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Implementation of abrupt phase discontinuities along a surface has been the theme of recent research on
electromagnetic metasurfaces. Simple functionalities such as reflecting, refracting, or focusing plane waves
have been demonstrated with devices featuring phase discontinuities, but optical surfaces allowing
independent magnitude and phase control on the scattered waves have yet to emerge. In this paper, we
propose the first true optical Huygens’ surface, which explicitly utilizes orthogonal electric and magnetic
responses to realize total control on an optical surface’s local reflection coefficients. This extends the
functionality of metasurfaces to an unprecedented level. We first demonstrate that a nanorod gap-surface
plasmon resonator can act as a Huygens’ source. Thereafter, by properly tuning and rotating these
resonators, we realize arbitrary reflection optical metasurfaces—surfaces for which the local reflection
coefficients can be independently tailored in both magnitude and phase. We demonstrate the versatility of
this approach through designs of a metasurface that asymmetrically reflects two copolarized beams and a

Dolph-Tschebyscheff optical reflectarray.
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I. INTRODUCTION

Much recent scientific activity surrounds the prospective
realization of an ultimate electromagnetic (EM) surface that
would allow full control on the reflective and transmissive
properties of light. While practical implementations for
holograms [1-3] and holographic antennas [4,5] allow one
to perform a wide variety of wavefront manipulation,
the drive to control an EM wavefront at the highest
resolution and across the widest possible angle has led
to the emergence of a new class of EM surfaces. In this
effort, artificial surfaces have been demonstrated which
systematically manipulate the reflection or transmission
phase of an incident wavefront. In particular, Yu et al. [6-8]
captured much attention with a proposal to modify the
refraction phase of midinfrared EM waves using a surface
of V-shaped nanoantennas. Subsequent works by Ni et al.
led to first demonstrations of single-layer metasurfaces at
near-infrared and optical frequencies [9], as well as
demonstrations of similar properties for Babinet-inverted
V-slot metasurfaces [10]. Notwithstanding, these single-
layer metasurfaces suffer three major limitations: First, they
do not allow independent control of the magnitude and
phase of the surface’s local transmission and/or reflection
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coefficients; second, their cross-polarized operation leads
to the existence of a spurious copolarized component which
limits the achievable power efficiency to 25% [11], without
accounting for material loss; last, they cannot support
arbitrary field distributions on either side of the surfaces.
Alternative structures have been proposed that adjust
the phase of an optical wavefront through polarization
manipulations. These Pancharatnam-Berry phase meta-
surfaces were demonstrated first in the midinfrared [12]
then recently in the optical domain [13]. Using the
Pancharatnam-Berry phase allows one to attain a full
360° phase shift with a single-layer electrical metasurface,
as well as avoid the aforementioned limit on power
efficiency. Nonetheless, the versatility of these metasurfa-
ces is appreciably limited by (1) their inability to control the
transmission or reflection magnitude and (2) their restric-
tion to circular polarization operation.

