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Broadband superoscillation brings a wave into perfect three-dimensional focus
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The fundamental properties of a wave precludes it from being localized to subwavelength distances in all
dimensions of the wave’s existence. The inability to focus electromagnetic waves to an all-direction subwavelength
spot limits the 3D resolution of a conventional imaging system to about half the imaging wavelength. A plethora
of super-resolution imaging systems have been designed which obtain super-resolution in one or two (but not
all) dimensions, but they suffer various restrictions in working distance and the classes of objects they can
image. In this paper, we report a first investigation into a wave that is focused to subwavelength dimensions
in all directions. After reviewing the physics of wave dispersion and diffraction which seemingly preclude this
phenomenon, we sidestep these preclusions using a broadband superoscillation waveform and synthesize an
all-direction subwavelength focus. We report the salient spatial and temporal features of this wave, and apply it
to achieve 3D super-resolution imaging.
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I. INTRODUCTION

Can one focus a waveform to subwavelength dimensions
in all directions? The very nature of a wave seems to
preclude its subwavelength localization in all its directions
of existence. In the field of electromagnetics (the authors’
primary interest), the inability to focus electromagnetic waves
into a subwavelength spot leads to a fundamental resolution
limit on classical imaging systems [1–3]. In many cases, one is
especially interested in obtaining high resolution along one or
two imaging dimensions within a 3D environment. Whereas
it was long accepted that the diffraction limit precludes one
from forming such images with a resolution beyond half the
imaging wavelength, a plethora of super-resolution devices
have been proposed, which sidestep the diffraction limit by
involving and making clever use of evanescent waves [4–11].
These devices achieve super-resolution on the image plane
by generating waveforms which decay exponentially in the
longitudinal direction. Hence while these devices focus a
waveform in 1D or 2D, the waveform remains unfocused in
the third (longitudinal) dimension; moreover, the rapid field
decay along the longitudinal direction limits the working
distances of these devices to about 1/4 of the imaging
wavelength. Alternatively, super-resolution microscopes are
designed which exploit nonlinear optical effects or employ
fluorescent biochemical labels [12–16], but their uses are
limited to imaging prelabeled specimens or samples from
selected material systems. A way to focus electromagnetic and
acoustic waves to subwavelength dimensions in all directions
would provide a direct path to super-resolution 3D imaging,
with immediate applications in microscopy and many medical
imaging modalities involving electromagnetic and ultrasound
waves.
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We think the curious phenomenon called superoscillation
holds potential to focus a wave to subwavelength dimensions
in all directions. Superoscillation refers to a waveform which,
across a finite interval, oscillates quicker than the highest of its
constituent frequency components [17–19]. Original studies
on superoscillations dated at least from the 1960s, under the
topic of prolate spheroidal wave functions [17]. The term
superoscillation was coined in the 1990s by Berry [19] to
describe a phenomenon observed by Aharonov and others on
weak value measurement [18]. Almost immediately, it was
realized that superoscillation applies to general waveform
synthesis and analysis; this realization inspired immense
interest in the study of superoscillations in various fields,
which besides quantum mechanics also included mathematics,
information theory, optics, and electromagnetics [20–34].

A curious and attractive feature of the superoscillation is
that it expands the local effective bandwidth of a wave without
involving evanescent waves and thereby enables the formation
of subwavelength waveform features using only propagating
waves. Previous works demonstrated the use of superoscil-
lations to generate, far beyond the evanescent near field,
subwavelength features on an image plane, which included hot
spots [23–25], speckle patterns [26], and subdiffraction light
beams [27]. These demonstrations led to various proposals
for super-resolution far-field microscopes [28–34], which
yielded subwavelength resolution in the transverse direction.
However, whilst these works concentrated on achieveing
super-resolution and subwavelength features on a transverse
image plane (or a series of transverse image planes), the
longitudinal wave profiles were either unexplored, mildly
focused, or intentionally elongated.

