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Symmetric block encryption schemes, designed on invertible two-dimensional chaotic maps on
a torus or a square, prove feasible and secure for real-time image encryption according to the
commonly used criteria given in the literature. In this paper, a typical map of this kind, namely,
the baker map, is further extended to be three-dimensional and then used to speed up image
encryption while retaining its high degree of security. The proposed algorithm is described in
detail, along with its security analysis and implementation. Experimental results show that this
three-dimensional baker map is 2–3 times faster than the two-dimensional one, showing its great
potential in real-time image encryption applications.
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1. Introduction

Encryption on image or video objects has its own re-
quirements due to the intrinsic characters of images
such as bulk data capacity and high redundancy.
Traditional symmetric encryption algorithms such
as DES, IDEA, Blowfish and RSA are generally
not suitable for image encryption due to their slow
speed in real-time processing and some other issues
such as in handling various data formatting.

Recently, the idea of using chaos in data en-
cryption has been introduced and discussed in, for
instance, [Fridrich, 1997, 1998; Li et al., 2002; Mao

& Chen, 2004, Chen et al., 2004; Scharinger, 1998].
It has been shown that chaos-based algorithms
have advantages in applications of bulk data en-
cryption, which make use of two special features
of chaotic maps — the sensitivity to initial con-
ditions and parameters and the mixing property
(topological transitivity or ergodicity), [Fridrich,
1998; Kocarev, 2001; Kocarev & Jakimovski, 2001;
Masuda & Aihara, 2002]. Sensitivity to initial condi-
tions means that when a chaotic map is iteratively
applied to two extremely close initial points, the
iterates quickly diverge, and become uncorrelated
in the long term. This character is especially useful
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Fig. 1. The standard 2D baker map.

in image encryption, since two adjacent pixels in
an image are highly correlated but while using a
chaotic map, they will be uncorrelated after sev-
eral rounds of iteration. Sensitivity to parameters
causes the properties of the map to change quickly
when slightly perturbing the parameters on which
the map depends. This property of the parame-
ters is just like that of a cipher key, therefore, in
a chaotic based encryption scheme, those parame-
ters are often used as keys. Mixing is the tendency
of the system to quickly blend small portions of the
state space into an intricate network of filaments.
This character can also make correlated informa-
tion become scattered all over the phase space.
These characteristics form a basis of chaotic data
encryption.

In practical applications, there are two kinds
of methods used for constructing secure encryption
algorithms. For quite a long time, many now-classic
schemes like DES and IDEA [Schneier, 1995] em-
phasize more on substitution than on permutation,
aiming at the key issue of security alone. Actually,
permutation plus diffusion can also compose very
good encryption schemes with not only high secu-
rity but also fast speed. In fact, this observation
led to some excellent encryption schemes based on
two-dimensional chaotic maps, which were essen-
tially motivated by this observation [Fridrich, 1997,
1998; Scharinger, 1998]. The present paper contin-
ues the same pursuit with further improvement, in
which the two-dimensional baker map is extended
to be three-dimensional and is then used to com-
pose a fast and secure image encryption scheme.
As will be shown later in this paper, experimen-
tal results show that this three-dimensional baker
map is 2–3 times faster than the two-dimensional
one, showing its great potential in real-time image
encryption applications.

The remainder of the paper is arranged as fol-
lows: Section 2 describes the two-dimensional baker
map and its extension to be three-dimensional. Sec-

Fig. 2. The generalized 2D baker map.

tion 3 constructs a new image encryption scheme
based on the extended three-dimensional chaotic
baker map. Some analysis of the proposed image
encryption scheme is then given in Sec. 4. Section 5
shows some test results and, finally, Sec. 6 concludes
the paper with some discussions.

2. Extending the 2D Baker Map

to 3D

2.1. The 2D baker map

The standard 2D baker map, denoted by B here-
after, is described by [Fridrich, 1997, 1998]
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This 2D baker map is a chaotic bijection of the unit
square I × I onto itself, as depicted in Fig. 1.

