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Discrete Huygens’ Metasurface: Realizing Anomalous Refraction and 

Diffraction Mode Circulation with a Robust, Broadband and Simple Design 

Chu Qi and Alex M. H. Wong 

Abstract—Metasurfaces composed of subwavelength unit cells usually 

require a large number of unit cells which leads to complicated design and 

optimization. Aggressive discretization in metasurface designs can 

significantly reduce the number of unit cells within a period, resulting in 

large unit cell sizes. The enlarged unit cells will encounter negligible mutual 

couplings when combined together, hence making straightforward the 

process of metasurface design. These advantages combine to allow the design 

of a novel class of metasurfaces which support the high efficiency redirection 

of electromagnetic (EM) waves over a wide bandwidth and operation angle. 

Moreover, an aggressively discretized metasurface can realize diffraction 

mode circulation. In this work we propose a simple transmissive 

metasurface which can realize diffraction mode circulation by refracting 

plane waves from angles of −𝟒𝟓° , 𝟎° , 𝟒𝟓°  to angles of  𝟎° , 𝟒𝟓° , −𝟒𝟓° 
respectively. The power efficiency of each anomalous refraction is more than 

80% at the design frequency of 28 GHz, and the 3-dB power efficiency 

bandwidth is 11%. We fabricated and measured the metasurface, the 

experiment results agree well with the simulation results. 

Index Terms—Discrete metasurface, Huygens' metasurface, anomalous 

refraction, mode circulation. 

I. INTRODUCTION 

Metasurfaces are artificial surfaces with subwavelength-thickness 

which can break the limitation of natural surfaces and provide 

versatile control of electromagnetic (EM) waves [1]-[5]. In recent 

years, Huygens’ metasurfaces have attracted increasing attention 

because of their simultaneous electric and magnetic responses to an 

incident EM wave [6]-[11]. The general design procedure for a 

Huygens’ metasurface is to first design a continuous function of 

surface impedance (or admittance) which satisfies the boundary 

condition of the given incident and the desired reflected and/or 

transmitted EM waves. Then the metasurface is finely discretized into 

small elements, each of which realizes the sampled values of surface 

impedance at their respective locations. This is done by designing the 

unit cells with different geometrical structures and/or parameters. 

Finally, the elements are fitted together to form the composite 

metasurface. It is assumed that when the metasurface elements are 

sufficiently small, the composite metasurface will behave similarly to 

a surface whose surface impedance continuously varies in space. The 

detailed design process is described, for some examples, in [6], [7], 

[9], [12]-[14]. For a finely discretized metasurface design, the unit cell 

size is electrically small (typically about one-tenth of a wavelength), 

which sometimes results in fabrication difficulty. The small unit cells 

often lead to significant mutual coupling among the unit cells, which 

can affect the performance of the metasurface. To mitigate the effect 

of mutual coupling, the final design often requires further optimization, 

which complicates the design process. Meanwhile, many different unit 

cells are needed to achieve the different surface impedances, some 

surface impedance values may require strongly resonant metasurface 

element designs, the usage of which will compromise the robustness 

and bandwidth of the metasurface. 

More recently, researchers have proposed the concept of the 

metagrating, which is a metasurface where each period is designed as 

a single scatterer, without further discretization [15]. The period of a 

metagrating controls the number of propagating modes. In the case of 

reflection with only two propagating diffraction modes (upon oblique 

incidence), with the specular mode suppressed, all the reflected power 

will couple to the desired mode, realizing high efficient anomalous 

reflection, sometimes with simplified structures [15]-[17]. However, 

more complicated designs are required to manage the diffraction of 

more propagating modes. Some researchers introduce more degrees 

of freedom with extra inclusions in each period, which complicates 

the theory and structure, as the mutual couplings among the inclusions 

are difficult to rigorously analyze [15], [18]-[20]. Some researchers 

use iterative optimization methods to design metagratings based on 

multimode geometrical structures, which need a lot of simulation 

iterations, and the optimized performance may differ depending on the 

specific application and the optimization algorithm [21], [22]. 

In parallel, our group has presented the aggressively discretized 

metasurface, which is designed to have as few elements as possible 

within a period, and can realize efficient control of propagating 

diffraction modes [23]-[25]. Different from metagratings which treat 

and design the metasurface period as a single entity, in a discretized 

metasurface design, we adopt the procedure of discretizing the 

metasurface period and design each element separately. The 

discretization level is chosen from spectral domain considerations, 

and thereafter, through an inherently discrete formulation, we directly 

solve for the required properties of the discretized elements. 