This paper represents an investigation on superoscillation-
enabled all-direction subwavelength focusing and super-
resolution imaging. We begin by examining fundamental
limitations due to the dispersion and diffraction of elec-
tromagnetic plane waves. We shall show that, while using
evanescent waves, one is still bounded by the dispersion
limitation; using superoscillations one may overcome both
dispersion and diffraction limitations to achieve all-direction
focusing beyond the diffraction limit. We then present a
general design procedure for an all-direction subwavelength
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focused superoscillation waveform and discuss its salient
spatial and temporal features. Finally, we demonstrate how
an all-direction subwavelength-focused waveform may be
applied to perform 3D super-resolution imaging.

II. RESOLUTION LIMITS: DISPERSION AND
DIFFRACTION

For a single frequency waveform ut (r,t) = u(r) exp(iωt)
residing in a linear, homogeneous, and isotropic medium (such
as free space), the source-free electromagnetic wave equation
simplifies to the Helmholtz equation, which can be written in
Cartesian coordinates as(

∂2

∂q2
+ k2

q

)
u(r) = 0 for q = x,y,z. (1)

Here kq represents the q-directed spatial frequencies which
are related through the dispersion relationship

k2
m =

(
ω

vm

)2

=
(ωn

c

)2
= k2

x + k2
y + k2

z , (2)

where km is the spatial frequency (or the wavenumber), vm

is the speed of light in the medium, c is the speed of light
in free space, and n = √

μrεr is the refractive index of the
medium. Thus for a wave of a fixed frequency, km is a constant
which depends on the material’s electromagnetic properties.
The dispersion characteristic described by (2) regulates that (i)
one cannot access waves with higher spatial frequency than km,
which one typically needs for fast oscillation and hence high
resolution; (ii) one also cannot access waves with lower spatial
frequency than km, which means one lacks a bandwidth in the
3D k space to form a complete basis, even after one accepts a
resolution limit corresponding to km. Hence the dispersion of
an electromagnetic wave in a material imposes fundamental
limitations on the resolution of an arbitrary waveform in the
medium.

We now steer our discussion towards a 2D xy plane. We do
this by considering the set of plane waves,

uPL(r) = APL exp[−i(kxx + kyy + kzz)], (3)

where kx/km and ky/km ∈ [−∞,∞]. This set of plane waves
forms a complete basis of the solution space of u(r). Far away
from material discontinuities the waveform can be described
solely by propagating plane waves—the subset of (3) with

k2
x + k2

y � k2
m. (4)

Through the mathematical uncertainty principle [35], the
spectral width restriction (4) leads directly to a lower bound
on the waveform’s focal width on the xy plane. This lower
bound, known as Abbé’s diffraction limit [1], is roughly equal
to half the imaging wavelength.

Evanescent-wave-based imaging devices improve the imag-
ing resolution by involving evanescent waves—plane waves
with |kx | > km and/or |ky | > km—in the process of image
formation. This expands the waveform’s bandwidth in the
(kx,ky) domain and hence improves an imaging device’s
resolution in the transverse direction. However, a quick
substitution into (2) shows that this renders kz imaginary
and inevitably leads to exponential waveform decay in the
longitudinal direction. Devices such as the superlens [5] or

the metascreen [10,11] may sidestep Abbé’s diffraction limit
and achieve super-resolution in at most two dimensions, but
as the consequence of the dispersion relationship, they are
fundamentally forbidden from achieving 3D super-resolution.
(We refer the interested reader to a detailed discussion
in Ref. [3].) Hence a fundamentally different paradigm is
needed if one hopes to focus an electromagnetic wave to
subwavelength dimensions in all directions.