The generalized baker map [Pichler &
Scharinger, 1995, 1996] is defined as follows (see
Fig. 2): divide the unit square into k vertical
rectangles, [Fi−1, Fi) × [0, 1), i = 1, . . . , k, Fi =
p1 +p2+ · · ·+pi, F0 = 0, such that p1+ · · ·+pk = 1.
The lower right corner of the ith rectangle is located
at Fi = p1 + · · · + pi. The generalized baker map
stretches each rectangle horizontally by the factor
1/pi; at the same time, the rectangle is contracted
vertically by the factor pi. Formally, the map is
defined by

B(x, y) =

(

1

pi

(x − Fi), piy + Fi

)

for (x, y) ∈ [Fi, Fi + pi) × [0, 1).
The discretized baker map is required to as-

sign a pixel to another pixel in a bijective manner.
As pointed out in [Fridrich, 1998], if the discretized
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Fig. 3. The generalized discrete 2D baker map.

map satisfied the following formula:

lim
N→∞

max
0≤i,j<N

|Bc(i/N, j/N) − Bd(i, j)| = 0

then it could inherit the basic properties of its
original continuous version, namely, the discretized
map will be close to the continuous one, as the
number of pixels tends to infinity. In the above for-
mula, Bc stands for the continuous baker map and
Bd, its discretized version.

If one divides an N × N square into vertical
rectangles with N pixels high and Ni pixels wide,
then the discretized baker map can be expressed as
follows:

Bd(r, s) =

(

N

ni

(r − Ni) + s mod
N

ni

,

ni

N

(

s − s mod
N

ni

)

+ Ni

)

where the pixel (r, s) is with Ni ≤ r < Ni + ni, 0 ≤
s < N . The sequence of k integers, n1, n2, . . . , nk,
is chosen such that each integer ni divides N , and
Ni = n1 + n2 + · · · + ni, N = n1 + · · · + nk. If not
all of the integers n1, n2, . . . , nk divide N , and fur-
thermore if the unit is an M × N rectangle, then
the map from pixel (i, j) to (r, s) can be obtained
according to the next formula, which is illustrated
in Fig. 3.

As can be seen from Fig. 3, an M × N square
is divided into vertical rectangles of N -pixel height
and mi-pixel wide. The sequence of k integers,
m1, . . . ,mk, is chosen such that Mi = m1+ · · ·+mi,
M = m1 + m2 + · · · + mk, and M0 = 0. Thus, the
generalized discrete 2D baker map is expressed as

(r, s) = Bd(i, j)

= (b(Mi−1 × N + j × mi + i − Mi−1)/Mc ,

(Mi−1 × N + j × mi + i − Mi−1)modM)

2.2. The 3D baker map

A direct extension of the standard two-dimensional
baker map to a three-dimensional setting can be
accomplished by the following procedure.

Firstly, divide an unit cube into four even nar-
row stripes of small cubes, and then press each of
them and pile them up one by one to form a new
unit cube that has the same volume with the origi-
nal. Mathematically, it is described by

B(x, y, z) =
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which is illustrated in Fig. 4.
Compared with 2D baker map, the extended

3D baker map has more intensive chaotic charac-
ters, which turns out to be propitious to image
encryption. This can be verified by comparing
the Lyapunov Exponents (LE) of the two baker
maps.

Recall the 2D baker map defined in formula (1).
A unit square is first divided evenly into two parts,
and each part is stretched horizontally whilst con-
tracted vertically. Then, they are piled up one over
another. Since the stretching in the horizontal direc-
tion is magnified by a factor of 2, and the measure
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Fig. 4. The standard 3D baker map.

is uniform in the same direction, the probability
of the iterations falling in these two regions is
evenly equal to 1/2. Thus, the LE in the horizontal
direction is

λh =
1

2
ln 2 +

1

2
ln 2 = ln 2 > 0 .

