

Modal expansion will be valid only over
tan~1([2.5-2.0]/3) = +10°
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Fig. 3. Comparison of exact and computed far fields for @ = 90 cut for
2 > 2 electric dipoles on a 4A X 4A surface using planar scanning.



Fig. 4. (a) Comparison of exact and computed far fields for @ = 50 cut
for 2 X 2 magnetic dipoles on a 4\ X 4A surface using planar scanning
and equivalent magnetic current approach; (b) comparfson of exact and
computed far fields for @ = 90 cut for 2 X 2 magnetic dipoles on a
4A X 4A surface using planar scanning and equivalent magnetic array
approximation.

Here 20 x 20 dipole array are used to approximate
the current source
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Modal Integral

Expansion Equation
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N ,——\_/
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DIFFERENCE IN PROCESSING BETWEEN THE MODAL EXPANSION
METHOD AND THE INTEGRAL EQUATION APPROACH



Example 3: Using Measured Data

e 32 X 32 microstrip patch array uniformly

distributed over a 1.5m x 1.5m surface.
The operating frequency Is 3.3 GHz.
The array Is considered to be in the x-y
plane. The near field is measured on a
3.24m x 3.24m surface at a distance of
35cm from the array. There are 81 x 81
measured points 4cm apart using a WR
284 waveguide.




EQUIVALENT SOURCE: 39 x 39 magnetic dipole
approximation for the source on a 1.56m x
1.56m surface.

MEASUREMENT PLANE: near field is measured
at 81 x 81 points on a 3.24m x 3.24m surface
at a distance of 35cm from the array.

CONVENTIONAL MODAL EXPANSION will
provide good results upto tan—-1(87/35) = +68°
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Fig. 5. Copolarization characteristic for ® = 0 cut for a 32 X 32 patch

microstrip array using planar modal expansion and equivalent magnetic
dipole array approximation.
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Fig. 6. Copolarization characteristic for @ = 90 cut for a 32 x 32
patch microstrip array using planar modal expansion and equivalent
magnetic dipole array approximation.
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Fig. 7. Cross-polarization characteristic for @ = 0 cut for a 32 X 32
patch microstrip array using planar modal expansion and equivalent
magnetic dipole array approximation.
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Fig. 8. Cross-polarization characteristic for @ = 90 cut for a 32 X 32

patch microstrip array using planar modal expansion and equivalent
magnetic dipole array approximation,



Example 4: Using Measured Data

EQUIVALENT SOURCE: 37 x 37 magnetic
dipole approximation for the source on a
1.48m x 1.48m surface.

MEASUREMENT PLANE: near field is
measured at 37 x 37 points on a 1.48m X
1.48m surface at a distance of 35cm from the
array.

CONVENTIONAL MODAL EXPANSION will
not work! This approach is still valid to £35°
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Fig. 9. Copolarization characteristic for @ = 0 cut for a 32 X 32 patch
microstrip array using least-squares and square matrix solutions.
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Fig. 10. Copolarnization characteristic for ® = 90 cut for a 32 X 32
patch microstrip array using least-squares and square matrix solutions.
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Fig. 11. Cross-polarization characteristic for ® = ( cut for a 32 X 32
patch microstrip array using least-squares and square matrix solutions.
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Fig. 12. Cross-polarization characteristic for @ = 90 cut for a 32 X 32
patch microstrip array using least-squares and square matrix solutions.



Example 5: Using Measured Data

EQUIVALENT SOURCE: 39 x 39 magnetic
dipole approximation for the source on a
1.56m x 1.56m surface.

MEASUREMENT PLANE: near field is
measured over a narrow strip at 81 x 19
points on a 3.24m x 0.76m surface at a
distance of 35cm from the array.

CONVENTIONAL MODAL EXPANSION will
not work!
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Fig. 13. Copolarization characteristic for ¢ = 0 cut for the microstrip
array when the near-field is measured in a narrow region (3.24 X (.76 m)
as opposed to (3.24 X 3.24 m).
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Fig. 14.  Cross-polarization characteristic for & = 0° for the microstrip
array with data measured on a narrow region (3.24 X 0.76 m).



Example 6: Using Measured Data

EQUIVALENT SOURCE: 39 x 39 magnetic
dipole approximation for the source on a
1.56m x 1.56m surface.

MEASUREMENT PLANE: near field is
measured over a narrow strip at 19 x 81
points on a 0.76m x 3.24m surface at a
distance of 35cm from the array.