Superoscillation-based imaging devices, on the other hand,
do not suffer this fundamental limitation. This is because the
subwavelength features in superoscillatory waves are accom-
panied by high-amplitude regions outside the superoscillation
region [22]. This way, the generation of subwavelength spots
does not amount to the subwavelength localization in the
sense implied by the mathematical uncertainty principle.
While the appearance of such high-amplitude regions can
be seen as a drawback, previous works have shown that,
for 1D and 2D superoscillations, high-amplitude regions
can be adequately separated from the superoscillation region
[22,25,32,34,36–38] such that the superoscillation wave can
be used to perform super-resolution imaging. In the following
section we shall describe a method to construct a wave that is
subwavelength focused in both transverse and longitudinal
directions, hence leading to the demonstration of an all-
direction subwavelength-focused wave.

III. ALL-DIRECTION SUBWAVELENGTH FOCUSING

To construct a 3D superoscillation we require a waveform
which spans a finite volume in the 3D k space. One would read-
ily realize that this cannot be achieved with a single-frequency
waveform, whose isofrequency contour forms a spherical shell
in k space as described by (2). Hence for our construction we
use a broadband waveform with N frequency components.
Moreover, to enforce radial symmetry, we vary the spectral
distribution only as a function of kr = |k|. Figure 1(a) shows
a spectral diagram of the resultant composite waveform: it
comprises N spherical shells with radii kr = kn = ωn/vm (for
n = 1 to N ), concentric to the origin. Mathematically, the
composite waveform has the spectral distribution

U (k,t) =
N∑

n=1

An(t)δr (kr − kn), (5)

and the corresponding spatial profile

u(r,t) =
N∑

n=1

An(t)j0(knr) =
N∑

n=1

An(t)
sin knr

knr
, (6)

where {An(t)} is a set of complex time-varying coefficients
and j0(·) is the zeroth order spherical Bessel function of the
first kind. Tuning the weights An(t) designs the waveform
u(r,t). Since the resolution limitation for u(r,t) arises from
the fastest varying component, we define km = kN to facilitate
comparison to the diffraction limit.

We shall investigate the time-varying nature of the
waveform in the following section. For the moment, we
concentrate our attention at a point in time t = t0, at which
we design our waveform to form a 3D subwavelength focus.
At this point in time the weights {An(t0)} can be treated as
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FIG. 1. 3D subwavelength focusing for a broadband waveform.
(a) A diagram of spectral components involved. Each frequency
component forms a spherical shell in k space. (b) Weights An for
spherical Bessel functions (zeroth order, first kind) which would
superimpose to form a 3D subwavelength focus. (c) The resultant
electric field amplitude (x-axis cut). The waveform is radially
symmetric. (d) A closeup of the superoscillation region (blue, solid)
plotted alongside the fastest varying spherical Bessel function j0(kmr)
(red, dashes). Subwavelength focusing to 66% of the diffraction limit
is observed.

constants. We choose these constants using a method adapted
from superdirective antenna array design [32,36,37,39]. With
this method, we design a corresponding 1D superoscillation
waveform through a Tschebyscheff polynomial matching
procedure, then map the 1D waveform into 3D using a
null matching procedure. The details of the mathematical
formulation are provided in the Supplemental Material which
accompanies this paper [40]. We choose for our construction
16 spherical Bessel functions with a linearly spaced set of
wavenumbers kn = (n − 1/2)�k which correspond to the set
of frequencies wn = vmkn. Using our algorithm, we design a
waveform with (i) minimal peak width, (ii) a superoscillatory
region of 2.4λm, where λm = 2π/km represents the wave-
length of the highest frequency component, and (iii) a uniform
sidelobe field level (SLLi) within the superoscillatory region
which is below 25% that of the main peak (our algorithm
would produce a waveform with a uniform sidelobe level
SLLf which is somewhat lower than SLLi).