In parallel to this work, Pfeiffer er al. [14] and
Selvanayagam et al. [15] proposed metasurfaces that
feature a subwavelength array of orthogonal electric and
magnetic dipole elements. These so-called Huygens’ sur-
faces mimic the emission of secondary wavelets as pro-
posed in the Huygens’ principle, and hence they allow one
to assume total control on electromagnetic waves trans-
mitted and reflected across a surface. Nonetheless, an
optical implementation of such a surface is not at all
straightforward. While Refs. [14] and [16] demonstrated
Huygens’ metasurfaces in the microwave regime, the same
has not been accomplished in the optical regime, because of
fabrication difficulties, the unavailability of lumped circuit
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elements, the plasmonic nature of metal, and a lack of
suitable magnetic materials at optical frequencies. Instead,
recent implementations of “Huygens’ like” surfaces at
optical and infrared frequencies have adopted a multilay-
ered structure [17,18], for which it has been proven that
electrical responses alone suffice to synthesize arbitrary
reflection and transmission properties [11]. While such
demonstrations represent the culmination of impressive
theory and fabrication, multilayered subwavelength optical
surfaces require layer-by-layer fabrication and precise
alignment, and hence they are very complicated to fab-
ricate. Moreover, they inevitably incur loss due to the
plasmonic nature of metal. For example, the near-infrared
Huygens’ like surface described in Ref. [18] had a
simulated power efficiency of 30%. This is decidedly
lower than unity, even though it already represents about
an order of magnitude improvement over most previously
proposed optical metasurfaces. One would expect more
stringent fabrication tolerances and dramatically higher
losses for metasurfaces that operate at visible frequencies.
Very recently, Estakhri et al. proposed a metasurface that
featured a single layer of electrical response components,
backed by a metallic mirror [19]. While this simplified
multilayer device should theoretically improve efficiency,
it fails to shape the amplitude of an impinging wave,
similarly to aforementioned single-layered optical meta-
surfaces [6—10]. In view of shortcomings of all aforemen-
tioned proposals, implementing an optical Huygens’
surface opens an ideal path towards attaining total control
on optical wavefronts.

In this paper, we present the first true optical Huygens’
metasurfaces and demonstrate their use for versatile arbi-
trary spatial light modulation at visible frequencies. Using
an array of nanorods that is closely placed on a metallic
layer, we achieve an optical Huygens’ surface that allows
one to independently tune the magnitude and phase of the
surface’s local reflection coefficients, with a magnitude
range of [0, 0.67] and a full phase range of 360°. The simple
device structure lends itself to relatively straightforward
fabrication and low loss, with a simulated power efficiency
of 45% for an operational wavelength of 800 nm—well
beyond theoretical limits for metasurfaces that feature
multilayered structures or cross-polarized operation. The
above quoted power efficiency represents the power ratio of
the reflected beam over the incident beam, taken in the
“worst case” where all nanorods are tuned to maximize
absorption and polarization loss. Hence, higher efficiency
can be attained for selected waveform designs. We first
describe our metasurface design procedure, which lever-
ages a generalized equivalent circuit for Huygens’ meta-
surfaces [20]. We point out that to achieve full control over
the reflected light field, one needs a Huygens’ metasurface
with a user-designed spatially varying reflection loss (in
addition to reactance), which has heretofore been neglected
in metasurface design. We then describe our method for

synthesizing the required lossy and reactive metasurface
using a rotated nanorod array that utilizes a gap-surface
plasmon mode [21]. We show that one can systematically
tune the reflection of such nanorod elements, in a way
closely analogous to tuning the impedance of an electronic
circuit through the use of “Smith Charts.” Physical insights
will be emphasized. Our procedures will be shown through
a demonstration of a metasurface that asymmetrically
reflects an incident plane wave into two copolarized plane
waves, which, while simple, illustrates the procedure and
highlights the need for synthesizing complex reflection
coefficients. Finally, we close by connecting this work with
the design and implementation of a Dolph-Tschebyscheff
optical reflectarray—an array that redirects an incident
beam at a prescribed direction with equal sidelobe ampli-
tude and minimal beamwidth.

I1. DESIGN CONCEPT AND
NUMERICAL RESULTS

To first demonstrate how the independent tuning of the
magnitude and phase of the local reflection coefficient
broadens the functionality of the metasurfaces, we give an
example of a beam splitter, shown in Fig. 1, where a
normally incident beam at 800 nm is split into two
copolarized reflection beams, reflecting at —15° and 45°,
respectively. Though simple, this example demonstrates
functionality that cannot be realized with surfaces that do
not have any means of magnitude control and only provide
abrupt phase discontinuities at a fixed scattering magnitude
(which have been the subject of analysis in most previous
works) because they do not satisfy the electromagnetic
boundary conditions for the given stipulated fields. To
illustrate this point, we first assume that our surface is
formed with closely spaced, subwavelength-sized inclu-
sions that possess both electric and magnetic polarizabil-
ities. Electromagnetic radiation incident upon this
surface would excite electric and magnetic dipoles, which
can be homogenized as electric and magnetic currents, or

Incident field

Reflected field #2

Reflected field #1 /

Il'ransmitted field

FIG. 1. Field distribution of a metasurface that asymmetrically
reflects an incident plane wave into two copolarized plane waves.
The incident plane wave is linearly polarized light along the y
direction, and it propagates along the —z direction. The two
reflected fields of the same polarization are split at —15° and 45°.

