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Abstract

Encryption of images is different from that of texts due to some intrinsic features of images such as bulk data capacity

and high redundancy, which are generally difficult to handle by traditional methods. Due to the exceptionally desirable

properties of mixing and sensitivity to initial conditions and parameters of chaotic maps, chaos-based encryption has

suggested a new and efficient way to deal with the intractable problem of fast and highly secure image encryption. In this

paper, the two-dimensional chaotic cat map is generalized to 3D for designing a real-time secure symmetric encryption

scheme. This new scheme employs the 3D cat map to shuffle the positions (and, if desired, grey values as well) of image

pixels and uses another chaotic map to confuse the relationship between the cipher-image and the plain-image, thereby

significantly increasing the resistance to statistical and differential attacks. Thorough experimental tests are carried out

with detailed analysis, demonstrating the high security and fast encryption speed of the new scheme.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The fascinating developments in digital image processing and network communications during the past decade have

created a great demand for real-time secure image transmission over the Internet and through wireless networks. To meet

this challenge, a variety of encryption schemes have been proposed [1,2,5–7,17,20]. Among them, chaos-based algorithms

have shown some exceptionally good properties in many concerned aspects regarding security, complexity, speed,

computing power and computational overhead, etc. Due to some intrinsic features of images, such as bulk data capacity

and high correlation among pixels, traditional encryption algorithms such as DES, IDEA and RSA are not suitable for

practical image encryption, especially under the scenario of on-line communications. The main obstacle in designing

image encryption algorithms is that it is rather difficult to swiftly shuffle and diffuse data by traditional means of

cryptology. In this respect, chaos-based algorithms have shown their superior performance. It has been proved that in

many aspects chaotic maps have analogous but different characteristics as compared with conventional encryption

algorithms [8,9,12,13]. For instance, classical encryption algorithms are sensitive to keys, while chaotic maps are sensitive

to initial conditions and parameters; cryptographic algorithms shuffle and diffuse data by rounds of encryption, while

chaotic maps spread the initial region over the entire phase space via iterations. The main difference between these two
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techniques is that encryption operations are defined on finite sets, while chaos in a strict mathematical sense is defined on

real numbers. Therefore, some elaborated constructions are needed to successfully employ chaos in encryption.

Chaos-based encryption is not a very new idea. As early as in 1989 [15], a chaotic function was already used to design

a cryptographic algorithm. Although dedicated chaos-based image encryption schemes do not often appear in the

literature, there does exist some, which are briefly discussed here. In [22], an encryption method called CKBA (chaotic

key-based algorithm) was proposed. The algorithm first generates a time series based on a chaotic map, and then uses it

to create a binary sequence as a key. According to the binary sequence so generated, image pixels are rearranged and

then XOR or XNOR operated with the selected key. This method is very simple but has obvious defects in security, as

pointed out lately in [10]: this method is very weak to the chosen/known-plain-text attack using only one plain-image,

and moreover its security to brute-force attack is also questionable. In [17], a chaotic Kolmogorov-flow-based image

encryption algorithm was designed. In this scheme, the whole image is taken as a single block and permuted through a

key-controlled chaotic system based on the Kolmogorov flow. In order to confuse the data, a substitution based on a

shift-registered pseudo-random number generator is applied, which alters the statistical property of the cipher-image. It

was advocated that the scheme is computationally secure and superior to contemporary bulk encryption systems when

aiming at efficient image and video data encryption. In [7], a systematical method was suggested for adapting an

invertible two-dimensional chaotic map on a torus or on a square, so as to create a symmetric block encryption scheme.