Applying these parameters, we obtain the set of spher-
ical Bessel function weights {An(t0)} shown in Fig. 1(b).
Figure 1(c) shows a projection of the waveform along the
x axis. Figure 1(d) shows a closeup of this waveform in the
superoscillatory region, alongside the fastest varying spherical
Bessel function within this bandwidth: u(r) = j0(kmr). While
we only plot the x-axis profile, the waveform focus remains
the same in other directions due to its radial symmetry. The
full focal width at half maximum (FWHM) of the design

waveform measures 0.40λm, which is 66% the width of
the diffraction-limited 3D spot, whose FWHM is 0.603λm.
Clearly, all-direction subwavelength focusing is achieved
while (i) the sidelobes within the superoscillatory region
remain comparable to the diffraction limit comparison, and
(ii) the wave amplitude outside the superoscillation region
remains reasonable—making this waveform amenable to
robust synthesis. More aggressive superoscillation waves can
be designed which feature narrower foci and lower sidelobe
levels. In exchange, a higher proportion of the waveform
energy would reside outside of the superoscillation region [22].

IV. TEMPORAL WAVEFORM PULSATION

A salient feature of the all-direction subwavelength focus
achieved in this manner is that it pulsates with the waveform’s
evolution in time. Since each constituent frequency component
accumulates phase at a different temporal rate, the composite
waveform varies in time with a temporal Bloch period
TB = 1/�f , where �f is the frequency separation between
adjacent spectral components. We describe this time evolution
characteristic by explicitly writing An(t) in (6) as a product
of a complex constant with a temporal variation term. The
resultant wave

ut (r,t) =
N∑

n=1

An exp(iωnt)
sin knr

knr
(7)

encapsulates both spatial and temporal variations of the
waveform.

Figure 2(a) shows a time evolution of the wave profile
around the time t = 0, when the waveform attains the requisite
phase alignment and achieves an all-direction subwavelength
focus. Figure 2(b) plots the wave profile at a few selected
points in time. As the waveform evolves from perfect focus
(t = 0+), we observe that the nearest sidelobes become more
pronounced and eventually overwhelm the central peak. The
central peak initially becomes narrower, but eventually widens
to a level just above the diffraction limit, and remains that way
throughout most of the temporal Bloch period. A blue dashed
line in Fig. 2(a) outlines the 3 dB diameter of the central spot
and shows the pulsation dynamics of the waveform’s central
peak. For this waveform, all-direction subwavelength focusing
was achieved for 4.4% of the waveform period.

V. 3D SUPER-RESOLUTION IMAGING

The pulsing nature of the 3D superoscillation focus can
complicate its application to 3D imaging. This is because
making a direct measurement of the subwavelength focus
(or its scattering off an object) seemingly requires either
(i) instrumentation which can capture the instantaneous (as
opposed to time-averaged) waveform, or (ii) aptly designed
time-gating schemes which filter out unwanted waveform
portions. Whilst such developments represent promising di-
rections for future research, in the remainder of this paper we
show that the aforementioned conditions can be relaxed when
one applies an all-direction subwavelength-focused waveform
as a postprocessing filter. This greatly simplifies the required
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FIG. 2. Temporal waveform pulsation. (a) The time evolution of
the waveform amplitude along the x axis. The waveform is normalized
to show constant strength at the principal peak at x = 0. The blue
dotted line denotes the 3 dB width of the 3D focal spot. (b) Waveform
amplitude profiles at four different times: t = t0 = 0 (blue, solid),
t = 0.005TB (black, dash), t = 0.01TB (red, dash-dot), and t = 0.2TB

(green, dotted). The spot width at t = 0.2TB is indicative of the
waveform width for most of the period, when superoscillatory wave
features are out of focus.

imaging apparatus and leads to a scheme readily applicable to
existing imaging systems.