Huygens'
metasurface
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equivalently as electric and magnetic surface impedances
denoted as Z{ and Z?, respectively [14,22,23]. Such
impedances are, in general, complex-valued tensorial
quantities; however, in this work, we explore a space
where they are isotropic and passive but will, in general,
possess a user-designed polarization loss and reactance. As
we show, this allows the surface to satisfy the boundary
conditions for arbitrary copolarized field distributions on
either side of the surface.

By denoting the net fields in two media separated by the

surface as I:ZI, ﬁl and Ez, ﬁz, the boundary conditions are
given by [23]

Elgvgzzganx(HZ_Hl)’ (1)
Hlyyy = =(1/Z)a, x (B2 — Ey), )
where 17:|gwg and IjI|§wg represent the average electric and

magnetic fields tangential to the surface. For example,

assuming the surface is located at z=0, E[,,=

1/2(E} |l ,—o+ + E)| .—o-)- We stipulate the desired electro-
magnetic fields as design variables, then solve for the
corresponding surface impedances using Eqs. (1) and (2).
Moreover, to ensure that the surface remains passive, we
design the two reflected beams so that each attains a field
amplitude 41% that of the incident beam and a negligible
transmitted field. Notwithstanding, the method can be
generalized to study active metasurfaces, for which field
amplitudes of reflected and transmitted beams can be
arbitrarily stipulated.

Figures 2(a) and 2(b) show the distribution of the
complex impedances along the surface that satisfy
Egs. (1) and (2). In these figures, the positive surface
resistance (R¢ and RY') indicates that the surface remains
passive. Clearly, both Z¢ and Z7 must, in general, be
complex valued; hence, purely reactive surfaces that
only alter the phase of the scattered field cannot
function as a beam splitter. It should further be noted that
both Z¢ and ZI" are aperiodic in the most general case.
This is seen by noting that they are functions of spatial
harmonics  with arguments ¢, = ky(sinf, —sin6,),
¢, = ky(sinf,; —sin6;), and ¢, = ky(sin0,, — sin6;),
where k is the wave number and 6,;, 6,,, 6,, and 6,,
respectively, represent the two reflection angles, the trans-
mission angle, and the incidence angle. Hence, Z$ and Z"
are periodic only when the above arguments have common
multiples.

In the following, we propose a physical structure of an
inclusion that forms our surface and substantiate that it
behaves like a Huygens’ source. We then convert the
complex surface impedances shown in Fig. 2 to their
equivalent reflection coefficients by leveraging a circuit
model for a Huygens’ source. As we will show, one needs
to independently control the magnitude and phase of the
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FIG. 2. The required (a) electric and (b) magnetic surface
impedances that satisfy the boundary conditions for the field
distribution shown in Fig. 1. R and X respectively represent the
real and imaginary parts of the complex impedances.

local reflection coefficients to sample the equivalent
reflection coefficient distribution. We will explain how
the proposed physical structure can be properly tuned and
rotated to achieve such a goal and thereby physically realize
the current design example of a beam splitter.

