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Superoscillation is a phenomenon where a wave oscillates locally faster than its highest Fourier component. While
previous reports have shown attractive possibilities for a superoscillation-based far-field superresolution imaging
device, it has also been recognized that a high-energy “sideband” region coexists with the superresolution features.
This sideband causes strong restrictions and necessitates trade-offs in achievable resolution, viewing area, and sensi-
tivity of the imaging device. In this work, we introduce a new class of superoscillation waveform—which consists of a
diffraction-limited hotspot surrounded by low-energy superoscillating sidelobe ripples. This waveform alleviates the
aforementioned trade-off and enables superresolution imaging for complex objects over a larger viewing area while
maintaining a practical level of sensitivity. Using this waveform as the point spread function of an imaging system,
we demonstrate the successful superresolution of Latin letters without performing scanning and/or post-processing
operations. © 2017 Optical Society of America

OCIS codes: (100.6640) Superresolution; (110.1650) Coherence imaging; (170.0110) Imaging systems; (110.0180) Microscopy;

(260.2110) Electromagnetic optics.
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1. INTRODUCTION

Resolution is related to the wavelength of the illuminating light
[1]. Abbé, for example, calculated a microscope’s resolving abil-
ities using the criterion that the minimum resolvable separation
distance Δx � λ∕�2NA�, where NA is the effective numerical
aperture of the imaging system [2]. It was long thought that res-
olution is capped by the diffraction limit, and using visible light,
the best achievable resolution is around 200 nm. In past decades,
a plethora of different techniques have been developed to surpass
the diffraction limit and achieve superresolution. These include
evanescent-wave-based near-field imaging devices [3–7], non-
linear optical devices [8], and those that require special material
systems, fluorescent labeling, or other prior information on the
image [9–13]. While many of these devices find important appli-
cations in contemporary superresolution microscopy, they suffer
various drawbacks, including stringent proximity restrictions,
material system limitations, and heavy needs for pre-labeling,
fine-step scanning, and the post-processing of collected image
data. Thus it would be greatly desirable to have a far-field super-
resolution imaging system based on linear optics, which has
an operation essentially the same as a traditional microscope.
Arguably the curious phenomenon of superoscillation may hold
the key to developing such an imaging system.

Superoscillation is the phenomenon where a waveform appears
to locally oscillate faster than its highest spectral component
[14–16]. In this limited region of fast oscillations, high-resolution

information can be recovered on features appreciably smaller than
half the imaging wavelength [17–20]. Importantly for imaging
purposes, superoscillation can occur without evanescent waves.
This allows the source and detector to be placed well into the
far-field, more than hundreds of wavelengths away [21]. Previous
works have reported various kinds of superoscillation waveforms
[16–31]. Several works also demonstrated that, using super-
oscillation subwavelength hotspots, one can resolve simple sub-
diffraction images in both the Fresnel near-field and the far-field
regions [18,20,21,32–34].

A major drawback with superoscillation, however, is the inevi-
table existence of high-energy regions (which we will hereafter
refer to as the sidebands) away from the region of superoscillation,
which form aggressive trade-offs with the duration and the effec-
tive bandwidth of the superoscillation region [22]. When man-
aged improperly, these sidebands have proved problematic as they
have a spill-over effect that drowns out the superoscillating signal
[35,36]. Previous works have reported various techniques to man-
age this sideband and obtain superresolution imaging. References
[20,32] showed that a superoscillation sideband contribution to
imaging can, in some cases, be removed through a confocal imaging
setup. References [21,37] pushed the superoscillation sideband
away from the subwavelength hotspot to generate an appropriate
window for imaging. References [28,38] report the “superoscilla-
tion needle,” which demonstrated that the sideband can remain
at a low energy level for weakly subwavelength superoscillation
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hotspots. Nevertheless, the superoscillation sideband remains a
crucial consideration and in most cases necessitates trade-offs
between the resolution, viewing area, and/or sensitivity of the
imaging system.

In this paper, we report superresolution imaging using a point
spread function (PSF) that features a new kind of superoscillation
function—a diffraction-limited hotspot surrounded by supero-
scillation ripples. The superoscillation ripples efficiently reduce
the sidelobe level within a certain region of interest without ex-
panding the width of the diffraction-limited main lobe and hence
provide superresolution to the imaging system. Further, wave-
forms of this kind can be designed to have much reduced side-
band energy, which in turn allows one to expand the image area
and improve the sensitivity of the imaging system. Leveraging
these advantages, we are able to generate superoscillation PSFs
that, when used in a 4F imaging setup, exhibit appreciable super-
resolution over an extended viewing area—hence enabling one to
resolve a complex object without any scanning operation. As an
example, we provide calculated and measured results showing
superresolution in imaging individual Latin characters.