We show, through a numerical example, how an all-
direction subwavelength focus may help one form a 3D
super-resolution image. Figure 3(a) shows a geometric
schematic with four point objects, arranged in tetrahe-
dral formation and separated by distance s. The posi-
tions of the objects are A(0, − s/2

√
6,s/

√
3), B(−s/2, −

s/2
√

6, − s/2
√

3), C(s/2, − s/2
√

6, − s/2
√

3), and D(0, −

FIG. 3. Super-resolution imaging using an all-direction subwave-
length focus. (a) A schematic showing the geometry of four point
objects in the numerical experiment. The positions of the objects
are A(0, − s/2

√
6,s/

√
3), B(−s/2, − s/2

√
6, − s/2

√
3), C(s/2, −

s/2
√

6, − s/2
√

3), and D(0, − 3s/2
√

6,0). (b) The superoscillation
waveform used in the experiment, plotted with the spherical Bessel
function b0(kr). Clearly, the superoscillation waveform contains an
all-direction subwavelength focus and lower sidelobe levels.

3s/2
√

6,0). A diffraction-limited 3D image of these objects
can be obtained with a variety of methods and for elec-
tromagnetic waves ranging from rf to optical frequencies.
As an example, Fig. 1 in the Supplemental Material [41]
shows the apparatus for a microwave holographic method
[42–44] for diffraction-limited 3D imaging. In this method,
a broadband source-probe pair scans across a series of planes
(with distances D from the source plane). Inverse scattering
is performed on the measured data to recover the object
distribution. Under ideal circumstances in the measurement
apparatus, this procedure recovers the object function with the
limiting resolution of the 3D equivalent of Abbé’s diffraction
limit. Here we synthesize this ideal case by first generating a
3D object’s spectral representation

Sobj(k) =
4∑

s=1

exp (−ik · rs), (8)

where rs for s = 1 to 4 represent the respective locations
for objects A to D. Then we simulate diffraction effects by
applying a 3D low-pass filter FLP(k), which truncates the 3D
spectrum to a sphere of radius km:

Simg(k) =Sobj(k)FLP(k), where

FLP(k) =
{

1, kr � km,

0, otherwise.
(9)

In general Simg(k)—the resolution-limited version of the
object spectrum—is the Fourier transform of the object
distribution as found from a diffraction-limited 3D imaging
algorithm, such as the inverse scattering methods mentioned
above. As such, it contains spectral information over the
band of frequencies used to image the object. We plot the
diffraction-limited object functions in two planes: (i) y =
−s/2

√
6, which intersects objects A, B, and C [Fig. 4(a)]

and (ii) x = 0, which intersects objects A and D [Fig. 4(c)].
For each plane we plot the object function for three separation
distances: s1 = λm (top row), s2 = 0.7λm (middle row), and
s3 = 0.4λm (bottom row), where λm = 2π/km represents the
shortest wavelength of all waves involved. We observe that the
objects, after passing through the low-pass filter representing
the diffraction limit, are barely resolvable at s1, unresolvable
at s2, and resembled a single point object at s3. However, as
we shall demonstrate, applying the filter corresponding to an
all-direction subwavelength-focused wave resolves the objects
at all these distances.

In this numerical example we use the all-direction
subwavelength-focused waveform shown in Fig. 3(b), which
features a focal width of 0.32λm FWHM and a 4λm super-
oscillation region within which the sidelobe level is 7.8% that
of the main peak. As evident from the figure, the spot width
and sidelobe level are significantly reduced compared to the
spherical Bessel function of the highest frequency component.
The design methodology for this waveform, as well as the
design parameters used, are as explained in Sec. III. After we
find the required weights An for the aforementioned waveform,
we substitute it into (5) to arrive at the waveform spectrum
U (k,t) which we implement as a multiplicative spectral filter
SSO(k). Since SSO(k) represents the spectral contents of (7) at
the moment of optimal focus, its imaging performance stands
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FIG. 4. Super-resolution imaging using an all-direction sub-
wavelength focus. (a) Diffraction-limited images obtained for the
cluster shown in Fig. 3(a), along the plane y = −s/2