Aggressive discretization in metasurface design can dramatically 

reduce the number of elements and significantly enlarge the size of the 

elements, which leads to simplicity and robust performance.  

In this work, we propose an aggressively discretized metasurface 

with three elements per period, which can realize efficient anomalous 

refraction by deflecting a normal incidence to 45°. Curiously, due to 

the aggressive discretization, the metasurface can also efficiently 

refract incident waves from ‒45° and 45° to angles of 0° and ‒45° 

respectively, hence achieving mode circulation. For each anomalous 

refraction case, our proposed metasurface can realize a power 

efficiency of higher than 80% at the design frequency of 28 GHz, and 

a 3-dB power efficiency bandwidth of 11%. 

The rest of this communication is organized as follows. Section II 

introduces the metasurface discretization and design formulation. 

Section III details our simulation setup and results. Section IV 

describes our fabrication and experimental results. We discuss salient 

points of our work in Section V and conclude in Section VI.  

II.  METASURFACE DISCRETIZATION AND DESIGN FORMULATION 

In this section, we will introduce the theoretical analysis and design 

formulation of a discretized periodic metasurface. After that, we 

propose an example to realize anomalous refraction with an 

aggressively discretized metasurface. Additionally, we investigate the 

mode circulation effect in the discretized metasurface designs. 

A.  k-space Operation of a Periodic Metasurface 

We find it instructive to investigate the discretization of a periodic 

metasurface by examining the waveform contents in the frequency 

domain (k-space). Fig. 1(a) shows the k-space operation of a periodic 

metasurface. When a periodic metasurface is illuminated by a plane 

wave in free space, the output (i.e. the transmitted and/or reflected 
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wave) will consist of an infinite number of diffraction modes. The 

tangential wave number of the 𝑛th diffraction mode in the output k-

space spectrum is 

𝑘𝑛 = 𝑘𝑖 + 𝑛𝑘𝑔， (1) 

where 

𝑘𝑖 = 𝑘0 sin 𝜃𝑖  and 𝑘𝑔 = 2𝜋/Λ𝑔. (2) 

Here 𝑘𝑖 is the tangential wave number of the incident plane wave with 

incident angle 𝜃𝑖 , 𝑘0  is the free space wave number, 𝑘𝑔  is the wave 

number of the metasurface with period Λ𝑔 . Of the infinite number of 

diffraction modes, only the ones in the propagation range of 𝑘𝑦 ∈

[−𝑘0, 𝑘0] can scatter into the far field, and the ones out of the propagation 

range are evanescent. Fig. 1(b) is a schematic diagram of a transmissive 

metasurface in Fig. 1(a). For a transmissive metasurface, there is a same 

number of propagating diffraction modes in the transmission and 

reflection spectrum respectively. Fig. 1(c) is a schematic of the reflected 

and transmitted waves, corresponding to the output spectrum shown in Fig. 

1(a). The refraction/reflection angles can be determined using 

𝜃𝑡,𝑛 = 𝜃𝑟,𝑛 = sin−1(𝑘𝑛/𝑘0) . (3) 

While the incident angle (𝜃𝑖) and metasurface period (Λ𝑔) determine 

the tangential wave numbers of the diffraction modes (𝑘𝑛) in the output 

spectrum, the structure of the metasurface and its interaction with the 

incident EM wave will determine the magnitude and phase of each 

diffraction mode. That is, by engineering the transmission and/or 

reflection characteristics of the discretized metasurface elements, we can 

engineer the excitation of the transmission and/or reflection diffraction 

modes. In the following, we describe a way to calculate the required 

transmission coefficients for a discrete set of metasurface elements, which 

will transform a known incident wave into a desired set of transmitted 

plane waves. 

B.   Discretized Metasurface – Design Formulation 

An aggressively discretized metasurface can be treated as an array of 

similar-sized and shaped scatterers which have similar scattering patterns. 

Therefore, we use array theory to investigate the scattering of a periodic 

metasurface.  