2. FORMULATION AND DESIGN

A. Theoretical Background

The image function Ui captured by the detector is related to the
object Ug by the convolution relation

U i�u; v� �
Z

ymax

ymin

Z
xmax

xmin

Ug�x; y�h�u − x; v − y�dxdy; (1)

where x, y are the object coordinates, u, v are the image coordi-
nates, and h is the PSF of the system [39]. An ideal imaging sys-
tem with perfect feature localization would have a delta function
as the PSF. Because of diffraction, conventional systems have
spreading PSFs, which can be modeled by a sinc function. Using
superoscillation, the PSFs can be designed to better approximate
the delta function.

In this paper, we will use the term region of interest (ROI) to
refer to the region of a waveform that, as we shall show, supports
superresolution imaging. In general, this region contains a main-
beam and a ripple region. The large oscillations outside the ROI,
which do not superoscillate, will be called sidebands. See Fig. 1 for
the general positions of some of these quantities.

In previous works [18,21,25], an antenna-based framework
for understanding and designing superoscillating waveforms
was developed by formulating it as a dual problem of designing
superdirective antenna arrays. This procedure will be briefly re-
viewed in this section. While in accordance with previous works,
we facilitate this discussion by describing the construction of
electromagnetic fields, in this work, the superoscillation waveform
will ultimately be implemented as the PSF of an imaging system.

The electric field of a plane wave with spatial frequency Δkxn
can be represented as

En�x� � e−jΔkxnx ẑ: (2)

The electric field amplitudes of a general band-limited waveform
can be approximated by a superposition of spatially bandwidth-
limited plane waves in 1D:

E�x� �
XN∕2

n�−N∕2
anzn � b0

YN
n�1

�z − zn�; (3)

where zn�x� � e−jΔkxnx and zn is a zero of the resulting Nth order
polynomial. We have assumed N is even: the case of odd N can
be easily treated by adding a zero at z � −1. The propagating
waves are visualized as zeros on the unit circle in the complex
z plane. If the zeros are uniformly spaced around the unit circle,
all the weights an are equal, which results in a set of sinusoids,
with the largest having frequency kmax � NAk � 2πNA∕λ. In
close analogy to superdirectivity [40,41], superoscillation can be
generated if the zeros are moved closer together than the uniform
distribution.

Whereas in superdirectivity, the ROI is constrained by the
spacing of the elements, in superoscillation, there is no such
physical limitation. The designer has the freedom to determine
the length of the ROI where superoscillation is to occur, and
the number of zeros Z inside the ROI (Z ≤ N ). In general,
packing zeros densely inside the ROI causes the waveform to
superoscillate [25]. Our work features a symmetric waveform,
which reduces the complex exponentials in Eq. (3) into cosines.
We place the ROI at the center of the spatial domain, which
corresponds to the section of the unit circle surrounding z � −1
[see Fig. 2(a) for example]. The remaining N − Z zeros not
used inside the ROI are distributed on the unit circle out-
side the ROI. This is found to decrease the amplitude of the
sidebands [21,37,42].

To extend to 2D waveforms for imaging purposes, we match
the 1D waveform constructed of sinusoids to a corresponding
2D wave constructed of similarly behaved Bessel functions in
a method described in Refs. [21,42]. Assuming radial symmetry,
the waveform can be represented as

h�r� �
XN∕2

n�0

bnJ0�krnr�; (4)

where J0 is the Bessel function of the first kind and krn �
�n� 1∕2�Δkx . Since symmetry is assumed, the zeros of the
Bessel functions rm can be matched with the zeros xn of the plane
waves in the x direction.

xn can be found from the zeros zn in the range �0; π� using

xn �
log�zn�
jΔkx

: (5)
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Fig. 1. (a) 2D waveform of a design using 30 zeros, 10 of which are in
a region of interest (ROI) of 1.4λ∕NA. Major features of a superoscillat-
ing waveform are labeled. (b) ROI of the design. The main beam (green
solid line) is kept the same as the diffraction-limited sinc function (black
dotted line), but the ROI ripples are 6.5 times lower than the diffraction
limit. As a trade-off, a sideband appears whose amplitude is an order of
magnitude larger than the main beam.
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Since all zn lie on the unit circle, the complex logarithm
simplifies, and we obtain

xn �
arg�zn�
Δkx

: (6)

