
Background

• Portfolio Optimization: Optimizing the allocation of funds 𝒘 in a portfolio to maximize return and minimize risk

• Mean-Variance Model: 𝑚𝑖𝑛𝒘𝒘
⊤𝑲𝒘
Risk

− 𝛽 ถ𝒖⊤𝒘
Return

𝑠. 𝑡. 𝒘⊤𝟏 = 1
Budget

• 𝑲 is the covariance matrix and 𝒖 is the average daily return of the assets, and 𝛽 is risk tolerance

• MV model results in dense portfolio which is more expensive and complex

• 𝑲 considers both overperformance and underperformance risky

Objective

Create a optimization which:

• Considers underperformance more risky

• Produces a long-only sparse portfolio

• Enforces reallocation limits

Methodology

Downside deviation diagonal matrix 𝑫:

• Each value on the diagonal is 𝐿𝑃𝑀2(0) of the returns of an asset

• Penalizes stocks with large or frequent underperformance

Modified ෡𝑲 = 𝑲denoised + 𝛾𝑫 ×
mean diag 𝑲denoised

mean diag 𝑫

• 𝛾 to control weighting of 𝑫
Formulation: min
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Projection for sparsity, weight and reallocation constraints

• First project values with non-zero lower bounds

• Project remaining until desired sparsity

• Done at each step of gradient descent

Results

• Tested using sliding window model
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Index Assets 𝑇train 𝑇test Total days Start Date End Date
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Algorithm Bounded 

Reallocation

Note

PGDBDR (Mine) Yes

PGDB Mean-Variance

PGDDR (Mine) Yes

PGD Mean-Variance

Fixed Target Yes Minimizes returns below target
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How LPM considers data

Data Data Considered
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Projected Gradient Descent

Intermediate weight 𝒛

Updated weight 𝒘

Projection operation with sparsity 3

Sliding window model