Similarly, the contraction in the vertical direction
for the two parts are both 1/2, so another LE in
the vertical direction is
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1

2
ln

1

2
+

1

2
ln

1

2
= − ln 2 < 0 .

Now, observe the LEs of the 3D baker map.
Since the 3D baker map is a three-dimensional map,
there should be three LEs, which indicate the ex-
ponential divergences of the map in three principal
directions, respectively. In Fig. 4, the direction of
I→ II is denoted as the x-direction, I→ III as the
y-dimension, and the last is the z-dimension. Each
of the four parts in the unit cube is stretched in
both x- and y-directions with equivalent probabil-
ity. Therefore, the map has two LEs,
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4
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4
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respectively. In the z-direction, the unit cube is
contracted, so the LE in this direction is

λz = 4 ×
1

4
ln

1

4
= − ln 4 < 0 .

Since there are two LEs larger than 0 in the 3D
baker map, the map is hyperchaotic, implying that
it is “more chaotic” than its 2D counterpart to some
extent.

Similarly to the 2D baker map, the 3D baker
map also has its general form. As can be seen
from Fig. 5, an unit cube is firstly divided into
several small stripes, and each stripe is pressed
and then piled up to form a new unit cube of
the same volume. More precisely, assume that the
unit cube is divided into k × t blocks, [Wi−1,Wi) ×
[Hj−1,Hj) × [0, 1), i = 1, . . . , k, j = 1, . . . , t, Wi =
w1, w2, . . . , wi, W0 = 0, such that w1 + w2 + · · · +
wk = 1, and Hj = h1 + h2 + · · · + hj , H0 = 0, with
h1 + h2 + · · · + ht = 1. Then, the generalized 3D
baker map is given by

B3(x, y, z)

=

(

1

wi

(x − Wi),
1

hj

(y − Hj), wihjz + Lij

)

for (x, y, z) ∈ [Wi−1,Wi)× [Hj−1,Hj)× [0, 1), where
Lij = Wi × hj + Hj, i = 1, . . . , k, j = 1, . . . , t.

The continuous 3D baker map is then dis-
cretized, with an arbitrary cube size. Without loss
of generality, assume that the cube is W×H×L, and
is split into k× t blocks. The sequence of k integers,
w1, w2, . . . , wk, is chosen such that Wi = w1 + w2 +
· · · + wi, W = w1 + w2 + · · · + wk, and W0 = 0.
The same is carried out for the sequence of t inte-
gers, h1, h2, . . . , ht, namely, Hj = h1 +h2 + · · ·+hj,
H = h1 + h2 + · · · + ht, and H0 = 0. By using

Fig. 5. The generalized 3D baker map.
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Fig. 6. The generalized discrete 3D baker map.

the formula

S = (Hj−1 × W + Wi−1) × L + wi × hj × l + (n − Hj−1) × wi + (m − Wi−1)(m
′, n′, l′)

= B3D(m,n, l)

=

(

(S mod(W × H))mod W,

⌊

S mod(W × H)

W

⌋

,

⌊

S

W × H

⌋)

an arbitrary point (m,n, l) in the original cube is
mapped to (m′, n′, l′) in the new cube, as shown by
Fig. 6.

3. Chaotic Image Encryption

Scheme Based on 3D Baker Map

The discrete 3D baker map designed in Sec. 2 is
applied here to construct a fast and secure image
encryption scheme.

As discussed in [Fridrich, 1997, 1998], a se-
cure encryption scheme should have a mechanism
of diffusion that makes known-plaintext attack in-
feasible. In this new image encryption scheme, an
XOR plus modulo (mod) operation is inserted to
each pixel in between every two adjacent rounds of
the map used. In the following, the diffusion process
is first discussed, and then the complete encryption
scheme will be described in detail.