This approach to constructing the symmetric block cipher consists of three steps: (1) choose a chaotic map and gene-

ralize it by introducing some parameters; (2) discretize it to a finite square lattice of points that represent pixels; (3)

extend the discretized map to three-dimensional and compose it with a simple diffusion mechanism. In this design, an

example of the two-dimensional standard baker map was given to illustrate the construction procedure and to demon-

strate the security. In the existing literature, some other two-dimensional chaotic maps such as the cat map and

standard map have also been used for ciphers design. In [11], for example, a video encryption scheme was proposed

based on a multiple digital chaotic system, which is called CVES (chaotic video encryption scheme). In this scheme, 2n

chaotic maps, controlled by another single chaotic map, are used to generate pseudo-random signals to mask the video,

and to perform pseudo-random permutation of the masked video. It was claimed that the CVES is independent of any

video compression algorithms and can provide high security for real-time digital videoing with fast encryption speed. In

[11], this method was extended to the so-called RRS-CVES, which supports random retrieval of cipher-video with

maximal time-out.

A new approach is suggested in this paper for fast and secure image encryption. Since digital images are usually

represented as two-dimensional arrays, in order to fast de-correlate relations among pixels, a higher-dimensional

chaotic map is designed and then used to shuffle the positions (and, if desired, grey values as well) of pixels in the image.

Meanwhile, to confuse the relationship between cipher-image and plain-image, a diffusion process among pixels is

performed. It is found that Arnold’s cat map [3] is a good candidate for permutation, thus it is extended to a three-

dimensional version, called 3D cat map, and then used for this purpose. Taking advantage of the exceptionally good

properties of mixing and sensitivity to initial conditions and parameters of the chaotic 3D cat map, the proposed

scheme incorporates Chen’s chaotic system [4,21] in key scheming and alternatively uses permutation and diffusion to

render the image totally unrecognizable.

The rest of this paper is organized as follows. Section 2 discusses the main features of the chaotic cat map and a way

to extend it to three-dimensional. In Section 3, an image encryption scheme based on 3D cat map is proposed and

discussed. In Sections 4 and 5, the security of the new scheme is evaluated via both cryptanalysis and experiments.

Finally, Section 6 concludes the paper.
2. Extending the cat map to three-dimensional

Throughout this paper, the standard notation ‘‘x (mod 1)’’ will be used for the fractional parts of a real number x by
subtracting or adding an appropriate integer.

The classical Arnold cat map is a two-dimensional invertible chaotic map [3,14] described by
xnþ1

ynþ1

� �
¼ 1 1

1 2

� �
xn
yn

� �
mod1: ð1Þ
The map is area-preserving since the determinant of its linear transformation matrix is equal to 1. The Lyapunov

characteristic exponents of the map are the eigenvalues r1 and r2 of the matrix in (1), given by
r1 ¼
1

2
ð3þ

ffiffiffi
5

p
Þ > 1; r2 ¼

1

2
ð3�

ffiffiffi
5

p
Þ < 1: ð2Þ



Fig. 1. Geometrical explanation of the 2D chaotic cat map.
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The map is known to be chaotic, with geometrical explanation shown in Fig. 1, from which one can see that a unit

square is first stretched by the linear transform and then folded by the modulo operation, mod.

The above 2D cat map is now generalized by introducing two control parameters, a and b, as follows:
xnþ1

ynþ1

� �
¼ 1 a

b abþ 1

� �
xn
yn

� �
mod1: ð3Þ
Furthermore, the map (3) is extended to three-dimensional by considering the following three maps. The first one is
xnþ1

ynþ1

znþ1

2
4

3
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1 az 0
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5mod1; ð4Þ
that is, by fixing zn unchanged it performs the 2D cat map on the x–y plane. The second one is similarly performed, but

on the y–z plane while keeping xn unchanged:
xnþ1

ynþ1

znþ1

2
4

3
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0 1 ax
0 bx axbx þ 1

2
4
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5 xn
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5mod1: ð5Þ
The last one is performed on the x–z plane:
xnþ1

ynþ1

znþ1

2
4

3
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1 0 ay
0 1 0
by 0 ayby þ 1

2
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3
5 xn

yn
zn

2
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3
5mod1: ð6Þ
Then, by combining these three maps together, one obtains a three-dimensional cat map as follows:
xnþ1

ynþ1

znþ1

2
4

3
5 ¼ A

xn
yn
zn

2
4

3
5mod1; ð7Þ
where
A ¼
1þ axazby az ay þ axaz þ axayazby

bz þ axby þ axazbybz azbz þ 1 ayaz þ axayazbybz þ axazbz þ axayby þ ax
axbxby þ by bx axaybxby þ axbx þ ayby þ 1