Consider a transmissive metasurface illuminated by a plane wave with 

a tangential wave number 𝑘𝑖 , travelling in the +z direction and 

encountering a metasurface at z = 0. The transmitted electric field at 𝑧 =
0+ is: 

𝐸𝑡(𝑦) = 𝑇(𝑦)𝐸𝑖𝑒
−𝑗𝑘𝑖𝑦 , (4) 

where 𝐸𝑖 is a constant representing the complex amplitude of the incident 

electric field and 𝑇(𝑦) is the transmission function of the metasurface 

along the variation direction (y-direction). Fig. 2(a) shows a schematic of 

a metasurface with period Λ𝑔 and a discretization level of M elements per 

period: each element has a size of Λ𝑔/𝑀 in the variation direction, the 

𝑚th element has a transmission coefficient of 𝑡𝑚, which can be written as 

𝑡𝑚 = |𝑡𝑚|𝑒𝑗𝜑𝑚 , (5) 

where |𝑡𝑚|  and 𝜑𝑚  are the magnitude and phase of the transmission 

coefficient associated with the element. Figs. 2(b) and (c) show the 

transmission of the periodic metasurface in the spatial (y) domain and the 

tangential wave number (𝑘𝑦) domain respectively. As shown in Fig. 2(b), 

𝑇(𝑦) is the transmission function of the discretized metasurface, where 

𝑡(𝑦)  and ℎ(𝑦)  are the array function and element function of the 

transmission coefficients respectively. That is 

𝑇(𝑦) = 𝑡(𝑦) ∗ ℎ(𝑦), (6) 

where 𝑡(𝑦) = ∑ 𝑡[𝑦𝑚]𝛿(𝑦 − 𝑦𝑚)𝑚 , 𝑡[𝑦𝑚]  is the transmission 

coefficient of the element located at 𝑦𝑚 . Defining �̃�(𝑘𝑦) , ℎ̃(𝑘𝑦)  and 

�̃�(𝑘𝑦) as the Fourier transform pairs of 𝑡(𝑦), ℎ(𝑦) and 𝑇(𝑦) respectively, 

we have 

�̃�(𝑘𝑦) = �̃�(𝑘𝑦) × ℎ̃(𝑘𝑦). (7) 

From Fourier transform theory, �̃�(𝑘𝑦) can be written as a summation of 

delta functions where each delta function corresponds to a diffraction 

mode in the transmission spectrum, i.e., �̃�(𝑘𝑦) = ∑ �̃�[𝑘𝑦,𝑛]𝛿(𝑘𝑦 −𝑛

𝑘𝑦,𝑛) . Since 𝑡[𝑦𝑚]  is discrete with spacing Λ𝑔/𝑀  between adjacent 

elements and periodic of M elements, Fourier transform theory guarantees 

that, �̃�[𝑘𝑦,𝑛] will be discrete with interval 𝑘𝑔 = 2𝜋/Λ𝑔 between adjacent 

modes and periodic of M modes. Using 𝑡[𝑚] and  �̃�[𝑛] to denote the 𝑚th 

and 𝑛th items in 𝑡[𝑦𝑚] and �̃�[𝑘𝑦,𝑛] respectively, we have 

𝑡[𝑚] = ∑ �̃�[𝑛]𝑒𝑗𝑛
2𝜋
𝑀

𝑚
𝑀

𝑛=1
, �̃�[𝑛] =

1

𝑀
∑ 𝑡[𝑚]𝑒−𝑗𝑛

2𝜋
𝑀

𝑚
𝑀

𝑚=1
, (8) 

which is to say, 𝑡[𝑚] and �̃�[𝑛] are Fourier series pairs. Here we consider 

the element function ℎ(𝑦) as a rectangular function, which means we 

 
Fig. 1. (a) k-space operation of a periodic metasurface which varies along y-

direction. The asterisk sign (∗) denotes the convolution operation. Arrows 
indicate the existence of diffraction modes with different tangential wave 
numbers. The blue box in the output k-space spectrum denotes the propagation 

range of 𝑘𝑦 ∈ [−𝑘0, 𝑘0] . (b) A schematic diagram of a transmissive 

metasurface upon an incidence with wave number �⃗� 𝑖 and incident angle 𝜃𝑖. (c) 

A schematic of output spectrum, �⃗� 𝑡,𝑛  and �⃗� 𝑟,𝑛   (n = ‒1, 0, 1) are the wave 

numbers of the 𝑛thdiffraction modes in the transmission and reflection region 

respectively. 

 
Fig. 2. (a) Schematic of one period of a transmissive metasurface with a 

discretization level of M elements per period. (b) Wave transmission through 

the metasurface in the spatial (y) domain. (c) Wave transmission through the 

metasurface in the tangential wave number (𝑘𝑦) domain. The asterisk sign (∗) 

denotes the convolution operation and the multiplication sign (×) denotes the 

multiplication operation. 
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assume wave-transmission homogeneity within each element. Therefore, 

we have 

ℎ(𝑦) = {1, −
Λ𝑔

2𝑀
< 𝑦 <

Λ𝑔

2𝑀
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

, ℎ̃(𝑘𝑦) =
2𝜋

𝑀𝑘𝑔
sinc (

𝑘𝑦

𝑀𝑘𝑔
) . (9) 

The 𝑛th item of �̃�[𝑘𝑦,𝑛], which we denote as �̃�[𝑛], corresponds to the 

coefficient of the −𝑛th  diffraction mode in the transmission spectrum. 