√
6; (b) super-

resolution images equivalent of (a). (c) Diffraction-limited images
obtained for the cluster shown in Fig. 3(a), along the plane x = 0;
(d) super-resolution images equivalent of (c). The separation distances
are s1 = λm (top row), s2 = 0.7λm (middle row), and s3 = 0.4λm

(bottom row), where λm = 2π/km represents the shortest wavelength
involved in the imaging process.

unaffected by the waveform’s pulsation in time. We use this
spectral filter to reconstruct a super-resolution image:

Srecon(k) = Simg(k)SSO(k),

srecon(r) = iFT{Srecon(k)}, (10)

where iFT{·} denotes the inverse Fourier transform operator.
Figures 4(b) and 4(d) display srecon(r) on the planes y =

−s/(2
√

6) [Fig. 4(b)] and x = 0 [Fig. 4(d)], again for distances
s1 = λm (top row), s2 = 0.7λm (middle row), and s3 = 0.4λm

(bottom row). Evidently, all source objects are clearly resolved
for all three distances. These figures show dramatic resolution
improvement over the diffraction limit in all three directions—
not just over a 2D image area. We have therefore achieved
3D super-resolution imaging by numerically applying an all-
direction subwavelength-focused wave.

VI. DISCUSSION

In this section we make a few remarks regarding our demon-
strations on superoscillation-based focusing and imaging.

A. Synthesizing a 3D superoscillatory focus

First we speculate how one might synthesize a 3D super-
oscillatory subwavelength focus. The designed subwavelength
focus is composed solely of propagating waves. It can be
synthesized by reproducing the corresponding electric and
magnetic currents across any boundary that encloses the focus
[45]. This alleviates the need for placing sources within
subwavelength distance of the actual focus. The required
electric and magnetic currents can be synthesized using a set
of Huygens’ metasurfaces—artificial surfaces with engineered
electric and magnetic responses—which surround the intended

focus [38,46,47]. The generation of a 3D superoscillatory
subwavelength focus would require synchronizing the phase
and amplitude excitation to a large number of Huygens’
sources. From a practical standpoint, this might be best
facilitated by placing the metasurface on a spherical shell
concentric to the focus, where geometric symmetry can be
exploited to minimize the amount of tuning required of indi-
vidual current sources, thus greatly simplifying the excitation
network. Alternatively, a more traditional boundary (such as
a rectangular box) can be taken, where one generates the
appropriate surface currents on each wall using a combination
of a simple source (such as a dipole) and a passive Huygens’
metasurface [48].

B. Sensitivity

Next we remark on the sensitivity of the superoscillation
waveforms, in regard to both the focusing and imaging
simulations.

Figure 5(a) shows typical waveform variations when a
random-phased additive white Gaussian noise is applied to
the spherical Bessel function weights which constitute the
3D subwavelength focus shown in Fig. 1. This estimates
sensitivity in forming an all-direction subwavelength focus
when one deviates from the ideal weights due to practical
imperfections. The signal to noise ratio is 15 dB. As one can
observe, the main lobe width remains unaffected amid slightly
rising sidelobe levels. This shows the designed superoscillation
waveform achieves subwavelength focusing with adequate
robustness, which hence suggests it can be synthesized in an
apparatus with reasonable precision.

We then investigate the sensitivity of the 3D superoscilla-
tion imaging process in a noisy environment. In this scenario,
the precision of the superoscillation filter (i.e., the weighting
of the spherical Bessel functions) does not pose a practical
limit: the filter can attain utmost precision since it is numer-
ically generated and applied. Instead, we suppose that due
to noise or other limitations with the measurement apparatus
errors are introduced into the object distribution Sobj(r), within
a spherical imaging region with a one-wavelength diameter
(contributions outside this area can simply be truncated). This
introduces a corresponding error in Sobj(k) and ultimately
affects the reconstructed image srecon(r) through (9) and (10).
We model this error as a random phased, additive white
Gaussian noise in the spatial domain. Figure 5(b) shows
the y-plane and x-plane images for the case of s = 0.7λm,
for SNRs of 10 dB, 5 dB, and 2 dB. From this subfigure,
we see that the image quality remains reasonable even for
the case of SNR = 5. For comparison, Fig. 5(c) shows the
corresponding images before super-resolution reconstruction.
This subfigure (i) demonstrates that substantial resolution
improvement has been achieved even in the midst of noise
and (ii) shows that the degradation shown in Fig. 5(b) does
not come from the super-resolution algorithm, but instead also
exists to a comparable degree in the original diffraction-limited
image.