2
4

3
5:
As a special case, by simply setting ax ¼ bx ¼ ay ¼ by ¼ az ¼ bz ¼ 1, one has a direct extension of the original 2D cat

map, as follows:
xnþ1

ynþ1

znþ1

2
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3
5 ¼ A
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zn
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3
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2 1 3

3 2 5
2 1 4

2
4

3
5: ð8Þ
Through numerical calculations, one can easily verify that the three eigenvalues of A are: r1 ¼ 7:1842 > 1,

r2 ¼ 0:2430 < 1 and r3 ¼ 0:5728 < 1, which are actually the three Lyapunov characteristic exponents of the map (8).
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Note that the leading Lyapunov characteristic exponent is strictly larger than 1, meaning that the extended 3D cat map

is chaotic. Note moreover that since the leading Lyapunov characteristic exponent is larger than that of its 2D version,

the 3D map is in a stronger sense chaotic therefore can perform better data mixing.
3. The image encryption scheme based on the 3D cat map

3.1. Discretization of the map

Since encryptions is a kind of transformation operated on a finite set, in order to incorporate a chaotic map into

image encryption, one has to discretize it, while reserving some of its useful features such as the mixing property and the

sensitivity to initial conditions and parameters.

The map (7) is discretized according to the following formula:
xnþ1

ynþ1

znþ1

2
4

3
5 ¼ A

xn
yn
zn

2
4

3
5modN ; ð9Þ
where
A ¼
1þ axazby az ay þ axaz þ axayazby

bz þ axby þ axazbybz azbz þ 1 ayaz þ axayazbybz þ axazbz þ axayby þ ax
axbxby þ by bx axaybxby þ axbx þ ayby þ 1

2
4

3
5;
and ax, bx, ay , by , az, bz are all positive integers.

One can easily verify that det A ¼ 1, which means that the discrete version of the 3D cat map is a 1–1 map, and that

its mixing property and the sensitivity to initial conditions and parameters are kept unchanged.

Let Cdði; jÞ and Cðx; yÞ denote the discrete and continuous maps in (9) and (7), respectively. Then the above dis-

cretization satisfies the following asymptotic property [7]:
lim
N!1

max
06 i;j6N

jCði=N ; j=NÞ � Cdði; jÞj ¼ 0:
Unfortunately, not all useful features of chaos can be preserved by discretization. For example, after discretization,

an aperiodic chaotic map may become periodic, which will downgrade the security of chaotic encryption. Take the 2D

cat map as an example. If one discretizes the continuous map (1) as
xnþ1

ynþ1

� �
¼ 1 a

b abþ 1

� �
xn
yn

� �
modN ; ð10Þ
where xn; yn 2 f0; 1; . . . ;N � 1g, and a, b are positive integers, then with the choice of a ¼ 40 and b ¼ 8, after five rounds

of iterations, an image of size 124 · 124 will turn back to its original. Fig. 2 shows this phenomenon for the above 2D cat
Fig. 2. Periodic phenomenon in discretizing the 2D cat map.
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map. Theoretically, this is quite easy to understand. Let the period of the map (10) be P . Then the maximum period of

the discrete 2D cat map and the integer N has the following relationship [16]:
PðNÞ ¼ 3N ; N ¼ 2 � 5k ; k ¼ 1; 2; . . . ;

PðNÞ ¼ 2N ; N ¼ 5k or N ¼ 6 � 5k ; k ¼ 1; 2; . . . ;

PðNÞ6 12N
7

for all other N ;
where N is the width or height of the image. The three-dimensional cat map also has the same problem after dis-

cretization.

As a remedy, one resorts to a diffusion process thereby making the map non-invertible. This is further discussed

below.

