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Antenna Arrays
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Abstract—We have adapted Schelkunoff’s method of antenna
pattern synthesis to the design of superoscillatory waveforms. Our
method stems from the observation that superdirectivity and su-
peroscillation are dual phenomena in the space and spectral do-
mains; it can be applied to construct any periodic superoscillatory
wave functions. Using this method, we designed two subwavelength
focusing schemes—in free space and within a waveguide—at an
image distance of five wavelengths. We first describe how we extend
the concept of superdirectivity toward constructing superoscilla-
tory waveforms, then provide in-depth formulations as they apply
to each design example. We also report full-wave simulation results
verifying subwavelength focusing to 0.6 times that of the diffraction
limit at a distance five wavelengths away from the source.

Index Terms—Diffraction limit, image resolution, subwave-
length focusing, superdirectivity, superoscillation.

I. INTRODUCTION

I N THE PAST decade, there has been considerable amount
of work in focusing electromagnetic waves to dimensions

below those allowed by the diffraction limit, with numerous
intended applications including imaging, sensing, and lithog-
raphy. Most of these works achieve focusing using evanescent
waves [1], [2], which limits their focal lengths to the evanes-
cent near field corresponding to distances typically less than
half a wavelength from the focusing device. Clearly, it would
be very desirable to have a subwavelength focusing device with
a longer working focal length. One route to such a focusing
device has recently been proposed [3], [4], making use of the
concept of superoscillation. Superoscillation is a phenomenon
whereby the delicate interference of propagating electromag-
netic waves results in an overall waveform that, within a limited
stretch of space, contains variations faster than the highest spa-
tial frequency component of the electromagnetic wave involved.
Since only propagating waves are involved: 1) the focusing is
certainly of the subdiffraction type; and 2) the subwavelength
focusing capability can be extended to much longer imaging dis-
tances—to several wavelengths and beyond.

In this work, we propose a method to synthesize superoscil-
latory waveforms by means of adapting from the theory of
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superdirective antennas. This adaptation allows us to: 1) design
superoscillation waveforms using well-established analytical
formulations; and 2) arrive at implementations that achieve
significant focusing improvements over the diffraction limit
while maintaining reasonable robustness, from which practical
focusing devices can be built. We first review superdirective
antennas, then view them in an alternate perspective that readily
connects to superoscillations. Subsequently, we build upon this
link and introduce a new approach to designing superoscillatory
waveforms. We then demonstrate our approach by constructing
superoscillatory waveforms in two environments—in free space
and within a waveguide. For each case, we first analytically
determine the required source excitation, and then provide
full-wave simulation results verifying subwavelength focusing
at an image distance of .

II. THEORETICAL FRAMEWORK

A. Schelkunoff’s Approach to Superdirectivity

It has been well known that one can represent the far field of
an array of isotropic antennas using the array factor

where (1)

See Fig. 1(a) for a diagram of the array. Here, is the number
of elements in the array, is the complex excitation coefficient
for the th element, and represents the phase shift between
adjacent array elements, which depends on the uniform element
separation , the spatial frequency , and the angle of observa-
tion . Schelkunoff, in [5], recognized the right-hand side of (1)
as a polynomial function with zeros on the plane
of complex ; is then the value of on a further re-
stricted domain of real values of , which corresponds to an arc
on the unit circle joining to , as shown in Fig. 1(b)
for . In antenna array theory , this restricted domain is
called the visible region (VR) of the antenna array. Schelkunoff
proposed to design the antenna pattern by appropriately placing
zeros to achieve a desired profile for along the VR.

A case of particular interest occurs when . Here, the
VR subtends an angle less than from the origin, and an in-
visible region (IR) exists, as shown in Fig. 1(b), along which
the value of does not affect . Hence, the zeros of the
polynomial can be concentrated along the VR to obtain sharp
variations. This gives rise to the concept of superdirectivity: By
exciting an antenna array according to weights derived from
the appropriate placement of zeros, one can form an arbitrarily
sharp antenna beam with a fixed-size antenna array.
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Fig. 1. (a) A diagram of an antenna array, with the element separation �, the
beam observation angle �, and the coordinate directions defined. (b) The plane
of complex�, showing the visible region (VR, thick dashed curve) and the invis-
ible region (IR) for an array with � � ���. The labeled points are A �� � ��,
B �� � � � ��, and C �� � � � ���.

B. Space-Spectral Perspective to Antenna Array Design

We now view Schelkunoff’s process of antenna design from
another perspective, which we subsequently adapt toward de-
signing superoscillatory waveforms. We first write

(2)

as the continuous excitation function for an array aligned along
the -axis. Since we consider an array of isotropic antennas, the
far field corresponding to excitation is given by its angular
spectrum [6], which is found by a Fourier transform in the spa-
tial domain

(3)

Keeping in mind that , we see from (1) and (3) that
for (i.e., within the VR). Thus, one can

view as an extension of : While only describes
propagating waves, describes both propagating and
evanescent waves. Furthermore, we can understand superdi-
rectivity as a twofold process. First, the weights on an antenna
array are designed to fine-tune its propagation spectrum, at the
expense of tolerating an uncontrolled, often high-amplitude,
evanescent spectrum. Then, in the far field, the propagation
spectrum gets mapped into the antenna’s radiation pattern,
thus achieving superdirectivity. In this twofold process, only
the latter step involves the far-field approximation; the initial
step rests purely on a Fourier transform basis, which allows for
handy extensions to other areas of interest.