That is, we can find the coefficient of the 𝑛th diffraction mode, 𝑎𝑛, using 

(8) – (9): 

𝑎𝑛 = 𝐸𝑖�̃�[−𝑛] = 𝐸𝑖 �̃�[−𝑛] × ℎ̃(−𝑛𝑘𝑔)

                 =
𝐸𝑖Λ𝑔

𝑀2
sinc (−

𝑛

𝑀
)∑ 𝑡[𝑚]𝑒𝑗𝑛

2𝜋
𝑀

𝑚
𝑀

𝑚=1
. (10)

 

Therefore, with a given discretization level (M) and transmission 

coefficient of each element (|𝑡𝑚|  and 𝜑𝑚  for 𝑚 = 1,⋯ ,𝑀 ), we can 

calculate the magnitude (|𝑎𝑛|) and phase (∠𝑎𝑛) of each diffraction mode 

in the transmission spectrum.  

While the preceding formulation analyzes the diffraction modes excited 

by a given incident wave and metasurface, we now present a formulation 

to find the required transmission coefficients which synthesize a desired 

transmission spectrum. Writing (10) in matrix form, we have 

𝑎 = 𝐶0𝐷𝑡 , (11) 

where 

𝑎 =

[
 
 
 
 

⋮
𝑎−1

𝑎0
𝑎1

⋮ ]
 
 
 
 

𝑁×1

, 𝑡 = [

𝑡1
⋮

𝑡𝑀

]

𝑀×1

, 𝐶0 =
𝐸𝑖Λ𝑔

𝑀2 ,

𝐷 =

[
 
 
 
 
 
 

⋮ ⋮ ⋮

sinc (
−1

𝑀
)𝑒−𝑗2𝜋

1
𝑀 … sinc (

−1

𝑀
)𝑒−𝑗2𝜋

𝑀
𝑀

1 … 1

sinc (
1

𝑀
)𝑒𝑗2𝜋

1
𝑀 … sinc (

1

𝑀
)𝑒𝑗2𝜋

𝑀
𝑀

⋮ ⋮ ⋮ ]
 
 
 
 
 
 

𝑁×𝑀

. (12)

 

𝑎  is an N-element vector composed of the coefficients of the diffraction 

modes which need to be controlled. When𝑀 ≥ 𝑁, (11) – (12) can be 

solved to find the required elements' transmission coefficients (𝑡 ) for a 

given transmission spectrum (𝑎 ). When 𝑀 = 𝑁, the solution is unique. 

That is, to realize control of N diffraction modes, the lowest number of 

elements required (the most aggressive discretization level) is 𝑀 = 𝑁. 

C.   Anomalous Refraction Metasurface Design 

We now use the aforementioned method to design an aggressively 

discretized metasurface which realizes anomalous refraction by deflecting 

a normal incidence to 45°. Applying (1) – (3), one can see that the 

anomalous refraction can be realized by a metasurface with 𝑘𝑔 =

𝑘0 sin 45° = 𝑘0/√2. This metasurface has three propagating diffraction 

modes, the –1st, 0th and 1st diffraction modes, among which only the 1st 

diffraction mode (𝑘1 = 𝑘𝑔) has non-zero magnitude. According to the 

design formulation, the three propagating diffraction modes can be 

controlled with an aggressive discretization level of M = 3. Therefore, we 

can solve for the three elements' transmission coefficients using (11) – (12) 

with the condition [𝑎−1, 𝑎0, 𝑎1] = [0, 0, 1]. The resultant transmission 

coefficient, normalized to the first term, is [1, 𝑒−𝑗2𝜋/3, 𝑒𝑗2𝜋/3]. In other 

words, the three elements should have uniform transmission magnitudes 

and equidistant transmission phases. Fig. 3 (middle panel) shows the k-

space operation and the refraction property of this metasurface.  

We now implement the discrete elements with metasurface unit cells. In 

an earlier work [25] we have applied a discrete formulation similar to 

Section II B to discretize the metasurface in [6] into 3 elements, then 

simulated an implementation with 3 identical unit cells per element (i.e. 9 

unit cells per period, compared to 20 unit cells per period in [6]). In [25] 

we show that this discretization results in an enlargement of unit cells 

along with a slight performance improvement. In the present paper, we 

further enlarge the unit cell size by implementing each element with just a 

single unit cell (i.e. 3 unit cells per period). We shall show, by simulation 

and experiment, that such a highly discretized design achieves excellent 

anomalous refraction despite a vast reduction in the number of unit cells 

per period. Such a reduction increases the minimum feature size, which 

simplifies metasurface fabrication. 

