Sparse Portfolio Design

Munir, Jalil (Information Engineering) Prof. Leung Chi-Sing

Background

- Portfolio Optimization: Optimizing the allocation of funds w in a portfolio to maximize return and minimize risk
- Mean-Variance Model: $\min_{\mathbf{w}} \underbrace{\mathbf{w}^{\mathsf{T}} \mathbf{K} \mathbf{w}}_{\mathsf{Risk}} \beta \underbrace{\mathbf{u}^{\mathsf{T}} \mathbf{w}}_{\mathsf{Return}} s.t. \underbrace{\mathbf{w}^{\mathsf{T}} \mathbf{1} = 1}_{\mathsf{Budget}}$
- K is the covariance matrix and u is the average daily return of the assets, and β is risk tolerance
- MV model results in dense portfolio which is more expensive and complex
- $oldsymbol{K}$ considers both overperformance and underperformance risky

Objective

Create a optimization which:

- Considers underperformance more risky
- Produces a long-only sparse portfolio
- Enforces reallocation limits

Methodology

Downside deviation diagonal matrix **D**:

- Each value on the diagonal is $\sqrt{LPM_2(0)}$ of the returns of an asset
- Penalizes stocks with large or frequent underperformance

Modified
$$\hat{\mathbf{K}} = \mathbf{K}_{\text{denoised}} + \gamma \mathbf{D} \times \frac{\text{mean}(\text{diag}(\mathbf{K}_{\text{denoised}}))}{\text{mean}(\text{diag}(\mathbf{D}))}$$

• γ to control weighting of D

Formulation:
$$\min_{w} f(w) = \underbrace{w^{\mathsf{T}} \widehat{K} w}_{\mathsf{Risk}} + \beta \underbrace{u^{\mathsf{T}} w}_{\mathsf{Return}} + \alpha \underbrace{(w^{\mathsf{T}} 1 - 1)^2}_{\mathsf{Budget}}$$

Projection for sparsity, weight and reallocation constraints

- First project values with non-zero lower bounds
- Project remaining until desired sparsity
- Done at each step of gradient descent

Results

Tested using sliding window model

Sliding window model

Index	Assets	$T_{\rm train}$	$T_{ m test}$	Total days	Start Date	End Date
S&P 500	472					
Russell 1000	807	504	63	2520	3/2/2015	3/2/2025

How LPM considers data

	Algorithm	Bounded	Note
		Reallocation	
	PGDBDR (Mine)	Yes	
	PGDB		Mean-Variance
	PGDDR (Mine)	Yes	
	PGD		Mean-Variance
	Fixed Target	Yes	Minimizes returns below target

• Updated weight w