A. Gap-surface plasmon resonator
as a Huygens’ source

To physically implement the required surface imped-
ances, we utilize a nanorod gap-surface plasmon (GSP)
resonator (shown in Fig. 3) as our unit cell to form the
proposed metasurface. Before we demonstrate independent
tuning of magnitude and phase of the reflection coefficient
of such a unit cell for sampling the required surface
impedances, we first establish that a nanorod GSP reso-
nator indeed behaves like a Huygens’ source. It consists of
a gold nanorod (with thickness #; = 50 nm and width
w =50 nm) on top of a silica spacer (with thickness
t, = 50 nm) and an optically thick gold layer. The perio-
dicity of the unit cell is d, = d, = 240 nm. An optically
thick gold layer is employed to simplify numerical
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FIG. 3. The schematic of a nanorod GSP resonator unit cell that
forms the Huygens’ metasurface and the proposed equivalent
circuit model.

simulations; however, an almost identical optical response
can be obtained with a gold layer of subwavelength
thickness (around 100 nm). Hence, the overall thickness
of the GSP resonator is still subwavelength. The proposed
configuration has been extensively studied in the past
for its use in biosensors [24-27] and metasurface designs
[21,28-30]. Previous analyses, however, have focused on
the plasmonic mode properties of the structure perceived as
a nanorod metasurface placed close to a metallic back
reflector. On the contrary, we view the combination of
nanorods, dielectric spacer, and back metal as a single-
layered metasurface where each unit cell functions
analogously to a Huygens’ source.

In essence, the nanorod and the metallic substrate act as a
Fabry-Perot resonator that supports two dominant modes:
one that features symmetric current flow, leading to an
effective electric dipole, and another that features asym-
metric current flow, leading to an effective magnetic dipole
[21]. We note that these induced dipoles are orthogonal to
each other in the plane of the metasurface and that they
closely resemble Huygens’ sources—the fundamental
building block for reshaping a reflected wavefront. An
ideal Huygens’ source features orthogonal electric and
magnetic currents that radiate in phase and in equal power.
Such a source generates a unidirectional far-field radiation
pattern with a maximum directivity of 3 [31-33]. Figure 4(a)
shows the radiation pattern of a single isolated unit cell that
is electromagnetically similar to the nanorod GSP reso-
nator. The observed cardioid radiation pattern is similar to
that of a Huygens’ antenna [34,35] and demonstrates
(i) the simultaneous existence of electric and magnetic
dipoles and (ii) their orthogonal directional relationship.
As a comparison, Fig. 4(b) shows the radiation pattern in
which the electric dipole is dominant. The resulting
radiation pattern is bidirectional; similar behavior can be
observed in the case of a dominant magnetic dipole mode
[35]. This illustrates that the electric and magnetic dipoles
must be superimposed orthogonally and in correct
proportion to achieve a unidirectional antenna pattern.

It should further be emphasized that this Huygens’
source perspective distinguishes the GSP resonators from

180"

(®)

FIG. 4. Radiation pattern of a single isolated unit cell (a) when
the GSP resonator simultaneously excites orthogonal electric and
magnetic dipoles and (b) when the electric dipole is dominant.
The insets show the induced current distribution upon normal
plane-wave incidence at 4 = 800 nm. The dimensions of the two
gold nanorods and silica spacer are (a) 50 nm x 50 nm x 140 nm
and (b) 50 nm x 50 nm x 200 nm. Blue (/) and red (M) arrows
indicate the directions of induced electric and magnetic currents,
respectively.

other seemingly similar structures such as the V-shaped
antennas [6] and rotated single-layer nanorods [10,36,37].
These structures may provide a small magnetic dipole
moment that is perpendicular to the metasurface plane, but

041042-4



OPTICAL HUYGENS’ METASURFACES WITH ...

PHYS. REV. X 4, 041042 (2014)

095
09
(2‘_ 085

08

075

o7 | 2951

50 75 100 125 150 175 200
I (nm)

FIG. 5. S;; (reflection coefficient) of an infinite array of GSP
resonators as a function of their lengths.