While the complex transmission coefficients obtained here can also be 

obtained by sampling a gradient phase profile with M = 3, our discrete 

formulation makes several unique contributions. Firstly, it shows that the 

employed level of discretization suffices to perform anomalous refraction 

with, in theory, perfect efficiency, given the availability of elements 

possessing the required transmission coefficients. The same can not be 

guaranteed by a metasurface designed with a continuous phase/impedance 

profile but implemented with a coarse sampling of the profile. Secondly, 

our design formulation can be applied to realize functionalities where the 

corresponding output spectra consist of multiple diffraction modes. 

Thirdly, our design formulation includes all diffraction modes excited by 

the incident wave, including both propagating and evanescent modes. 

Information on these modes helps us to realize the mode circulation effect, 

which we will discuss in detail in the next subsection. 

D.   The Mode Circulation Effect 

Due to aggressive discretization in the spatial domain, the metasurface 

attains a periodic behavior in k-space which leads to an intriguing 

phenomenon which we term the mode circulation effect. We elucidate this 

effect from the k-space perspective introduced above. Fig. 3(a) shows the 

k-space operation for the metasurface designed in the previous subsection. 

For the metasurface, we show the -2nd to 2nd diffraction modes as they can 

map into the propagation range upon the appropriate incidence plane 

waves. The other diffraction orders contribute to evanescent waves 

regardless of the wave incidence direction. As depicted, the diffraction 

amplitudes are [𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2] = [𝑎−2, 0,0, 𝑎1, 0] : {𝑎−1, 𝑎0, 𝑎1} 
are prescribed in metasurface design while 𝑎−2 ≠ 0  and 𝑎2 = 0  are 

obtained from periodic repetition, noting that the metasurface has a 

repetition level of M = 3. For this metasurface, upon plane wave incidence 

at 𝑘𝑖,−1 = −𝑘𝑔 ⇒ 𝜃𝑖,−1 = −45° (top panel of Fig. 3(a)), the only non-

zero diffraction mode within the propagation range in the transmission k-

space spectrum is 𝑘𝑡,1 = 𝑘𝑖,−1 + 𝑘𝑔 = 0. Similarly, upon incidence with 

𝑘𝑖,0 = 0 , 𝜃𝑖,0 = 0°  (middle panel of Fig. 3(a)), the only non-zero 

propagating mode in the transmission spectrum is 𝑘𝑡,1 = 𝑘𝑖,0 + 𝑘𝑔 = 𝑘𝑔. 

However, upon incidence with𝑘𝑖,1 = 𝑘𝑔 and 𝜃𝑖,1 = 45° (bottom panel of 

 
Fig. 3. (a) The k-space operation of a metasurface featuring the circulation of 
three diffraction modes. Arrows with solid line represent diffraction modes 

with non-zero magnitude, while arrows with dashed line represent diffraction 

modes with zero magnitude. (b) A schematic diagram of the transmissive 

metasurface in (a). 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on April 27,2022 at 08:19:37 UTC from IEEE Xplore.  Restrictions apply. 



0018-926X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2022.3164931, IEEE
Transactions on Antennas and Propagation

4 

 

Fig. 3(a)), the only non-zero propagating mode in the transmission 

spectrum is 𝑘𝑡,−2 = 𝑘𝑖,1 − 2𝑘𝑔 = −𝑘𝑔 . Summarizing these 

relationships, we see that this metasurface can realize the circulation of 

three diffraction modes by turning the -1st, 0th, +1st diffraction orders into 

the 0th, +1st, -1st diffraction orders respectively. In terms of plane wave 

angles, the metasurface refracts waves from 𝜃𝑖 = {−45°, 0°, 45°}  to 

𝜃𝑡 = {0°, 45°,−45°} respectively, as shown in Fig. 3(b). 

The mode circulation effect exemplifies intriguing phenomena that can 

readily be explained by a discrete formulation of metasurface design, but 

are highly unobvious under a continuous formulation. Further, the nature 

of mode circulation is directly affected by the discretization level: the 

mode circulation characteristics will change with the discretization level, 

and may become altogether unobservable in the limit of fine discretization, 

unless careful consideration is also given based on the k-space operation. 