The Bessel function coefficients can then be calculated from the
system of equations

XN∕2

n�0

bnJ0�krnrm� � 0 (7)

for all null points rm � xn matching the zeros calculated through
Eq. (6) for m � 1; 2…N∕2. While in previous works, direct con-
struction of superoscillation is known to be numerically difficult
[22,29,43], we did not encounter any conditioning issue when
inverting the matrix in Eq. (7).This may perhaps be due to
the sideband being reduced to at most 1 order of magnitude larger
than the superoscillating region and far smaller than the main
beam. Consequently, the elements of the matrix in Eq. (7)
and the coefficients are similar in magnitude, resulting in good
conditioning.

B. Superoscillating Ripples

Most previous works on superoscillation-enabled imaging use
superoscillation to create a subwavelength main beam. While this
has been demonstrated to achieve subwavelength imaging, it has
also encountered problems such as large sidebands and high sen-
sitivity. Hence, in this work, we show that these drawbacks can be
alleviated through the use of superoscillation ripples. In essence,
we propose a new class of superoscillation waveform for which the

width of the main beam remains at diffraction-limited propor-
tions but whose sidelobe ripples are designed to superoscillate.
This new class of waveform departs from conventional apodiza-
tion, where reducing sidebands would necessarily widen the main
beam [39]. Instead, using superoscillation, one can generate a
sizable low amplitude ripple region without expanding the main
beam. Moreover, because the main beam is no longer super-
oscillatory, sidebands generated outside the ROI in this manner
contain much less energy compared to most existing works on
superoscillation imaging, such as those presented in Refs. [20,21,36].
This allows one to lower the waveform’s sensitivity and extend the
ROI of the waveform and hence the resultant imaging system.

Following the zero-based design paradigm reviewed above, this
waveform can be achieved via an appropriate close-packing of
zeros in the ripple region. In the following, we will present and
evaluate two algorithms for constructing imaging waveforms that
feature superoscillation ripples.

C. Chebyshev Waveform Design

In the first method, we match the zeros of the target PSF to the
zeros of the set of Chebyshev polynomials

h�u� � c0 � 2
XZ
n�1

cnT n�u�; (8)

where the Chebyshev polynomials are:

T n�u� � cos�n cos−1�u��: (9)

This method is inspired by the well-used Dolph–Chebyshev
method in antenna array design; its use in designing superoscil-
lations is first demonstrated in Ref. [25]. As a major advantage,
it allows the construction of a waveform according to a designer-
specified mainlobe to ripples ratio [44]. Using this method, we
find the locations of Z zeroes within a predefined ROI. Thereafter,
an additional N − Z zeros are added outside the ROI for sideband
management. Finally, the locations of all zeros are finetuned by
slight shifts on the unit circle to maximize the ratio of the main
lobe to the ROI ripple.

A design using Chebyshev polynomials is shown in Fig. 2.
A total of 32 zeros are used, of which 10 are constrained in
the ROI, which has a half-width of 1.9λ∕NA. In our setup, this
is 139 μm. The initial Chebyshev distribution is calculated with a
main beam to ROI ripples ratio of 29.5 dB. This is highly sup-
pressed compared to the diffraction-limited sinc function, which
has a main beam to ripples ratio of 13 dB. To maintain a narrow
beam for a larger ROI, more zeros need to be placed in the ROI.
Experimentally, however, the sensitivity requirements become
impractical with an increasing number of zeros.