CONVENTIONAL MODAL EXPANSION will
not work!
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Fig. 15.  Copolarization characteristic for & = 90° cut for the microstrip
array with data measured on a narrow region (0.76 X 3.24 m).
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Fig. 16. Cross-polarization characteristic for ¢ = 90° cut for the mi-
crostrip array with data measured on a narrow region (0.76 X 3.24 m).
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Polar plot of the fields at 20 cm




Polar plot of the fields at 50 cm




Polar plot of the fields at 1m




Polar plot of the fields at 100m
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1 -40

F=1800 MHz; Planes located at z1 = 0, and z2 = -0.2 m;

A planar domain of size 2.0 m x 0.4 m (antenna: 1.6 m x 0.3 m)
EgMC consisted of 120 x 40 Hertzian dipoles

as basis functions




Polar plot of the fields at 50cm




Polar plot of the fields at 1m




Polar plot of the fields at 100m




Polar plot of the fields at 21000m
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-20 -10 0 10 20 30

Box size around the antenna3m X 2m X 4 m,
EIRP value of 1300 Watts :
For Spain Emax = 58.34 V/Im (35.3 dBV/m)







Proposed direct optimization

Establishment of

Ampl. Data - Scannin
|E1meas| |E2meas|

Equivalent problem }

E(M) = IM -Green _ func -ds )
source domain
E(M)-E" (M)~ Ere =0

\ %

. . . I
Numerical solving: optimize cost function

min F( _>n ) E: — E>n,meas ) Er’:,meas ]’ n=1.,N

K N arbltrary scanning points /

M, sources




E = —GM,

meas, x

Emeas y = GMx
‘—fk{}R 1
v [, oo+ B
Matrix Equation:G M = E

Amplitude Only
Matrix Equation: G M = |E |



Results

From synthesized data:
* Chessboard-like magnetic current density

From measured data:

"Splas” antenna: Remote user terminal of
a CDMA satellite system. (Prodat) with
Reflector and splash plate (subreflector)
antenna



Reconstructed sources of the "chessboar
magnetic current
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Results from measurements, “splas”

Antenna: Remote user -
terminal of a COMA satellite Planar, 0.88mx0.88m,
system (Prodat) 88x88 field points.
‘Reflector and splash plate * R=0.4 m, R,=1.0m
(subreflector) antenna
‘Diameter=0.4m :>
- Freq=12,625 GHz, linear pol. Measurement
facility

Laboratorio de
Ensayos, Secr. Gral.
Comunicaciones

(MCYT), El Casar,
Spain

Aperture
distribution

r (cm)
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20




Reconstruction of sources, "splas”
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Planar near-field measurement using phased array as probe antenna.



d= 3.0)
z, = 50 ohms

AX = Ay = 0.51A | |

¥x o
n =9 {(Ix3) l/

Fig. 4. Planar near-field measurement configuration. The test antenna is a
resonant size electric dipole. The probe antenna is a phased array (n = 9).



TABLE 1

INPUT IMPEDANCE OF THE TEST ANTENNA AS A FUNCTION
OF THE NUMBER OF ELEMENTS OF PHASED ARRAY PRORBE

R Zin
1 73.402 4+ ;41.654
9 74.398 + j39.747
25 71.644 4+ ;39.339
49 73.218 + 740.535
81 72.113 + 739.696
121 73.149 + ;39.705
169 72.874 + j40.454
225 72.350 + j40.256
441 72.948 + j39.716
96 | 72.776 + j40.387

Single 73.129 + j41.797




Sub-wavelength Imaging

Fields need not be sampled at the Nyquist rate
of 0.5A. The fields can be computed further
apart.

Existence of evanescent waves improves the
resolution of the reconstruction of the sources.
The presence of evanescent waves does not
make the solution procedure unstable.

Sub-wavelength resolution of imaging as the
sampling is relegated to the source plane.

Fields need not be measured on a canonical
surface. It can be measured along a line, along
a plane, or over an arbitrary shaped surface.




Sub-wavelength Imaging

No need to mechanically move a probe. One
could place an array of receiving antennas.

Truncation error in the measurement has less
Influence on the accuracy of the source/far
fleld reconstruction.

For planar measurement planes, this method
IS more accurate than the conventional
Fourier techniques at the expense of 3 to 4
times slower computationally than the FFT as
it Is Implemented through the conjugate
gradient and the FFT technique.




Sub-wavelength Imaging

8. Can easily be extended to amplitude-only
data measured over one plane or over
multiple planes.

9. This methodology Is based on Maxwellian
Physics and therefore the transformations
are guite accurate and in most cases even
exact.
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