3.2. Diffusion process

There are two reasons for introducing diffusion in an encryption algorithm. On one hand, the diffusion processing

can render the discretized chaotic map non-invertible. On the other hand, it can significantly change the statistical

properties of the plain-image by spreading the influence of each bit of the plain-image all over the cipher-image. For a

secure encryption scheme, a mechanism of diffusion is therefore necessary; otherwise the opponent can break the

cryptosystem by comparing a pair of plain-text and cipher-text to discover some useful information. For the purpose of

diffusion, the ‘‘XOR plus mod’’ operation will be applied in the new scheme, to each pixel in between every two adjacent

rounds of the 3D cat map. This is further detailed below.

First, choose two numbers: one (denoted by Li) is a floating number in ð0; 1Þ, to be used as an initial condition;

another (denoted by S) is an integer, to be used as a seed. Then, use Li as the initial value to compute the chaotic logistic

map:
xðk þ 1Þ ¼ 4xðkÞ½1� xðkÞ�:
If the next value obtained is within the subinterval ð0:2; 0:8Þ, then go to the next step; otherwise, the iteration goes on

until a desired number in ð0:2; 0:8Þ is obtained. Here, notice that the value of 0.5 is a �bad’ point, trapping the iterations

to the fixed point 0. If this case is encountered, a tiny perturbation should apply. Once a proper value is obtained from

the logistic map, digitize it by amplifying it with a proper scaling and sampling. The digitized value is designated as /ðkÞ
and is XOR-ed with the values of currently operated pixel and previously operated pixel in the image, according to the

following formula:
CðkÞ ¼ /ðkÞ � f½IðkÞ þ /ðkÞ�modNg � Cðk � 1Þ;
where IðkÞ is the currently operated pixel and Cðk � 1Þ is the previously output cipher-pixel, in a vector that was strung

out from the image, and CðkÞ is the XOR-ed value, and N is the color level (for a 256 grey-scale image, N ¼ 256). One

may set the initial value Ið0Þ ¼ S. The inverse transform of the above is given by
IðkÞ ¼ f/ðkÞ � CðkÞ � Cðk � 1Þ þ N � /ðkÞgmodN :
Since in Step k the previous value Cðk � 1Þ is known, the value CðkÞ can be ciphered out.
3.3. Key scheming

According to the basic principle of cryptology [18], a cryptosystem should be sensitive to the key, i.e., the cipher-text

should have close correlation with the key. There are two ways to accomplish this requirement: one is to mix the key

thoroughly into the plain-text through the encryption process; another is to use a good (ideally, truly random) key

generation mechanism.

The key (denoted Km) directly used in the proposed encryption scheme is the vector of parameters of the chaotic

map, which can be floating numbers or integers, whilst the user’s input key (denoted Ku) is a string of characters, which

can be taken as a sequence of bits. Thus, there is a transform from Ku to Km, during which a diffusion mechanism is

introduced, so as to protect the key from opponent’s attacks.
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In the proposed scheme, Chen’s chaotic system is employed in key scheming, which is modelled by [4,21]
_x ¼ aðy � xÞ
_y ¼ ðc� aÞx� xzþ cy
_z ¼ xy � bz;

8<
:

where a, b and c are parameters. When a ¼ 35, b ¼ 3 and c 2 ½20; 28:4�, the system is chaotic. Simulation shows that the

system orbit is extremely sensitive to the parameter c, therefore c is used to control the generation of the cipher key.

The key used in the proposed encryption scheme is a binary sequence of 128 bits. The binary sequence is divided into

eight segments, denoted as kax , kbx , kay , kby , kaz , kbz , kl, ks, respectively, each with 16-bit long. Parameters kax , kbx , kay , kby ,
kaz , kbz are used to generate the six control parameters of the 3D cat map (7), while kl and ks are used to generate the

initial values of the logistic map, Li, and initial value of the mod operation, S, respectively, as discussed in Section 3.2.