C. From Superdirectivity to Superoscillation

Here, we build upon our perspective on superdirectivity
to construct superoscillatory waveforms. To achieve this, we
simply swap the space and spectral domains along the array
axis ( ) to obtain

(4)

That is to say, uniformly spaced spectral lines with weights
(excitation weights from a superdirective antenna) cor-

respond to a spatial distribution with subwavelength peaks,
which is precisely a superoscillatory waveform. Just as the

superdirective antenna is a fixed-size antenna that can form
an arbitrarily narrow beam, the superoscillatory waveform
will be spectrally band-limited to include only propagating
waves; nonetheless, it can still focus electromagnetic radiation
to an arbitrarily small spatial width, given the presence and
proper tuning of sufficiently many closely spaced spectral lines.
The only caveat is that while the high-amplitude evanescent
waves generated by superdirective antennas are invisible in the
far field, the high-amplitude sidebands of a superoscillatory
waveform appear along with the subwavelength peak. Indeed,
high-amplitude sidebands have been proven to exist in all su-
peroscillatory waveforms [7]. Notwithstanding their presence,
the generated subwavelength superoscillation peak may still
prove useful in many applications.

III. CONSTRUCTION OF SUPEROSCILLATORY WAVEFORMS

We now apply the forgoing formulation to construct super-
oscillatory waveforms in two environments: in free space and in
a waveguide. While for simplicity, we render all fields invariant
in the -direction and consider 1D electric field focusing in both
designs, the principles we demonstrate here can be straightfor-
wardly extended to 2D focusing in a 3D environment.

A. Free Space Superoscillatory Waveform

In this first example, we design a free space superoscillatory
focusing device that generates, at the source plane, spec-
tral lines in the following form:

(5)

where is the uniform line spacing, and
marks the location of the first spectral line. Our task will

be to find the coefficients , which will allow us to form a sub-
wavelength superoscillation peak at a distance of away
from the source.

We begin by adapting from an established method that de-
signs a superdirective antenna through analytical expansion into
a basis of Tschebyscheff polynomials [8], [9]. In light of our
above formulation, we follow this same method to determine
the set of zeros, , which yields an image waveform with the
narrowest central peak width and constant sidelobes at 20% the
central peak field strength (4% intensity) for a range of on
both sides of the peak. Fig. 2 shows the resultant zero locations
and the corresponding spatial spectrum, , calculated
as follows:

(6)

(7)

Relating to in (5) through back propagation
by the image distance , we find from (8)

where (8)
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Fig. 2. (a) The location of zeros in the complex� plane for synthesizing a free
space subwavelength superoscillatory waveform. (b) A plot showing amplitudes
for the five spectral lines required to achieve superoscillation.

Finally, taking the inverse Fourier Transform of (5) gives us the
desired spatial excitation function at the source plane

(9)

We verify our results with a 2D full-wave simulation at 3 GHz
using Comsol Multiphysics. Fig. 3(a) shows the simulated elec-
tric field distribution overlaid atop the computation domain. We
excite a periodic electric field function along
the plane and observe the subwavelength focus at .
The simulation region is reduced to one period using periodic
boundaries (implemented here by perfect magnetic conductors)
in the -direction. Fig. 3(b) shows a close up of the imaged elec-
tric field in the region , normalized alongside the
source electric field and the diffraction-limited sinc function.
While the waveform at the source plane contains no subwave-
length variations, a subwavelength peak appears in the image
whose full-width at half-maximum (FWHM) measures .
This is greatly improved over the diffraction-limited sinc func-
tion’s FWHM of even though the focal plane is located
from the source. Fig. 3(c) shows that the simulated and calcu-
lated electric fields agree extremely well across the entire image
plane and reveals that the subwavelength peak has an amplitude
6.6% that of the sidebands. In the following example, we shall
demonstrate that this can be improved by using more spectral
lines.

We stress that our obtained result differs from a superdirec-
tive antenna pattern based on two observations. First, whereas
the source spectrum for a superdirective antenna contains
high-amplitude evanescent components, our source spectrum
entirely comprises propagating components, whose amplitudes
are as shown in Fig. 2(b). Second, our simulated electric field
amplitude, as shown in Fig. 3(a), has no angular dependence.
This signifies that the focus does not reside in the far field
and hence cannot be produced by superdirectivity, which is a
far-field phenomenon.