Hence the discrete metasurface design formulation hereby proposed 

provides additional handles to complement existing methods mostly based 

on continuous metasurface boundaries, and can serve as a valuable tool 

for metasurface analysis and design. 

In summary, we have theoretically shown, based on the metasurface 

discretization and design formulation, that a periodic metasurface can 

realize efficient anomalous refraction of a normal incidence with an 

aggressive discretization level of three elements per period. Additionally, 

the aggressive discretization can lead to mode circulation effect. In the 

following sections, we will report simulation and experimental results 

showing the realization of anomalous refraction and mode circulation by 

a discrete metasurface with high efficiency and broadband performance. 

III.  METASURFACE DESIGN AND SIMULATION 

In this section, we report the design of a transmissive discrete 

Huygens’ metasurface, as an example to show that a discrete 

metasurface can achieve anomalous refraction and mode circulation 

with high efficiency. We design the metasurface at 28 GHz. Using (2) 

with 𝑘𝑔 = 𝑘0 sin 45°, we find the metasurface period Λ𝑔 = 15 mm. 

The aggressively discretized metasurface has three elements per 

period. We design each element as one unit cell. Ansys HFSS is used 

for the simulation. Figs. 4(a) and (b) show the geometrical structure 

of the unit cell, which is constructed using three layers of rectangular 

patches. Here we adopted the bianisotropic Huygens’ metasurface unit 

cell structure, which is proven to provide great flexibility to synthesize 

perfect anomalous refraction boundaries [9], [12], [13]. As the unit 

cell is large compared to most surfaces, we find we can employ simple 

metallic patterns on each layer and still achieve efficient anomalous 

refraction for our purpose. 

The metasurface is designed on two Rogers RT/duroid 5880 boards 

(𝜀𝑟= 2.2, 𝛿𝑡= 0.0009) with a substrate thickness of 0.787 mm and 

copper cladding thickness of 17.8 µm (1/2 oz.). They are bonded by a 

bondply (Rogers RO 4450F, 𝜀𝑟 = 3.52, 𝛿𝑡 = 0.004) with a thickness of 

0.1 mm. The electric field is along x-axis. By sweeping the dimensions 

of the rectangular patches on each layer, we can get the transmission 

coefficients of the unit cell with different geometrical parameters. We 

choose three unit cells with similar transmission magnitudes (around 

0.9) and equidistant transmission phases (120°) to compose the period 

of the metasurface, as was found necessary in Section II C. The 

enlarged unit cell size and simple structure result in negligible 

couplings among unit cells along the variation direction (y-direction). 

Thus, we directly combine the chosen unit cells to form the 

metasurface, no optimization is performed afterward. Fig. 4(c) shows 

a period of the metasurface; Table I details the geometrical parameters. 

2D periodic simulation shows that this metasurface can refract 

incident waves with incident angles of ‒45°, 0° and 45° to transmitted 

waves with refracted angles of 0°, 45° and ‒45° with power 

efficiencies of 81.3%, 81.8% and 80.1% respectively. The simulated 

3-dB power efficiency bandwidth of this metasurface is 11%. Fig. 4(d) 

shows the electric field magnitude distributions of the metasurface 

upon incident plane waves with incident angles of ‒45°, 0° and 45° 

respectively. From these full-wave simulation results we can see that 

the designed metasurface achieves anomalous refraction and mode 

circulation with high efficiency at the design frequency. 

TABLE I 

GEOMETRICAL PARAMETERS OF THE UNIT CELLS 

Unit cell No. 
𝐿𝑡𝑜𝑝  

[mm] 

𝑊𝑡𝑜𝑝   

[mm] 

𝐿𝑚𝑖𝑑   

[mm] 
𝑊𝑚𝑖𝑑   

[mm] 
𝐿𝑏𝑜𝑡  

[mm] 
𝑊𝑏𝑜𝑡  

[mm] 

1 

2 
3 

3.2 

4.6 
2.9 

1.1 

0.4 
1.0 

3.0 

2.6 
2.4 

1.3 

0.6 
1.0 

3.4 

4.7 
2.9 

0.9 

0.6 
1.0 

IV.  FABRICATION AND EXPERIMENT 

We proceed to fabricate and measure the proposed metasurface. Fig. 

5(a) shows a photo of the fabricated metasurface. The size of the 

fabricated metasurface is 195×195 mm2. Figs. 5(b) and (c) show one 

period of our proposed metasurface compared with a transmissive 

Huygens’ metasurface proposed in [6], which can realize anomalous 

refraction by deflecting a normal incidence by 30°. We observe that, 

compared to finely discretized metasurface design, the aggressively 

discretized metasurface can lead to much larger unit cells and benefit 

from a very simple design, which relaxes fabrication tolerances. A 

more detailed comparison is presented in the discussion section. 