To generate ax, bx, the following formulas are first used to compute the control parameter c of Chen’s system:
cax ¼ Kax � 8:4þ 20; ð11Þ
where Kax ¼
P15

i¼0 kaxðiÞ � 2i, in which kaxðiÞ is the ith bit in sequence kax . Initial values x0, y0, z0 of Chen’s system are also

derived from kax and kbx , by using the following formulas:
x0h ¼ Kbx � 80� 40;

y0h ¼ Kax � 80� 40;

z0h ¼ Kbx � 60;
where Kbx ¼
P15

i¼0 kbxðiÞ � 2i. Then, in the next step, parameters are set as a ¼ 35, b ¼ 3, and the other parameters

obtained above are used to iterate Chen’s system for 100 and 200 times, respectively, yielding two values: z100, z200. Next,

then, the following formulas are used to obtain the final parameter values of ax and bx for the 3D cat map:
ax ¼ roundðz100=60� NÞ;

bx ¼ roundðz200=60� NÞ;
where N is the side length of a cube to be scrambled by the 3D cat map.

A similar process is performed on parameters kay , kby , kaz , kbz , kl, ks, to obtain the control parameters of the 3D cat

map, ay , bz, az, by , and the initial values of the logistic map, Li, and the initial value of the mod operation, S. The
following two formulas are used instead, to generate Li and S:
Li ¼ z100=60;

S ¼ roundðz200=60� 255Þ:
3.4. Image encryption scheme based on the 3D cat map

The complete image encryption scheme consists of five steps of operations, as shown in Fig. 3.

Step 1. Key generation. Select a sequence of 128 bits as the key, and split them into eight groups, which are further

mapped onto several parameters of the 3D cat map and the logistic map, ax, bx, ay , by , az, bz, Li and S, as discussed in

Section 3.3.
Fig. 3. Block diagram of the image encryption using the 3D cat map.
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Step 2. Pile up the two-dimensional image into three-dimensional. Suppose that the image to be encrypted is of W -pixel

wide and H-pixel high. First, one needs to pile up all pixels of the image, to form several cubes of size N1 � N1 � N1,

N2 � N2 � N2; . . . ;Ni � Ni � Ni, respectively. To convert an image into several cubes, the following condition must be

satisfied:
W � H ¼ N 3
1 þ N 3

2 þ � � � þ N 3
i þ R; ð12Þ
where Ni 2 f2; 3; . . . ;Ng is the side length of each cube, N is the size of the maximum allowable cube, and R 2 f0;
1; 2; . . . ; 7g is the remainder.

Step 3. Perform the three-dimensional cat map. Use ax, bx, ay , by , az, bz as control parameters to perform the three-

dimensional discrete cat map (as discussed in Section 3.1) on each image cubes, generating shuffled images.

Step 4. Diffusion process. Set xð0Þ ¼ Li and Cð0Þ ¼ S, and then perform the diffusion process once according to the

algorithm described in Section 3.2.

Step 5. Transform the three-dimensional cubes back to a two-dimensional image. The three-dimensional cubes are

appropriately arranged, laying back to a two-dimensional image for display or for storage.

Note that the operations in Steps 3 and 4 are often performed alternatively for several rounds according to the

security requirement. The more rounds are processed, the more secure the encryption is, but at the expense of com-

putations and time delays.

To this end, the decipher procedure is similar to that of the encipher process illustrated above, with reverse oper-

ational sequences to those described in Steps 3 and 4. Since both decipher and encipher procedures have similar

structures, they have essentially the same algorithmic complexity and time consumption.
4. Security analysis

A good encryption scheme should resist all kinds of known attacks, such as known-plain-text attack, cipher-text-

only attack, statistical attack, differential attack, and various brute-force attacks. Some security analysis has been

performed on the proposed image encryption scheme, including the most important ones like key space analysis,

statistical analysis, and differential analysis, which has demonstrated the satisfactory security of the new scheme, as

demonstrated in the following.

4.1. Key space analysis

A good image encryption algorithm should be sensitive to the cipher keys, and the key space should be large enough

to make brute-force attacks infeasible. For the proposed image encryption algorithm, key space analysis and testing

have been carefully performed and completely carried out, with results summarized as follows:

• Number of control parameters. This algorithm is a 128-bit encryption scheme, with key space size 2128 � 3:4028�
1038. Since this scheme takes advantage of the 3D cat map, the opponent may try to bypass guessing the key and

instead directly guess all the possible combinations of the control parameters ax, bx, ay , by , az, bz. However, the com-

binations of the 3D cat map control parameters are large enough to prevent such exhaustive searching. A rough

estimate of all possible combinations of control parameters is as follows. Suppose that one has a 512 · 512 image.