their operation as metasurfaces rely mainly on their electric
responses. As a result, the phase response of individual unit
cells for these devices spans 180° at most. Moreover,
because of the absence of magnetic responses, when
metasurfaces with such unit cells are utilized to arbitrarily
refract or reflect incident fields, other spurious plane waves
are excited along with the main beam, as examined in
Ref. [15]. On the other hand, GSP resonators support both
electric and magnetic currents, which combine to minimize
the excitation of unwanted plane waves. The suppression is
seen if the electric and magnetic surfaces are separately
examined [15]. Furthermore, orthogonal electric and mag-
netic dipoles combine to allow a full-phase tuning range of
360°. This can be understood from a Huygens’ source’s
equivalent circuit model which has been shown to be a so-
called lattice network [20], the topology of which is shown
next to the unit cell in Fig. 3. The lattice network is
frequently used in all-pass filter designs where the main
goal is to control the relative phase difference between the
input and output ports from 0° to 360° [38]. A similar phase
control can be observed at optical frequencies. This is
shown in Fig. 5, where the reflective response of the surface
is obtained for different lengths of a nanorod GSP reso-
nator. It is seen that the magnitude of the reflection
coefficient, |S;|, is close to unity, while its phase ranges
from 50° to —230°; a significant increase compared to the
single resonance that covers 180° at most. The dip in
magnitude that coincides with a rapid phase transition is
due to Ohmic loss and can be made small at the cost of
reduced phase control [21]. In the next section, we will
show how to also control the magnitude response.

The series and shunt impedances of Z; and Z, in lattice
networks, shown in Fig. 3, are respectively related to the
induced magnetic and electric currents, through the con-
ditions Z, = Z™/2 and Z, = 2Z¢, which arise by compar-
ing the electromagnetic boundary condition with its circuit
equivalent [20]. Therefore, the required complex imped-
ances can be conveniently transformed to the scattering
parameters, as shown in Fig. 6 (see Appendix A), where S,
and S,; denote reflection and transmission coefficients
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FIG. 6. The transformed magnitudes (blue line) and phases
(green line) of the S parameters from the equivalent circuit.

respectively. We note that the method outlined in
Refs. [14,23] is also capable of relating impedances to
reflection and transmission coefficients and is in agreement
with the one employed here. Finally, we note that only S
parameters are shown here. The required S,; parameters are
small because we have initially stipulated the transmitted
field to be negligible. This condition also corresponds to
the actual S,; parameters of the GSP resonators because
of their dominant reflective property. Thus, the complex-
valued surface impedance can be realized by encoding
only the equivalent S§;; values on the nanorod GSP
resonators.

B. Independent control of the magnitude
and phase of the local reflection coefficients

The equivalent S;; parameters that satisfy the boundary
conditions across the surface show that one must be able to
independently control the magnitudes and phases of Sj;.
Whereas the previous section has shown that one can tailor
the reflection phase of our proposed Huygens’ metasurface
by varying the length of the nanorod, we hereby introduce
an extra degree of freedom by also rotating individual
nanorods at an angle 6, as shown in Fig. 3, to control the
magnitude. This allows decoupling of the fixed relationship
between the phases and magnitudes of S;;. The angle 9 is
defined as the angle between the axis where a nanorod
varies its length (resonator axis) and the polarization
direction of the incident electric field, as shown in
Fig. 3. Following the coordinate convention in Fig. 3,
we set the y axis as our resonator axis and define r, and r,,
as the reflection coefficients of the surface in the case of
plane-wave excitations that are linearly polarized along the
x and y directions, respectively. r, and r, can be numeri-
cally obtained for different lengths of the GSP resonator,

and an analytical expression for the reflected field Eref can
be given for 8 # 0° in the case of y-polarized plane-wave
input, E;, = E,ya e/, through the change of coordinate
system as
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FIG. 7. Variation in (a) magnitude and (b) phase of S;; in
degrees for different resonator lengths and rotation angles.