Fig. 6(a) shows a schematic of the experimental setup. In the setup, 

the transmitting antenna (a 4-40 GHz double ridged horn NSI-RF-

RGP-40) is fixed with the metasurface with incident angles of ‒45°, 

0° and 45° respectively, for the three refraction cases. The receiving 

antenna (an 18-40 GHz standard diagonal horn FR-6413) rotates to 

measure the scattering of the metasurface at the transmission side. Fig. 

6(b) shows a photo of the experimental setup. In the experiment, the 

metasurface is embedded into a metallic board to eliminate direct 

transmission between the transmitting and receiving horns. Fig. 6(c) 

compares the measured and simulated anomalous refraction power 

efficiencies. The measured power efficiency is the ratio between the 

power received in the desired refraction direction and the power 

illuminated onto the metasurface. At the design frequency of 28 GHz, 

 
Fig. 4. (a) Perspective view and (b) Front view of the geometrical structure of 

the unit cell. The size of the unit cell is 𝑈𝑥 = 𝑈𝑦 = 5 mm, 𝑈𝑧 = 1.67 mm. (c) 

Top view of one period of the proposed metasurface. (d) The electric field 
magnitude distributions of the metasurface upon incident plane waves with 

incident angles of ‒45°, 0° and 45° respectively. 
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the measured power efficiencies of the fabricated metasurface are 

82.2%, 81.6% and 76.0% for anomalous transmission cases of 

incidences from ‒45°, 0° and 45° to refracted directions of 0°, 45° and 

‒45° respectively. Besides, the efficiency performance over the 3-dB 

frequency band agrees well with the simulated result. Figs. 6(d), (e) 

and (f) show, at the design frequency, the measured scattering of the 

metasurface compared with the scattering of air under incident angles 

of ‒45°, 0° and 45° respectively. As we can see, the metasurface can 

efficiently refract plane waves with incident angles of ‒45°, 0° and 45° 

to refracted waves with refraction angles of 0°, 45° and ‒45° 

respectively, realizing diffraction mode circulation. In all the three 

cases, sidelobe levels are lower than ‒10 dB, showing that the 

metasurface achieves a strong suppression of spurious scattering along 

with high-efficiency anomalous transmission to the desired modes. 

V. DISCUSSION 

A.  Feature Size Comparison 

In discrete metasurface design, the enlarged unit cell size and 

simple structure can greatly relax the fabrication tolerance, which 

will benefit the metasurface design at high frequencies and even 

optical frequencies. To show this, we compare our proposed 

metasurface with a finely discretized transmissive Huygens’ 

metasurface proposed in [6]. The structures of the fabricated 

metasurfaces are shown in Figs. 5(b) and (c), one period is shown 

for both metasurfaces. With an aggressively discretized metasurface 

design, we can dramatically increase the unit cell size without 

compromising on the anomalous refraction performance. This 

allows us to relax the critical feature size. The minimum feature size 

in our design is 0.03𝜆0, which is about 6-fold increased from the 

design in [6]. (We use the electrical length here to compare 

metasurfaces which are built for different frequencies of operation.) 

In our design, the smallest gap (0.3 mm) is easily fabricable by 

conventional etching technology. Extension to even higher 

frequencies (up to 100 GHz) should be straightforward. We attempt 

to further increase the minimum feature size by removing the two 

smallest gaps. The smallest gap on the top layer is circled in Fig. 

6(b); a gap of a similar dimension also exists in the bottom layer. 

The resultant structure, after the removal of the gaps, boosts a 

minimum feature size of 0.15𝜆0 , while the simulated anomalous 

refraction efficiency slightly reduces to 70%. This amended 

metasurface has a similar anomalous refraction efficiency as [6], but 

a minimum feature size which is 28-fold increased. Despite the 

relaxed feature size, our proposed metasurface produces at a larger 

refraction angle and operates with higher anomalous refraction 

power efficiency. Similar feature size improvements are observed in 

comparison to more recent works on bianisotropic Huygens' 

metasurfaces, but a quantitative comparison is not performed with 

these works since the refraction angles are drastically different.  In 

summary, the aggressive discretization in a metasurface design can 

lead to simple structures with large feature sizes, without sacrificing 

the metasurface efficiency. This can prove useful for practical and 

high-frequency applications. 