3.1. Diffusion procedure

First, choose two numbers: one (denoted by Li) is
a floating number in (0, 1), to be used as an initial
condition; another (denoted by S) is an integer, to
be used as a seed. Then, use Li as the initial value
to compute the logistic map

x(k + 1) = 4x(k)[1 − x(k)]

If the next value obtained is in the interval (0.2, 0.8),
then go to the next step; otherwise, the iteration
goes on until a desired number located in (0.2, 0.8)
is obtained. Here, notice that the value of 0.5 is a

“bad” point, which leads the iteration to be trapped
in the fixed point 0. If this happens, a small dis-
turbance should be applied so that the iteration
can continue. Once a proper value is obtained from
the logistic map, digitize it by amplification using
a proper scaling and sampling. The digitized value
is designated as φ(k) and it is XOR-ed with the
values of the currently operated pixel and the pre-
viously operated pixel in the image, according to
the following formula:

C(k) = φ(k) ⊕ {[I(k) + φ(k)]mod N} ⊕ C(k − 1)

where I(k) is the currently operated pixel and
C(k − 1) is the previously operated pixel, in a vec-
tor that was strung out from an image, and C(k) is
the XOR-ed value. One may set the initial value to
be I(0) = S. The inverse transform of the above is
simple, which is given by

I(k) = {φ(k) ⊕ C(k) ⊕ C(k − 1)

+N − φ(k)}mod N .

Since in Step k the previous value C(k−1) is known,
the value C(k) can be ciphered out.

3.2. Image encryption scheme

The integrated image encryption scheme is illus-
trated in Fig. 7, which consists of five steps of
operations:

Step 1. Key generation. Select a sequence with
128 bits as the key, and split them into six groups
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Fig. 7. Block diagram of image encryption using the 3D baker map.

among which the first four groups contain 24 bits
each and the last two groups contain 16 bits each.
Map these six groups of bits into six numbers, k1,
k2, k3, k4, k5, and k6, where k1, k2 and k3 are float-
ing numbers in (0, 1), while the rest are integers.

Step 2. Pile up the two-dimensional image to three-

dimensional. Suppose that the image to be en-
crypted is with W pixels wide and H pixels high.
First, one needs to pile up all pixels of the image to
form a cube of size M ×N ×L. Since the number of
total pixels is unchanged, the integers M , N and L
must be chosen such that M ×N×L = W ×H. The
decomposition algorithm for M , N , L is described
as follows:

(1) Set T = W × H, and then factor out all prime
numbers of T and list them out as a sequence,
{p1, p2, . . . , pn}, such that T = p1×p2 · · ·×pn×1.

(2) Permute the sequence {p1, p2, . . . , pn, 1}, and
then regroup them into three groups. During the
permutation process, two integers are needed:
one is used as the seed and the other determines
the shuffle rounds. Here, k5 and k6 are used for
these purposes, respectively.

Step 3. Perform the three-dimensional baker map.

Select k1 and k2 as two initial values to per-
form the logistic map, respectively. After several
rounds of mappings, followed by a floating to in-
teger transformation, one can select two sequences,
{m1,m2, . . . ,mk} and {n1, n2, . . . , nt}, such that
M = m1+m2+ · · ·+mk and N = n1 +n2+ · · ·+nt.
Then, perform the discrete 3D baker map as de-
scribed in Sec. 2 on the image cube to get a shuffled
image.

Step 4. Process diffusion. Set k3 = Li and k4 = S,
and then perform the diffusion process once accord-
ing to the algorithm described in the first part of
this subsection.

Step 5. Transform the 3D cube back to a 2D im-
age. Finally, in this step, the 3D cube is mapped
back to a 2D image for display or storage.

Note that operations in Steps 3 and 4 are often
interleaved for several rounds, which depend on the
requirement of security.

To this end, the deciphering procedure is sim-
ilar to that of the enciphering process illustrated
above, but with the reverse operational sequences to
that described in Steps 3 and 4. Since deciphering
and enciphering procedures possess similar struc-
tures, they have the same algorithmic complexity
and time consumption.