According to the encryption scheme, it will be piled up to a 64· 64· 64 cube. Then, since each parameter among ax,
bx, ay , by , az, bz is in between 1 and 64, possible combinations of control parameters are 646 ¼ 236 � 6:8719� 1010.

Notice that this is just for one round of the several iterations. If each ciphering round of the 3D cat map uses dif-

ferent ciphering keys, then the increase of round numbers will further enlarge the key space. Compared with the 2D

cat map, the key space of the 3D map is much larger than the key space of the 2D map, which is already very large––

about 512� 512 ¼ 218 � 2:621� 105.

• Key sensitivity test. Assume that a 16-character ciphering key is used. This means that the key consists of 128 bits. A

typical key sensitivity test has been performed, according to the following steps:

1. First, a 512 · 512 image is encrypted by using the test key ‘‘1234567890123456’’.

2. Then, the least significant bit of the key is changed, so that the original key becomes, say ‘‘1234567890123457’’ in

this example, which is used to encrypt the same image.

3. Finally, the above two ciphered images, encrypted by the two slightly different keys, are compared.

The result is: the image encrypted by the key ‘‘1234567890123456’’ has 99.61% of difference from the image en-

crypted by the key ‘‘1234567890123457’’ in terms of pixel grey-scale values, although there is only one bit difference in
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the two keys. Fig. 4 shows the test result. Moreover, when a 16-character key is used to encrypt an image while another

trivially modified key is used to decrypt the ciphered image, the decryption also completely fails. Fig. 5 clearly shows

that the image encrypted by the key ‘‘1234567890123456’’ is not correctly decrypted by using the key

‘‘1234567890123457’’ there, which has also only one bit difference between the two keys.
Fig. 4. Key sensitive test: result 1.

Fig. 5. Key sensitive test: result 2.



G. Chen et al. / Chaos, Solitons and Fractals 21 (2004) 749–761 757
4.2. Statistical analysis

Shannon once said, in his masterpiece [19], ‘‘It is possible to solve many kinds of ciphers by statistical analysis,’’ and,

therefore, he suggested two methods of diffusion and confusion in order to frustrate the powerful attacks based on

statistical analysis.

Statistical analysis has been performed on the proposed image encryption algorithm, demonstrating its superior

confusion and diffusion properties which strongly resist statistical attacks. This is shown by a test on the histograms of

the enciphered images and on the correlations of adjacent pixels in the ciphered image.

1. Histograms of encrypted images. Select several 256 grey-scale images of size 512· 512 that have different contents,

and calculate their histograms. One typical example among them is shown in Fig. 6. From the figure, one can see

that the histogram of the ciphered image is fairly uniform and is significantly different from that of the original

image.

2. Correlation of two adjacent pixels. To test the correlation between two vertically adjacent pixels, two horizontally

adjacent pixels, and two diagonally adjacent pixels, respectively, in a ciphered image, the following procedure

was carried out. First, randomly select 1000 pairs of two adjacent pixels from an image. Then, calculate the corre-

lation coefficient of each pair by using the following two formulas:

covðx; yÞ ¼ Eðx� EðxÞÞðy � EðyÞÞ;

rxy ¼
covðx; yÞffiffiffiffiffiffiffiffiffiffi
DðxÞ

p ffiffiffiffiffiffiffiffiffiffi
DðyÞ

p ;

where x and y are grey-scale values of two adjacent pixels in the image. In numerical computation, the following

discrete formulas were used:

EðxÞ ¼ 1

N

XN
i¼1

xi;
Fig. 6. Histograms of the plain-image and the cipher-image.
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DðxÞ ¼ 1

N

XN
i¼1

ðxi � EðxÞÞ2;

covðx; yÞ ¼ 1

N

XN
i¼1

ðxi � EðxÞÞðyi � EðyÞÞ:

Fig. 7 shows the correlation distribution of two horizontally adjacent pixels in the plain-image and that in the cipher-

image: the correlation coefficients are 0.91765 and 0.01183, respectively, which are far apart. Similar results for diagonal

and vertical directions were obtained, which are shown in Table 1.
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Fig. 7. Correlations of two horizontally adjacent pixels in the plain-image and in the cipher-image.