D. Binomial Waveform Design

Since one of the design goals is to generate low ROI ripples,
it would be interesting to investigate a binomial array-based
design, which has no ripples in the ROI [44]. In the second
method, we try to match the PSF zeros to the zeros of the bino-
mial polynomial

h�u� �
YN
n�1

�z − zn� � �1� z�N ; (10)

which results in zn � −1 for all n. Because z � −1 is outside of
the ROI, we instead scale our axis so zn ends up inside the ROI.
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Fig. 2. Superoscillation PSF design using the Chebyshev method.
(a) Distribution of 32 waveform zeros in the complex z plane for 1D
superoscillation design [see Eq. (3)] with 10 zeros constrained within
a ROI of half-width 1.9λ∕NA. The edges of the ROI are labeled with
red lines. (b) Bessel function weights for the equivalent 2D superoscilla-
tion design. The nulls of the superposition of Bessel beams are the same
as (a) but in the radial direction [21]. (c) Zoomed-in view of the ROI of
the resulting 2D superoscillation waveform (green solid line), compared
to the diffraction-limited Airy sinc function (black dashed line). The ROI
ripple amplitudes are 4 times lower, main beam is 5% wider, and the
ROI ripples are oscillating faster than the diffraction-limited Airy disk.
(d) Comparison of cross-sections of measured PSF (black dashed line)
and designed PSF (green solid line). Good agreement is obtained.
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The closer the zeros are scaled toward the middle of the ROI, the
sharper the main beam. Further fine-tuning may be required to
hit a desired target metric, but the overall shape of the PSF using
this modified binomial method is a small central peak surrounded
by a region of 0 amplitude, before the large sidebands set in near
the edge of the ROI.

A design example using binomial polynomials is shown in
Fig. 3. In our design, we used 32 zeros, of which 10 are con-
strained in the ROI of the target half-width of 1.9λ∕NA. The
10 zeros are placed symmetrically around the real axis at a point
such that the resulting waveform has a main beam comparable to
the diffraction limit. This results in a ripple-free region from the
center to approximately λ∕NA. Beyond this region, large side-
bands set in, and the target width of the ROI is not achieved.
The sidebands are 1 order of magnitude larger than the main beam.

As can be seen from the design example, while ripple-free
regions can be achieved by stacking zeros at the same location
on the unit circle, the trade-offs of a significantly smaller ROI
region and larger sidebands are undesirable for imaging purposes.
The following sections will focus on the more promising Chebyshev-
inspired design presented in the previous section.

3. SIMULATION

A simulation code is written that performs the 2D convolution
operation in Eq. (1). This code is run on our designed PSF as seen
in Fig. 2. The simulated objects are the letters E and N . The
region within the letter is assigned a transmission of 1, and regions
outside have a transmission of 0.

Simulation confirms that superoscillating PSFs with reduced
ripples can generate superresolved images, even if the main beam
is slightly wider [see Figs. 4(a) and 4(b)]. While the letter N
example is not diffraction limited, the simulation shows an im-
provement in the resolution quality: the intensities are more
evenly distributed [see Figs. 4(c) and 4(d)].

Figure 5 shows a simulation of an object with dimensions
330 μm × 261 μm, which extends well beyond the ROI region,

and all features are above the diffraction limit. The interference
due to the large sidebands outside the ROI significantly degrades
the superoscillatory image. This highlights the importance of
designing for a properly sized ROI.

4. EXPERIMENTAL RESULTS

We use a 4F optical imaging system with a numerical aperture of
NA � 0.00864 to test our PSF design (see Fig. 6). This setup
allows easy modification of the system PSF because the amplitude
transfer function can be directly accessed on the Fourier plane [21].
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Fig. 3. Design and simulation of the binomial superoscillatory PSF.
(a) 10 zeros are placed in an ROI with target half-width of 1.9λ∕NA.
The edges of the ROI are labeled with the red lines. (b) Bessel function
weights for the equivalent 2D superoscillation design. (c) Designed bi-
nomial waveform (green solid line) compared with the diffraction-limited
sinc function (black dashed line) in the ROI, with ripples completely
suppressed in the region close to the main beam. (d) Designed binomial
waveform has sidebands 1 order of magnitude larger than the main beam.

Fig. 4. Simulation results of imaging the letters E and N using the
PSF seen in Fig. 2. The letter E has the dimension 110 μm × 87 μm.
The letter N has the dimension 120 μm × 130 μm. The diffraction-
limited results are shown in (a) and (c). The superresolved results are
shown in (b) and (d). Significant improvement in resolution is seen.