B.  Anomalous Refraction for Other Incident Angles 

While we have concentrated on the metasurface’s performance at 

𝜃𝑖 = {−45°, 0°, 45°} , it can also realize efficient anomalous 

refraction upon other angles of incidence. Fig. 7 shows wave 

transmission through the metasurface as a function of the incident 

angle 𝜃𝑖 , as obtained from simulation with material losses included. 

The operation points for the mode circulation are denoted with 

circles. As predicted by the k-space operation, for −𝑘0 < 𝑘𝑖 < 𝑘0 −
𝑘𝑔 (‒90°<𝜃𝑖<17°), the 1st diffraction mode is dominant. For 2𝑘𝑔 −

𝑘0 < 𝑘𝑖 < 𝑘0 (24.5°<𝜃𝑖<90°), the –2nd diffraction mode is dominant. 

For 𝑘0 − 𝑘𝑔 < 𝑘𝑖 < 2𝑘𝑔 − 𝑘0 (17°<𝜃𝑖<24.5°), the behavior is less 

well-defined, as the propagating modes are designed to propagate 

weakly, and the unit cells are designed to reflect weakly. As a result, 

slight deviations from the required element properties will 

appreciably affect the scattering of the metasurface. In this case an 

appreciable refraction, mainly to the ‒1st diffraction mode, is 

 
Fig. 5. (a) The fabricated metasurface. (b) One period of our proposed 
metasurface compared with (c) one period of the metasurface proposed in [6]. 

 
Fig. 6. Experiment. (a) A schematic of experimental setup. (b) A photo of the 

experimental setup. (c) The measured and simulated anomalous refraction 
power efficiencies. (d) – (f) Measured scattering of the metasurface compared 

with the scattering of air (same setup without metasurface) upon incidences of 

‒45°, 0° and 45° respectively. 
 

 
Fig. 7. Transmission of the proposed metasurface as a function of the incident 

angle. Incidences with angles of ‒45°, 0°, 45° are marked with green circles. 
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observed. We further observe that, when {𝜃𝑖 , 𝜃𝑡} fall within [‒60°, 

+60°], and when there exists a propagation mode to which the 

incident power is directed (in our case either the ‒2nd or 1st 

diffraction mode), the power efficiency is more than 70%, 

showcasing the respectable efficiency of the metasurface over a 

wide angular range. 

C.  Effects of Spatial Dispersion 

In the design formulation, we assume that the element function ℎ(𝑦) is 

invariant with 𝑘𝑖, i.e., ℎ(𝑦) remains the same for different incident angles. 

In practice the metasurface unit cell may be spatially dispersive, but in our 

case such a spatial dispersion effect is minor because the element size 

(0.47𝜆0) is small compared to the wavelength, and the incident angles are 

within a relatively small range (≤ 45°). Fig. 7 has shown that our proposed 

design, without adaptation from spatial dispersion considerations, 

performs anomalous refraction with respectable efficiency for angles 

within ±60°. For an improved performance at a large angle, one can 

account for spatial dispersion by using the accurate unit cell scattering 

pattern ℎ̃(𝑘𝑦)  corresponding to the desired angle of incidence, as 

obtained from a full-wave simulation. 

VI. CONCLUSION 

We have shown, theoretically and experimentally, that aggressive 

discretization can benefit a metasurface design with simplicity and 

good performance. The aggressive discretization in metasurface 

design leads to a dramatically reduced number of elements with a 

much larger element size. This allows us to achieve efficient EM wave 

manipulation using a metasurface with a very simple structure that 

relaxes fabrication tolerances. This in turn allows one to avoid the use 

of unit cells with compromised properties or with strong resonance, 

resulting in efficient and broadband performance. Moreover, the 

aggressive discretization in metasurface design can provide control 

handles to facilitate diffraction mode circulation. Here we designed 

and fabricated a discrete transmissive Huygens’ metasurface with a 

simple structure – it features rectangular microstrip patterns, with the 

critical feature size 28-fold increased compared with a finely-

discretized anomalous refraction Huygens' metasurface. It can realize 

efficient anomalous refraction by deflecting a normal incidence to 45°. 

Meanwhile, due to its aggressively discretized design, the proposed 

metasurface can also realize efficient refraction of plane waves from 

‒45° and 45° to 0° and ‒45° respectively, thus realizing diffraction 

mode circulation. Our proposed metasurface has a good performance 

with more than 80% power efficiency and 11% 3-dB power efficiency 

bandwidth. The aggressive discretization can benefit the metasurface 

design at high frequencies and even optical frequencies. The concept 

of using a discrete metasurface to realize mode circulation effect can 

also be applied to guided waves and multi-channel communication 

systems. 
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