4. Security Analysis and Test

Results

Compared with other similar encryption schemes,
the new one described above has very high security
and can resist many kinds of attacks known to us,
such as the known-plaintext attack, ciphertext-only
attack, statistical attack, differential attack, and
brute-force attack, etc. Here, some security analysis
results on the scheme are described, including some
important ones like key space analysis, statistical
analysis and differential analysis.

4.1. Key space and sensitivity
analysis

A good encryption algorithm should be sensitive to
the cipher key, and the key space should be large
enough to make brute-force attack infeasible. For
the proposed image encryption algorithm, designed
on the generalized 3D baker map, the analysis and
test results are summarized as follows:

• Number of secret keys. This algorithm is a 128-bit
encryption scheme whose key space size is 2128 ≈
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3.4028 × 1038. Since this scheme takes advan-
tage of the 3D baker map, an opponent may
try to bypass guessing the key and directly
guess the possible combinations of the sequences
{m1,m2, . . . ,mk} and {n1, n2, . . . , nt}, as well as
the possible decomposition of M , N and L, which
are used in the 3D baker map. Therefore, the
combinations of the baker map control param-
eters should be large enough to prevent such ex-
haustive searching. In [Fridrich, 1998], the possi-
ble combinations of control parameters for a 2D
baker map was estimated. According to a con-
servative estimate for an N × N image, the to-
tal number of ciphering keys is about K(N, t) =
(

N

t

)

, where t is the length of the key sequence

{n1, n2, . . . , nt}. For a 2D image, since the key se-
quences of width and height are different, the size
of the key space will be twice of this estimate. If
each ciphering round of the baker map uses dif-
ferent ciphering keys, then the increase of round
numbers will also enlarge the key space. Com-
pared with the 2D baker map, the key space of
the 3D one is further enlarged, for the key space of
the 2D map is just a subspace of the 3D one. For
example, suppose that an image size is W × H.
In order to perform the 3D baker map, the image
must be piled up to a cube of size M×N×L such
that W × H = M × N × L. Among all possible
decompositions, W ×H × 1 is a special case that
reduces the 3D map to a 2D one. Therefore, one
can conclude that the 3D baker map has a much
larger key space than that of the 2D one.

• Key sensitivity test. Assume that a 16-character
ciphering key is used. This means that the key
consists of 128 bits. A typical key sensitivity test
is performed according to the following steps:

(1) First, a 512×512 image is encrypted by using
the test key “1234567890123456”.

(2) Then, the least significant bit of the key is
changed, so that the original key becomes
“1234567890123457” in this example, which
is used to encrypt the same image.

(3) Finally, the above two ciphered images, en-
crypted by the two slightly different keys, are
compared.

The result is: the image encrypted by the
key “1234567890123456” has 99.59% differ-
ences from the image encrypted by the key
“1234567890123457” in terms of pixel gray-scale
values, although there is only one bit difference

Fig. 8. Key sensitive test: result 1.

Fig. 9. Key sensitive test: result 2.

in the two keys. Figure 8 shows the test result.
Moreover, if a 16-character key is used to en-
crypt an image while another trivially modified
key is used to decrypt the ciphered image, then
the decryption should not succeed. Figure 9 has
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Fig. 10. Histograms of the plain image and the ciphered image.

verified this, where the image encrypted by the
key “1234567890123456” was not be correctly de-
crypted by using the key “1234567890123457.”
Here, there is also only one bit difference between
the two keys.

4.2. Statistical analysis

In his masterpiece, Shannon [1949] said, “It is
possible to solve many kinds of ciphers by statistical
analysis,” and, therefore, he suggested two meth-
ods of diffusion and confusion for the purpose of
frustrating the powerful statistical analysis.

Here, it is demonstrated that the new im-
age encryption scheme, designed on the general-
ized 3D baker map, has very good confusion and
diffusion properties. This is shown by a test on
the histograms of the ciphered images and on
the correlations of adjacent pixels in the ciphered
image.