E. = Eoy[cos@sinO(r, — ry)a,

+ (r,sin?0 + r cos*0)a,|e~F<. (3)

Equation (3) predicts the reflected field for various lengths
and rotation angles of the resonator. The reflected field as a
function of different resonator lengths is fully numerical
since r, and r, are from full-wave simulation. However, the
reflected field as a function of rotation angle is obtained
analytically; hence, the overall expression is seminumerical.
Nevertheless, it shows great accuracy compared to the full-
wave simulation result (see Appendix B), and it offers a
quick way to relate lengths and rotation angles of the
resonator to specific reflection coefficients. The resulting

reflection coefficient S;; = Eref . Eiy /Eqy, as a function of
the rotation angle 0 and the length of the GSP resonators, /g,
is shown in Fig. 7. To further clarify the accessible range of
the reflection coefficients, Fig. 8 shows the available range in
the Cartesian and polar coordinate systems. As already seen,
nearly arbitrary control of the complex reflection coefficient
is feasible. We note that one can completely control the
phase from 0° to 360° if the magnitude is normalized by
67.25%. In other words, one can realize any combination of
complex reflection coefficient with magnitude and phase
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FIG. 8. Accessible range of complex reflection coefficients.
(a) A magnitude vs phase plot showing the range of achievable
S, values with the proposed optical Huygens’ metasurface. The
achievable values are shaded in gray; varying the rod length and
rotation angle corresponds to traveling along the red and blue
contours, respectively. (b) The same plot shown with the
magnitude and phase of Sy; plotted in polar coordinates. As in
(a), varying the rod length and rotation angle corresponds to
traveling along the red and blue contours, respectively.

ranging from 0 to 0.6725 and 0° to 360°, respectively. At the
cost of reduced phase control, the efficiency of the surface
can be enhanced. In other words, one can realize a complex
reflection coefficient with magnitude and phase ranging
from 0 to 0.8 and 50° to —230°, respectively.

Equation (3) shows that cross-polarized components are
induced for € > 0. Such cross-polarized components
should not be confused with the ones found in structures
such as the V-shaped nanoantennas, where the cross-
polarized components are always present and fundamen-
tally limit the efficiency to 25% even in the lossless case
[11]. In our design, however, cross-polarized components
are induced only when the resonator is rotated to inde-
pendently control the magnitude and phase of the reflection
coefficient. If the magnitude of the reflection coefficient is
to be maximized (which most previous works have
attempted to achieve), then the cross-polarized components
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FIG. 9. Far-field plot of the beam splitter with 25 unit cells.

are not induced. From the pool of available S;; parameters,
the required spatially dependent S;; values for the beam
splitter are sampled for 25 data points, and its full-wave
simulation result is shown in Fig. 9 (see Appendix B). A
distinct asymmetric splitting effect is observed at pre-
scribed angles, which proves that the proposed physical
implementation method closely approximates the desired
complex surface impedances. The difference in the ampli-
tudes of the two reflected beams arises from the fact that
each unit cell has a near-cardioid radiation pattern where
the intensity reduces away from broadside. This can be
compensated by assigning a higher amplitude for the field
which reflects further from the broadside. For the current
beam splitter, we note that infinitely many unit cells are
needed to exactly simulate aperiodic impedance profiles, as
periodic boundary condition cannot be employed.

III. EXTENSION TO OPTICAL REFLECTARRAY
THEORY: DOLPH-TSCHEBYSCHEFF PATTERN

The ability to independently control the magnitudes and
phases of the complex reflection coefficients greatly aids
the design of specialized optical reflectarrays. Most pre-
vious metasurface designs, which aim to arbitrarily reflect
or refract incident fields, can be viewed as reflectarrays or
transmitarrays. In these designs, constant scattering ampli-
tudes are assumed for all unit cells with a linear phase
progression [6,10,11,29]. From the antenna-theory per-
spective, such distributions are analogous to uniform
antenna arrays which provide radiation patterns with the
maximum radiation directed at a designed angle. However,
it is well known that uniform arrays also result in uncon-
trolled and uneven sidelobes. In contrast, the method
proposed in this paper allows the realization of limitless
optical antenna patterns, including ones that feature
constant and minimized sidelobe levels (SLLs). As a

(b)

FIG. 10. Radiation patterns of (a) Dolph-Tschebyscheff and
(b) uniform arrays. Both arrays redirect the normally incident
plane wave at 33°.

demonstration, we present an optical Dolph-Tschebyscheff
reflectarray to precisely tailor the SLLs.