The sensitivity analyses in this section suggest superoscil-
lation waveforms can be practically synthesized and used in
superoscillation imaging systems.
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FIG. 5. Sensitivity analysis for superoscillation-based focusing
and imaging. (a) Typical waveform variations (black, dashed) when a
random-phased white Gaussian noise is added to the sub-wavelength
focus shown in Fig. 1. Variations are shown for SNR = 15 dB.
The original waveform is also shown for comparison (blue, solid).
(b) y-plane (top-row) and x-plane (bottom-row) super-resolution
images obtained in the presence of noise, with SNR = 10 dB (left),
5 dB (middle), and 2 dB (right). For this case the source separation
is s = 0.7λm. (c) y-plane (top-row) and x-plane (bottom-row)
diffraction-limited images in the presence of noise, with SNR = 10
dB (left), 5 dB (middle), and 2 dB (right). The source separation is
the same as in (b).

C. Optical super-resolution imaging

The super-resolution imaging procedure we presented in
the previous section applies in general, regardless of how
an object distribution—a distribution of current density—is
obtained. The procedure can be straightforwardly applied

when an object distribution can be obtained from a procedure
such as microwave holography, where one can measure the
amplitude and phase of scattered waves from all angles and
across the entire operation bandwidth. But what about imaging
at optical frequencies, where it is nontrivial to measure the
phase of an optical signal?

Measuring the phase of an optical signal is admittedly
complicated, but very possible, using nonlinear techniques
such as frequency-resolved optical gating (FROG) [49] or
spectral phase interferometry for direct electric-field recon-
struction (SPIDER) [50]. Alternatively, one can deduce the
phase using linear techniques such as holographic interference
with a reference wave. For situations when the phase of the
optical signal cannot be measured, one can still solve an
inverse problem to arrive at an approximation of the vectorial
object distribution [51,52]. In such a case, it is conceivable
that the phase retrieval step will cause some resolution
degradation which would affect both the diffraction-limited
object distribution and the super-resolution image in similar
fashion. Notwithstanding, the improvement factor obtainable
from the super-resolution imaging procedure hereby proposed
should by and large remain unchanged.

D. Comparison with 2D super-resolution schemes

Next, we compare the 3D super-resolution imaging method
demonstrated in this paper with a superoscillation-based 2D
numerical super-resolution method, akin to the one proposed
by Amineh et al. [44]. To obtain a comparable 2D numerical
super-resolution result, we first design a 2D superoscillatory
filter SSO·2D(kr ,kφ) with the same spot-width and sidelobe
level as that for the 3D filter shown in Fig. 3(b). (We refer
the interested reader to our earlier works [32,39] on 2D
superoscillatory filter design.) Thereafter, we generate the 3D
spectrum for diffraction-limited image Simg(k) using (9), and
reduce this to a 2D spectrum by performing an inverse Fourier
transform in the direction normal to the 2D slice. The resultant
2D image Simg·2D(kr ,kφ) is multiplied with the aforementioned
2D superoscillatory filter to obtain a reconstructed image along
the plane of interest:

Srecon·2D(k) = Simg·2D(kr ,kφ)SSO·2D(kr ,kφ),

srecon·2D(r) = iFT{Srecon·2D(kr ,kφ)}. (11)