1. Histograms of ciphered images. Select several
256 gray-scale images with size of 512 × 512 that
have different contents, and calculate their his-
tograms. One typical example among them is shown
in Fig. 10. From the figure, one can see that the his-
togram of the ciphered image is fairly uniform and

is significantly different from that of the original
image.

2. Correlation of two adjacent pixels. To test the
correlation between two vertically adjacent pixels,
two horizontally adjacent pixels, and two diagonally
adjacent pixels in a ciphered image, respectively, the
procedure is performed as follows: First, randomly
select 1000 pairs of two adjacent pixels from an im-
age. Then, calculate their correlation coefficient us-
ing the following two formulas:

cov(x, y) = E(x − E(x))(y − E(y))

rxy =
cov(x, y)

√

D(x)
√

D(y)

where x and y are gray-scale values of two adjacent
pixels in the image. In numerical computation, the
following discrete formulas were used:

E(x) =
1

N

N
∑

i=1

xi

D(x) =
1

N

N
∑

i=1

(xi − E(x))2

cov(x, y) =
1

N

N
∑

i=1

(xi − E(x))(yi − E(y))
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Fig. 11. Correlations of two horizontally adjacent pixels in
the plain image and in the ciphered image.

Table 1. Correlation coefficients of two adjacent
pixels in two images.

Plain-Image Ciphered-Image

horizontal 0.97653 0.04454

vertical 0.97961 0.02843

diagonal 0.95025 0.02066

Figure 11 shows the correlations of two horizon-
tally adjacent pixels in the plain-image and that in
the ciphered-image: the correlation coefficients are
0.97653 and 0.044535, respectively. Similar results
for diagonal and vertical directions were obtained
and are shown in Table 1.

4.3. Some other analysis

Usually, an opponent would make a slight change
(e.g. modify only one pixel) of the encrypted image
so as to observe the change of the corresponding
result. In doing so, he might be able to find out
a meaningful relationship between the plain-image

Fig. 12. NPCR versus ciphering rounds.

Fig. 13. UACI versus ciphering rounds.

and the iphered-image. If one minor change in the
plain-image can cause a significant change in the
ciphered-image, with respect to both diffusion and
confusion, then this “differential attack” may be-
come inefficient.

To test the influence of one-pixel change on
the whole image, encrypted by the proposed chaos-
based algorithm, two common measures may be
used: Number of Pixels Change Rate (NPCR) and
Unified Average Changing Intensity (UACI). Let
two ciphered-images, whose corresponding plain-
images have only one pixel difference, be denoted
by C1 and C2. Label the gray-scale values of the
pixels at grid (i, j) in C1 and C2 by C1(i, j) and
C2(i, j), respectively. Define a bipolar array, D, with
the same size as images C1 and C2. Then, D(i, j)
is determined by C1(i, j) and C2(i, j), namely, if
C1(i, j) = C2(i, j) then D(i, j) = 1; otherwise,
D(i, j) = 0. The NPCR is defined as

NPCR =

∑

i,j

D(i, j)

W × H
× 100%
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Table 2. Comparison of ciphering speed between the 2D baker map
and the 3D baker map schemes.

Image Size 2D Baker Map 3D Baker Map
(in pixels) Colors (in seconds) (in seconds)

256 × 256 2 < 0.3 < 0.3

256 × 256 16 < 0.3 < 0.3

256 × 256 256 < 0.3 < 0.3

256 × 256 16777216 < 0.3 < 0.3

512 × 512 2 1 < 0.3

512 × 512 16 1 < 0.3

512 × 512 256 1.1 < 0.3

512 × 512 16777216 1 < 0.3

1024 × 1024 2 3.3 1.0

1024 × 1024 16 3.3 1.1

1024 × 1024 256 3.3 1.2

1024 × 1024 16777216 3.3 1.3

2048 × 2048 2 13.6 3.4

2048 × 2048 16 13.5 3.2

2048 × 2048 256 14.0 3.4

2048 × 2048 16777216 13.6 4.3

Test Conditions:

(1) The configuration of the computer used in this test is Pentium
IV 1G CPU with 256M memory and 40G hard disk capacity.
(2) Theoretically, both algorithms are symmetric, i.e. both encipher
and decipher procedures have the same complexity. But, due to the
programming realization issue, the decipher procedure may consume
a little more time than enciphering. The time recorded in Table 2 is
the average time of the encipher and decipher procedures.

where W and H are the width and height of C1 and
C2, and NPCR measures the percentage of different
pixel numbers between these two images. The UACI

is defined as

UACI =
1

W × H





∑

i,j

|C1(i, j) − C2(i, j)|

255



× 100%

which measures the average intensity of differences
between the two images.

A performed test is on the one-pixel change in-
fluence on a 256 gray-scale image of size 512 × 512.
The test results are shown in Figs. 12 and 13. Gen-
erally, with the increase of ciphering rounds, the
influence of one-pixel change is increased. Hence, it
is reasonable to increase the ciphering rounds in the
test so as to achieve higher security; yet, this is at
the expense of processing time.

5. Other Test Results

Apart from the security consideration, some other
issues on an image encryption scheme are also

important. These include running speed, ability of
surviving from image compression, and so on.

5.1. Enciphering/deciphering speeds

The proposed image encryption algorithm is
quite fast. Simulation shows that the average
enciphering/deciphering speed is 1.2 MB/sec., and
the peak speed can reach up to 2.8 MB/sec., on
a 1 GHz Pentium IV computer. The designed ci-
pher based on the 2D baker map is different from
that suggested in [Fridrich, 1998] on the diffusion
operation. Taking into account the improvement in
the computer technology, the speeds of these two
ciphers in implementation are about the same. The
encryption rate of the algorithm of [Fridrich, 1998]
is about 1 Mb with an unoptimized C code on a
60 MHz Pentium computer.

5.2. Tolerance of image processing

Variation tolerance of image processing operations,
including noise addition, JPEG compression, and
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Fig. 14. Test on image encryption with JPEG compression.

image smoothing, has been performed on the pro-
posed encryption scheme. Test results show that,
due to the sensitivity to ciphered-image of the
proposed algorithm, all the image operations signifi-
cantly affect the decryption process. In other words,
the proposed image encryption scheme can only be
used in an error-free scenario.

5.2.1. Tolerance of JPEG compression

In testing the tolerance of JPEG compression, the
results show that due to the sensitivity of the
proposed chaos-based scheme to ciphered-images,
JPEG compression significantly affects the decryp-
tion process. In other words, the designed image
encryption scheme can only be used in an error-free
scenario. An encrypted image, if being JPEG com-
pressed and then transferred, cannot be decrypted
correctly at the receiver side. A test is shown in
Fig. 14, where the quality factor used by the JPEG
compression is 65. Here, quality factor is a kind of
measure for JPEG compression, commonly within
a range between 1 to 100: the bigger the factor, the
better the quality of the image after compression
and, correspondingly, the smaller the compression
rate. The PSNR of the JPEG compressed image is
12.39 dB.

Fig. 15. Test of noise addition.

Fig. 16. Test of image under smoothing.

5.2.2. Noise addition

Figure 15 shows the result of a decrypted image
under additions of Gaussian noise. Here, the PSNR
of the noise contaminated image is 15.08 dB.

5.2.3. Smoothing

Image smoothing also greatly affects decrypted
result, as shown in Fig. 16, where the PSNR =
15.82 dB.

6. Conclusions

In this paper, the two-dimensional baker map has
been extended to three-dimensional, and an image
encryption scheme based on this three-dimensional
map is proposed. Comparing with existing similar
schemes that were designed on the two-dimensional
baker map, the new scheme has higher security and
faster enciphering/deciphering speeds. This makes
it a very good candidate for real-time image encryp-
tion applications. Experiments and analysis have
both demonstrated the feasibility and efficiency of
the new algorithm.
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