In Dolph-Tschebyscheff reflectarrays, the reflection
coefficient of each unit cell is weighted by the mth order
Tschebyscheff polynomial 7', (z), where the number of unit
cells forming the array is m + 1. An interesting property of
the Tschebyscheff polynomials is that they assume values
from —1 to 1 within the range —1 < z < 1, where all the
roots occur. Using this property, antenna arrays designed
through a mapping from the Tschebyscheff function feature
array factors with constant ripple sidelobes. This enables
one to achieve the lowest possible SLL given a specific
beam angle and beamwidth. In this work, we use an
optical Huygens’ metasurface to synthesize a Dolph-
Tschebyscheff array. Assuming five isotropic elements,
the array is designed to radiate at 56.5° from the broadside
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FIG. 11. Radiation patterns of (a) Dolph-Tschebyscheff and
(b) uniform arrays. Both arrays normally reflect the incident
plane wave.

(z axis). Table I summarizes the distribution of (normal-
ized) reflection coefficients of the array that are weighted
based on T,(z), and Fig. 10(a) shows the resulting total
radiation pattern. The details of the design process for a
Dolph-Tschebyscheff array are outlined in Ref. [39]. As
shown, the peaks of the two sidelobes in the radiation
pattern are nearly constant, while the uniform array
possesses uneven and significant sidelobes [Fig. 10(b)].
We note that the presented radiation pattern is the total
radiation pattern (product of unit-cell and Dolph-
Tschebyscheff array patterns). As such, the main beam
is directed at 33°, instead of 56.5°, which we designed for
the array pattern, since the intensity of the unit-cell pattern
decreases away from the broadside, as shown in Fig. 4(a).
Moreover, the main beams obtained are already quite
directive, considering that the antennas have a small overall

TABLEI. Normalized reflection coefficients of each unit cell in
a five-element Dolph-Tschebyscheff reflectarray. The resulting
array factor directs its main beam at 56.5° provided that each
element radiates isotropically. /g and @ represent the length and
the rotated angle, respectively, of each GSP resonator that
correspond to the desired S;.

Unit cell [S11] ang(Syy) lg [nm] 0

#1 0.518 180° 140 35°
#2 0.833 90° 162.5 45°
#3 1.0 0° 115 45°
#4 0.833 -90° 125 25°
#5 0.518 —180° 140 35°
TABLE II. Normalized reflection coefficients of each unit cell

in a five-element Dolph-Tschebyscheff reflectarray that reflects a
normally incident plane wave at its broadside.

Unit cell [S11] ang(S;) g (nm) 0

#1 0.518 0° 128 36°
#2 0.833 0° 123 27°
#3 1.0 0° 120 0°
#4 0.833 0° 123 27°
#5 0.518 0° 128 36°

size of five unit cells, which amounts to 1.2 yum. Much
tighter beams can be synthesized with larger antennas.
To further demonstrate sidelobe suppression, Figs. 11(a)
and 11(b) compare broadside radiation patterns in the
dB scale (normal incidence and reflection), where the
distribution of the reflection coefficients of each unit cell
is summarized in Table II. In this design, the Dolph-
Tschebyscheff array results in a slightly wider beamwidth,
but much lower SLLs are obtained as compared to those of
the uniform array. Furthermore, the peaks of the sidelobes
are of equal amplitudes.