Table 1

Correlation coefficients of two adjacent pixels in two images

Plain image Ciphered image

Horizontal 0.91765 0.01183

Vertical 0.95415 0.00016

Diagonal 0.90205 0.01480
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4.3. Differential attack

In general, the opponent may make a slight change (e.g., modify only one pixel) of the encrypted image, and then

observes the change of the result. In this way, he may be able to find out a meaningful relationship between the plain-

image and the cipher-image. If one minor change in the plain-image can cause a significant change in the cipher-image,

with respect to diffusion and confusion, then this differential attack would become very inefficient and practically

useless.

To test the influence of one-pixel change on the whole image encrypted by the proposed algorithm, two common

measures were used: number of pixels change rate (NPCR) and unified average changing intensity (UACI). Denote two

cipher-images, whose corresponding plain-images have only one-pixel difference, by C1 and C2, respectively. Label the

grey-scale values of the pixels at grid ði; jÞ of C1 and C2 by C1ði; jÞ and C2ði; jÞ, respectively. Define a bipolar array, D,
with the same size as image C1 or C2. Then, Dði; jÞ is determined by C1ði; jÞ and C2ði; jÞ, namely, if C1ði; jÞ ¼ C2ði; jÞ then
Dði; jÞ ¼ 1; otherwise, Dði; jÞ ¼ 0.

The NPCR is defined as
NPCR ¼
P

i;j Dði; jÞ
W � H

� 100%;
where W and H are the width and height of C1 or C2. The NPCR measures the percentage of different pixel numbers

between the two images. The UACI, on the other hand, is defined as
UACI ¼ 1

W � H

X
i;j

jC1ði; jÞ � C2ði; jÞj
255

" #
� 100%;
which measures the average intensity of differences between the two images.

Tests have been performed on the proposed scheme, about the one-pixel change influence on a 256 grey-scale image

of size 512 · 512. The test results are shown in Figs. 8 and 9. Generally, with the increase of ciphering rounds, the

influence of one-pixel change is increased. Hence, it is reasonable to increase the ciphering rounds in the test to achieve

higher security; yet, this is at the expense of processing speed.
5. Other tests

Apart from the security consideration, some other issues on an image encryption scheme are also important,

including the running speed, particularly for real-time Internet applications.

The proposed image encryption algorithm is indeed very fast. Simulation shows that the average enciphering/

deciphering speed is 1.0 MB/s, and the peak speed can reach up to 2.1 MB/s, on a 1 GHz Pentium IV personal

computer. Table 2 shows the test results of enciphering/deciphering speeds on 256 grey-scale images of different sizes.

The computer used in this test is 1 GHz Pentium IV with 256 M memory and 40 G hard-disk capacity.
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Fig. 8. NPCR vs. ciphering rounds.



Table 2

Enciphering/deciphering speed test results

Image size (in pixels) Encryption (in s) Decryption (in s)

256· 256 <0.4 <0.4

512· 512 1 1

1024· 1024 3 3

2048· 2048 14 14
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Fig. 9. UACI vs. ciphering rounds.
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6. Concluding remarks

In this paper, the well-known two-dimensional chaotic cat map has been generalized to three-dimensional, and then

used to design a fast and secure symmetric image encryption scheme. This new scheme employs the 3D cat map to

shuffle the positions (and, if desired, grey values as well) of image pixels and uses another chaotic map to confuse the

relationship between cipher-image and plain-image, thereby significantly increasing its resistance to various attacks

such as the statistical and differential attacks. Thorough experimental tests have been carried out with detailed

numerical analysis, demonstrating the high security and fast speed of the new image encryption scheme. This scheme is

particularly suitable for real-time Internet image encryption and transmission applications.
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