Fig. 5. Simulation results of a letter E larger than ROI half-width of
the PSF designed in Fig. 2 and significantly above the diffraction limit.
(a) shows the diffraction limited image, which is clearly resolved. The
superoscillatory image in (b) is significantly worse due to interference
from the sideband of the PSF.
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A collimated and polarized He–Ne laser beam illuminates the
object in the object plane. Modulation is performed by a
HOLOEYE LETO phase-only spatial light modulator (SLM)
placed in the Fourier plane. Using a superpixeling technique
[45], complex modulation can be used to achieve amplitude
modulation weights calculated in the design phase and shown
in Fig. 2(b). A false-color image of the mask that is displayed
on the SLM is shown in Fig. 7. A CMOS camera in the image
plane captures the resulting images. The imaging wavelength is
632.8 nm, and the focal length of the 4F system is 40 cm.

A 10 μm aperture is used as a pinhole to obtain an appro-
ximation to the PSF in the image plane. This verifies that our

system faithfully generates the target PSF, as shown in Figs. 2(d)
and 8.

Next, the letters that are simulated in the previous sections are
fabricated and imaged. The results for the two letters are com-
pared in Fig. 9 against the diffraction-limited images obtained
when illuminated by light without any modulation from the SLM.

The results show that the superoscillatory ripple waveform
reported in this work can indeed achieve superresolution, even
though its main lobe is not squeezed beyond that of the diffrac-
tion-limited function. The outer sideband, while significant, is
less intense than the letter illuminated in the ROI. This is an im-
provement over previous results [21], where the outer sidebands
were significantly stronger than the ROI.

5. DISCUSSION

A. Exploiting Superoscillation Ripples

A major conclusion of this work is that the inevitable existence
of a high-energy “sideband” region need not be considered a

Fig. 6. Schematic of the experimental setup. A 633 nm He–Ne laser is
used to illuminate the object in the object plane. The wave propagates
through a 4F system and into a Thorlabs DCC1240 scientific camera.
A spatial light modulator is placed in the Fourier plane to allow direct
access to the PSF of the imaging system.

Fig. 7. Exact ring structure, with normalized modulation coefficients,
which is displayed on the SLM. The total diameter of the ring mask is
6.9 mm.

Fig. 8. (a) Simulated PSF intensity. (b) Measured PSF Intensity.
Excellent agreement is obtained.

110μm

(a)

110 μm

(b)

110μm

(c)

110 μm

(d)

(e) (f) (g) (h)

Fig. 9. Experimental results of imaging a letter E of 110 μm × 87 μm
and a letter N of dimension 120 μm × 130 μm. The total imaging sys-
tem numerical aperture is 0.00864. (a) and (b) Camera images using
diffraction-limited PSF. (c) and (d) Camera images using superoscillatory
PSF designed as shown in Fig. 2b. (e) and (g) Zoomed-in images using
the diffraction-limited PSFs. (f ) and (h) Camera images zoomed into the
superoscillation ROI where resolution is improved. The three horizontal
bars of the letter E have become more visible. The outer rings are due to
the PSF sidebands outside the ROI of superoscillation. Compared to the
diffraction-limited case of the letter N , the intensities are much more
evenly distributed across the letter, and the vertical bars are more visible.
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disadvantage. Indeed, we have shown a method to exploit this
effect to improve the resolution of an imaging system. In our
proposed superoscillation ripple waveform, the main beam is of
comparable width to the diffraction limit; therefore, it is not
superoscillating. Superoscillation occurs in the ripple region,
where the rapid weakening of its amplitude is actually advanta-
geous: as demonstrated in this paper, it holds the key to achieving
super-resolution. Although the sideband outside the ROI inevi-
tably contains much higher energy than the superoscillation
ripples, still it does not overwhelm the main beam of the PSF.
In fact, in this work, we demonstrated a Chebyshev-type wave-
form where appreciable super-resolution was achieved while the
sideband was much weaker than the main beam and comparable
to the ripple levels (inside the ROI) of the superoscillation wave-
forms reported in Refs. [21,28]. This weakening of the sideband
contributes to improving the robustness of the waveform when
used as an imaging PSF.

B. Sensitivity

Superoscillation is known to have stringent sensitivity require-
ments, as it is in essence a delicate wave interference pheno-
menon [35], which limits its practicality. In this section, we add
perturbations to our simulation code to observe the sensitivity
tolerances of our new superoscillation waveforms.

We add random Gaussian noise with pre-defined SNR levels
to our simulations in two separate approaches to quantify the sen-
sitivity of the designed waveforms. In the first approach, the signal
power measured is the total power of the spectral coefficients in
the frequency domain. The noise values are then added to the
amplitudes of each ring [Fig. 10(a)]. Potential ring coefficient
mismatch can happen if the modulator cannot accurately produce
the desired phase responses, resulting in a systematic error for each

ring. For an SNR at or below 8 dB, significant image degradation
is observed [Fig. 10(b)].