IV. CONCLUSION

We have presented the optical Huygens’ metasurface—a
metasurface that can independently and widely control the
magnitude and phase of its local reflection coefficients.
This has been achieved using nanorod resonators to
synthesize Huygens’ sources that excite orthogonal electric
and magnetic dipoles. The proposed physical dimensions
of the nanorod GSP resonators fall under practical electron-
beam resolution. Moreover, similar structures, but for
different functionalities, have been successfully fabricated
in the past, proving the feasibility and versatility of the
proposed optical Huygens’ metasurfaces [29,40]. By rotat-
ing these resonators and altering their lengths, such
metasurfaces with tailored reflection coefficients can be
synthesized. The idea of generalized complex reflection
coefficients extends beyond the realization of general-
purpose metasurfaces and opens pathways towards many
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designs of unique optical reflectarrays such as the Dolph-
Tschebyscheff array, featuring equal-amplitude sidelobes
of prescribed magnitude, as demonstrated in this paper. The
independent control over the magnitudes and phases of
complex reflection coefficients brings extreme flexibility in
reshaping an optical wavefront. This allows the realization
of a myriad of optical antenna patterns including binomial
and superdirective patterns.
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APPENDIX A: TRANSFORMATION FROM
COMPLEX IMPEDANCES TO REFLECTION
COEFFICIENTS

The reflection coefficient I" (or Sy;) of the lattice network
shown in Fig. 3 can be solved as

Zi -7
Z1+ 27,
where
2 =2\(Zp+ Z2) + Zy(Zy + Z))
Zy=2,(2Zp+Z, + 2,). (A2)

Here, Z, and Z, respectively correspond to Zg'/2 and 2Zg,
which result from comparing the electromagnetic boundary
condition with the port relationship in the lattice network
[20]. Z,, and Z,, are the characteristic impedances (77) of
media 1 and 2 separated by the metasurface. In our
simulations, we have assumed that the two are of the same
media (Z,, = Z,, = 377Q—the intrinsic impedance of
free space). Setting Z,, as an impedance of air, not as
an impedance of gold, implies that we are interpreting the
whole structure as a single-layered surface. It is assumed
that a plane-wave excitation is from medium 1. If the
transmitted field is also to be arbitrarily refracted at some
angle (0,) (a case we did not consider in this paper), then
Z,, = ncos @, (for TM polarizations) or Z,, = 5 sec 8, (for
TE polarizations).

APPENDIX B: NUMERICAL SIMULATION

Full-wave electromagnetic simulations are performed
using the Ansoft HFSS Finite Element Method commercial
software. The Drude model in Ref. [41] is used to obtain the
optical properties of gold. A constant refractive index of
1.45 is used for the silica layer. A nanorod GSP resonator
unit cell is characterized by surrounding its four sides with
a periodic boundary condition and terminating the top and
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FIG. 12. Full-wave unit-cell characterization result: variations
in (a) magnitude and (b) phase of S;; for different resonator
lengths and rotation angles.

bottom faces with Floquet ports for a normally incident
plane-wave excitation. The electric and magnetic surface
impedances can be directly extracted from the impedance
parameters that HFSS computes as follows:

(Z1y + Zyy)
Zg _ 11 5 21
Z3 =221,y

V.

Ij Vi=0 for k#j

where the subscripts i and j represent the top and bottom
Floquet ports, respectively. For all simulations, w, ¢, and ¢,
(refer to Fig. 3) are all fixed to 50 nm, while the resonator’s
length /g and the rotation angle € vary from 50 nm—200 nm
and 0°-90°, respectively, depending on the desired reflec-
tion coefficient. For all simulations except for Figs. 11(a)
and 11(b), the periodicities in the x and y directions are
fixed to d, = 240 nm and d, = 240 nm. Figure 12 shows
the full-wave unit-cell characterization result based on the
above physical geometries, which closely matches Fig. 7.
The unit-cell periodicities used for Figs. 11(a) and 11(b) are
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changed to d, =400 nm and d, =400 nm, in order to
increase the number of sidelobes from 1 to 2 for better
visualization of equal peak amplitudes. The radiation
patterns of the beam splitter and optical reflectarrays are
obtained by simulating 25 x 1 and 5 x 1 unit cells, respec-
tively. The whole structure is surrounded by the radiation
boundary condition except for those faces that are normal
to the direction where the reflection coefficient does not
vary. These faces are terminated by the periodic boundary
condition (x axis in Fig. 1).
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