B. Waveguide Superoscillatory Waveform

While operational, the above-introduced scheme might not
be most suited for microwave implementations. This is because
in order to produce the sharp lines in the spatial spectrum,
one needs to extend the source plane excitation across many

Fig. 3. Superoscillatory subwavelength electric field focusing in free space.
(a) The simulated electric field distribution in 2D. Depicted geometries include
the source plane (dotted, left side of the domain), the image plane (dashed, ��
from the source), the absorptive termination (PML), and periodic (PMC) bound-
aries (thick lines in the��-directions). (b) Electric field amplitude at the image
plane, for the region ��� � ��� (thick solid line), compared alongside the field
amplitude at the source plane (thin solid line), and the diffraction-limited sinc
function (dashed line). (c) Electric field amplitude at the image plane, showing
extremely well agreement between simulation (solid line) and theoretical cal-
culation (circles).

wavelengths. This might lead to device apertures too large to
be practically implemented. Instead, a waveguide provides a
comparatively compact environment in which one can generate
uniformly spaced spectral lines in the form of waveguide modes
and thereby construct superoscillatory waveforms. Fig. 4(a)
shows our proposed superoscillatory focusing scheme within a
rectangular waveguide. We choose the waveguide cross section
to be by , such that only the , , and
propagating modes can be excited with an even excitation. Five

-directed line sources excite the waveguide at . They are
spaced apart, which is guaranteed sufficient by Nyquist’s
sampling criterion since here we only deal with propagating
waves. We seek to feed these line sources with current weights

, such that we excite the aforementioned modes in correct
proportions to form a superoscillatory focus away from the
sources.

This is clearly a very simple way to implement a subwave-
length waveform. In the following, we complete our design by
determining the weights . The three aforementioned modes
give us spectral lines spaced apart, whose
amplitudes at the source plane can be designed in a manner very
similar to what we introduced for the free space superoscillatory
waveform. Having six spectral lines gives us freedom in placing
five zeros on the complex plane. We place four of the zeros at
the same locations as shown in Fig. 2, and the remaining zero at

to form nulls at the waveguide walls. With these zero
locations, we follow (6) to (8) to find the spectral coefficients
at the source plane. The desired source plane spectrum is now
described by (5). Since we seek to excite the waveguide with
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Fig. 4. Superoscillatory subwavelength electric field focusing in waveguide.
(a) A diagram of the waveguide superoscillation focusing scheme showing the
width and height of the waveguide, the excitation line sources, and the subwave-
length focusing image plane. (b) The simulated electric field amplitude at the
image plane for the region ��� � ��� (solid line), compared alongside theoret-
ical calculation (circles) and the diffraction-limited sinc function (dashed line).
(c) Typical electric field amplitude distributions across the image plane with 1%
error in current excitations.

line source elements, we divide out the line source’s spectral ef-
fect, [10], to obtain the
desired array contribution to the source spectrum

where (10)

Finally we sample its inverse Fourier Transform to find .

(11)

to (12)

We verified our results with a full-wave simulation at 3 GHz
using Ansoft HFSS. Fig. 4(a) shows the simulation scheme.
Fig. 4(b) shows the simulated electric-field profile at the image
plane, for the region , compared to theoretical calcu-
lation and the diffraction-limited sinc function. Again, the simu-
lated electric field agrees extremely well with the calculated pro-
file. The simulated FWHM measures —identical to the
free space case and significantly improved over the diffraction
limit. While we have not shown the comparison in a figure, the
amplitude of the subwavelength peak is about 11% of the peak
of the sideband amplitude. This represents a 70% improvement
over the free space case, which resulted because our placement
of the extra zero worked toward decreasing the sideband ampli-
tudes. This figure also compares quite favorably to other pro-

posed superoscillation focusing schemes, such as the one pro-
posed in [4], where a subwavelength peak with a similar focal
width contains only of the total power at the cross sec-
tion of the focus. Fig. 4(c) shows typical variations in image
profiles when we vary the excitation currents by a randomly
phased white Gaussian component with mean amplitude 1% of
the strongest excited current component. Despite the appear-
ance of an uneven and increased sidelobe level, our achieved
subwavelength focusing is unaffected by this level of perturba-
tion. Our results show that: 1) one is able to tune the amplitude
of the subwavelength peak relative to that of the sidelobes by
changing the locations of zeros or introducing zeros; 2) it is pos-
sible to obtain a clear focusing improvement over the diffraction
limit with reasonable sideband amplitudes; and 3) our proposed
implementation can tolerate small variations in excitation cur-
rents. Further tradeoffs between focal width, peak amplitude,
and device sensitivity can be facilitated by tuning zero locations,
changing the number of spectral lines, and adjusting the spectral
line spacing. This gives one the flexibility to tune subwavelength
superoscillatory waveforms to specific applications of interest.

IV. CONCLUSION

We presented a method of designing a superoscillatory
waveform via adapting the theory of superdirectivity. Using
this method, we designed superoscillatory waveforms in two
environments: a free space superoscillatory waveform imple-
mented using a continuously varying source field distribution,
and a waveguide superoscillatory waveform implemented using
an array of five embedded line sources. In both cases, full-wave
simulations agree extremely well with design calculations and
verify the achievement of subwavelength foci 0.6 times that of
the diffraction limit at five wavelengths away from the source.
Both the focal width and the image distance can be further
improved with power and sensitivity tradeoffs, thus bringing
much flexibility to subwavelength focusing capabilities at the
multiwavelength range.
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