Figure 6 compares the reconstructed images for the 3D and
2D super-resolution schemes for (i) a single point object, (ii)
three point objects at locations A, B, and C with separation
s = 0.7λ, and (iii) four point objects as depicted in Fig. 3(a).
We examine the image along the plane y = −s/2

√
6, upon

which the objects A, B, and C are colocated. The reconstructed
image for the single point object verifies that we are comparing
2D and 3D images with a similar point-spread function. From
the three-point and four-point reconstructions, we observe
that, while the 2D super-resolution scheme succeeds in
reconstructing a 2D scene in which all scatterers are colocated
on the observation plane (which is the case for the three-point
reconstruction), it fails when the scene also contains objects
which lie away from the plane (four point reconstruction).
Particularly, for the 2D super-resolution scheme, objects away
from the target image plane are emphasized compared to
objects lying on the plane. In general, linear electromagnetic
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FIG. 6. Comparison between 3D and 2D super-resolution imag-
ing. This figure shows imaging results for three different scenarios of
single source (top row), three source on the same plane (middle row),
and four sources as shown in Fig. 3(a). For the second and third cases
the separation is s = 0.7λm; all images are taken along a constant-y
plane shown on the left panel. The middle column displays images
processed by a 2D superoscillation filter; the right column displays
images processed by a 3D superoscillation filter.

super-resolution schemes which provide 2D super-resolution
do so at the expense of losing resolution in the third dimension.
Hence the usage of 2D super-resolution techniques do not
lead to 3D super-resolution, even when 2D image slices are
taken at subwavelength increments. In contrast, the present
work achieves 3D super-resolution by performing filter design
with a full 3D consideration. Hence this work brings 3D
super-resolution imaging to a level heretofore unreached by
the application of 2D filters.

E. Superoscillation imaging as a super-resolution method

Finally, we aim to situate our work on 3D superoscillation
imaging with respect to existing work on super-resolution
methods. The usage of superoscillation to perform super-

resolution 1D or 2D imaging has been previously known
[44,53,54]; this work provides a way to obtain super-resolution
simultaneously in all three dimensions. Fundamental limita-
tions on certain features of a superoscillatory wave—namely
the sharpness of the superoscillation, the duration of the
superoscillation region, and the proportion of energy within
the superoscillation region—have been established [22]. The
effect of various kinds of noise has also been studied for
a superoscillation imaging scheme [55]. Notwithstanding
perceptions by some that superoscillation imaging schemes
are too sensitive to be practical, in this work we demonstrated
3D subwavelength focused superoscillation waveforms with
adequate robustness. In particular, in Sec. VI B we showed
that one can robustly generate the proposed focus and use
the proposed concept in a super-resolution imaging method.
3D superoscillation imaging is a very general super-resolution
technique in that it does not assume a certain material system,
requires no scanning and labeling, and does not rely on any
prior knowledge about an object, other than the fact that it
exists within a well defined image region. If prior information
is available, that information can perhaps be included to
improve the resolution [56] in conjunction to superoscillation-
based super-resolution. Such composite imaging schemes
form interesting directions of future research.

VII. CONCLUSION

This work has reported the construction of an electromag-
netic wave which is focused to a subwavelength spot in all
directions. We clarified the effects of wave dispersion and
diffraction which have heretofore precluded the conception
and demonstration of a waveform focused to subwavelength
dimensions in all directions. Thereafter we surpassed these
limitations and constructed such a waveform as a broadband
superoscillation wave. The all-direction subwavelength focus
achieved a radially symmetric spot with its size reduced to
66% of the diffraction limit, while its sidelobe level (within the
superoscillation region) remains unaffected. After studying the
spatial and temporal features of this waveform, we applied it in
a numerical fashion to achieve 3D super-resolution imaging,
whereby we successfully reduced the minimal resolvable
distance to about 40% of the diffraction limit. The ability
to perform 3D subwavelength focusing and imaging should
open new and attractive possibilities to wide-ranging fronts of
high-resolution scientific and medical imaging.
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