In the second approach, the signal power measured is the total
power of the PSF waveform, and the Gaussian noise is added di-
rectly on to the PSF [Fig. 10(c)]. This can model, for example,
random flickers in the SLM. The resulting images show much
more resilience against this second type of noise than when noise
is applied to the spectrum; significant image deterioration is not
observed for an SNR as low as 3 dB [Fig. 10(d)].

The sensitivity is not as extreme as the stringent tolerances
found in most past analysis on sensitivity (see, for example,
[46,47]) because it is not in the “strong superoscillation” regime
[47]. The coefficients of each Bessel beam in Fig. 2(b) have a
smaller spread than cases where the main beam is significantly
narrower than the diffraction limit (see Supplement 1). It is for
this reason that we observe both better numerical conditioning
and improved sensitivity. Our results seem to be in line with
the findings of [38], which reported better overall sensitivity when
the main beam is not made significantly narrower than the dif-
fraction-limited sinc function. Nevertheless, the PSF reported in
this work can still achieve superresolution. Relative to other re-
ported superoscillation waveforms, our superoscillation ripple
PSF is robust to noise. Importantly, an SNR of 8 dB can be easily
achieved using modern microscope technology, making real-life
deployment of the superoscillating ripple feasible.

C. Comparison

Last, we offer some comparisons with two other types of reported
superoscillation imaging devices that also do not feature large
sidebands.

The first type of low-sideband superoscillation, the speckle
pattern first analyzed in Ref. [24], is inherently difficult to control
for imaging purposes because of its weak amplitudes and random
nature. We are unaware of any successful demonstration of
imaging using this method.

The second type of superoscillation is the optical needle first
reported in Ref. [28], which was designed using particle swarm
optimization and applied to magnetic recording [48]. Compared
to this waveform, our proposed PSF features a lower ripple level in
the ROI but a larger sideband. In Supplement 1, we perform
some analysis on an optical needle waveform similar to the one
reported in Ref. [49] to determine its feasibility for imaging.
It is known that coherent diffraction-limited imaging systems
are prone to noise because of the interference contributions to
the image due to the side ripples [39,50]. We find that ringing
effects due to the larger-than-diffraction-limit ripples of the op-
tical needle are more significant than a diffraction-limited system.
As a result, phantom shapes are very noticeable in the final image,
which causes image resolution to deteriorate. On the other hand,
because ripples are several times lower in our superoscillation
waveform than the diffraction limit, images are formed without
noticeable phantom shapes. This analysis shows that lowering
ROI ripples close to the main beam is, in most cases, more im-
portant than lowering sidebands further away for implementing a
robust imaging system.

In Supplement 1, comparison is also made with the wave re-
ported in Ref. [21], which is designed using a similar method as
in this paper. While the main beam is significantly narrower than
the superoscillating ripple, the ROI ripples and sidebands of
the waveform in Ref. [21] are several times larger. Similar to the
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Fig. 10. Sensitivity analysis by adding Gaussian noise to the image
system simulation. In (a), Gaussian noise with an SNR of 8 dB is applied
to the coefficients. The resulting image is shown in (b). White noise with
an SNR of 3 dB is applied directly to the PSF in (c), with the resulting
image in (d).
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needle, the large ripples result in resolution loss. Our simulation
shows that, for this case, the resolution lost due to the ripples and
sidebands is more significant than the resolution gained through
the narrower main beam.

6. CONCLUSION

Whereas the weak amplitude inherent to superoscillation is often
considered a disadvantage, in this paper, we have demonstrated a
class of superoscillation ripple waveforms that exploit this prop-
erty to generate very desirable superresolution PSFs. By allowing
the PSF main beam to remain diffraction limited, we are able to
generate PSFs with superoscillating ripples that are more than
15 dB below those of the diffraction-limited sinc function. Such
PSFs have lower sidebands, relaxed sensitivity requirements, and
larger fields of view, which, in the past, have been limiting prob-
lems for superoscillation-based superresolution. The results show
that superoscillation-based superresolution may be more feasible
if the design focus is on lowering the side ripples using supero-
scillations instead of generating a sub-diffraction main beam.
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