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How theory works for us?

✤ How basic theory helps design and analysis?
✤ What can we do if the theory doesn’t match the outcome?
✤ Can we live without heuristics?
✤ Are complex models always better?
✤ What makes the engineers lose faith in the theory?
✤ Can theory really be applied in practice?
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The theorist errs!

✤ The EMI filter isn’t quite doing what it is supposed to 
do. Let me use a different filter configuration, and try 
again.

✤ When the converter loses stability, the theory says 
that it diverges to infinity.

✤ Oh! I have found the answer from my theoretical prediction. I need a duty cycle of 
1.2 for this theoretical power factor control!! How could I achieve this?
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The engineer misinterprets!

✤ The snubber gets pretty hot. Perhaps a smaller resistance 
would reduce loss.

✤ The transformer behaves differently when used in a 
flyback converter and in a forward converter.

✤ Air gap stores more energy.
✤ The output voltage of my constant-power-controlled 

flyback circuit isn’t high enough. A few more turns in the 
secondary side would raise the output voltage.
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Objectives of this overview

✤ Overview!

✤ To show how one can arrive at a practical circuit from proper 
consideration of basic theory.

✤ To show how circuit theory can be used to explain problems 
encountered in practical circuits.

✤ To show how a switch mode power supply can be systematically 
constructed, starting from the simplest converter topology.
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Genesis of converters

✤ Aim: To convert controllable 
power from a voltage source to a 
load, with NO LOSS.

controllable
lossless

simple

✤ Kirchhoff’s laws restrict terminal 
conditions
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✤ From Kirchhoff’s laws,
✤ Inductors must not be left open.

➡ An inductor switching between 
source and load.

➡ At least one current path must be 
available at all times.

➡ At least two switches are needed 
to divert the inductor current

➡ THREE POSSIBILITIES

Elements wanted

✤ Lossless requirements
✤ current sinking for input
✤ current sourcing for output

✤ Ideas
✤ An inductor switching 

between source and load
✤ Relative sourcing and sinking 

durations would control the 
energy flow
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Three possibilities

Boost converter

Buck-boost converter

Buck converter
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Quick glimpse: the buck converter

✤ Switch S  is turned on and off very quickly, at a rate much greater 
than the output filter natural frequency

✤ Control parameter is duty cycle, d

ON
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✤ Suppose we fix the duty cycle and wait until a steady state is reached.
✤ Inductor current goes up during the ON time, and goes down during 

the OFF time.
✤ Periodic operation forces:

Steady-state operation
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Putting it to practice

✤ We need
✤ transformer isolation
✤ closed-loop control
✤ drivers for MOSFETs
✤ self start-up
✤ snubbers as switching aids
✤ protection
✤ input EMI filter
✤ Proper component selection
✤ and mechanical design: 

✤ heat sink, layout, packaging, etc.

Direct 
mandatory 

requirements

Indirect 
mandatory 

requirements

Regulatory 
requirements
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Practical circuit requirement

✤ Forward converter – 
transformer isolated 
buck converter
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First problem: transformer

✤ The previous forward converter worked only if the transformer were 
ideal.

✤ However, practical transformers have magnetizing inductance.

14



CK Michael Tse, January 2011

What the theory says?

✤ If we have to use a transformer for the forward converter, the 
transformer should be ideal.

✤ That means INDEFINITELY LARGE magnetizing inductance.

➡ Either an infinitely permeable core
✤ OR an infinite number of turns

✤ THAT’S IMPOSSIBLE!!
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Probing further

✤ First, consider the ON time

✤ Secondary of T/F has no current.

✤ Primary has no current either.

✤ Current in magnetising 
inductance can go nowhere!!
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Deriving solution: core reset

✤ A path must exist during OFF time to bring the magnetizing current 
back to zero

✤ Circuit theory works and explains the problem.
17
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Waveforms with core reset

Secondary current of ideal t/f

same as
above;
scaled by 
factor n

0

0

Primary current of practical t/f

Primary current of ideal t/f

Magntizing current

slope
controlled
by output
inductance
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Requirement for core reset

✤ Negative voltage polarity applied to the winding during OFF time.
✤ This voltage must be large enough to bring the magnetising current 

back to zero.
✤ If d = 0.5, then Vz > Vin. 
✤ If d = 0.8, then Vz > 4Vin.

✤ Technique: clamping the voltage during OFF time.
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Some possibilities

1:n

Vz

1:n

1:n

1:n

nt

Tertiary winding as voltage clamp

n  controls clamped voltage for re-sett

Advantage:

Two-wheeler forward converter

Duty cycle restricted below 0.5

Advantage: simple transformer

Disadvantage:

Disadvantage: bulky transformer
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Recapitulation

✤ Although we cannot make an ideal transformer, we solve the problem 
with a reset circuit.

✤ We now care much less how large Lm is, since we have a way to get 
around it.

✤ QUESTION: Can the magnetizing inductance be used to advantage?

✤ YES, in a flyback converter!
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Flyback converter

✤ In this case, we don’t need an 
ideal transformer. That’s good. 
We don’t have it anyway.

✤ The magnetizing inductance 
becomes crucial as part of the 
circuit element.

✤ Requirement:
✤ Linear inductor!
✤ Air-gap to augment BH 

curve (then more turns to 
obtain inductance)

1:n

0A0A

1:n

During ON-time, magnetizing inductance charges up.

+

–

reverse polarity, current can't go!

ideal t/f primary current = 0

During OFF-time, magnetizing current forces its way out
through the ideal t/f primary.

+

–

di/dt negative,
hence reverse
polarity

+

–

+

–
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Second problem: real switching

✤ Consider turning the switch in 
a buck converter.

✤ The result of this real device 
switching is

✤ POWER LOSS 
(switching loss)

+

–

E

+

–

U

0

5

ids
vds+ –

turn-off

ids

vds

diode won't conduct unless forward biased

ON OFF

diode turns on

ids can't go down
unless diode turns on

i.e., vds reaches the input voltage
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Deriving solution: snubber

✤ Give the switch current a chance to 
go down before the diode turns on.

✤ Set up a PARALLEL CURRENT 
PATH right after the turn-off instant.

✤ Place a capacitor across the switch at 
turn-off to supply current for the 
output inductor.

+

–

E

+

–

U

0

5

ids

turn-off

ids
vds

ON OFF

ids goes down immediately
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Completing the solution

✤ What happens when the switch is turned on again in the next cycle?
✤ The current will rush through the switch!!

✤ We must protect the switch from such huge in-rush.
✤ The complete snubber is:

✤ Energy loss per cycle is

+

–

E

+

during turn-on

during turn-off

Snubber

1

2
Csnubbervs

2
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Other examples

+

–

E
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Third problem: closed loop control

✤ Why?
✤ Because the system is dynamic.

✤ What is a dynamical system?
✤ A simplified definition: a system that does not assume an operating 

point instantly when an input parameter is changed.

0.2

0.4

4.8V

9.6V
output voltage

duty cycle

 Consider a buck converter with input 24V. 

!! Suppose d is forced to step up from 0.2 to 0.4. 

4.8V
output voltage

load resistance

!! Suppose d stays constant, but the load 
resistance steps up. 
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The need for control

✤ Obviously we need to control the 
duty cycle if we want the system 
to have a dynamic behavior 
different from the natural 
behavior.

✤ 2 common approaches
✤ Voltage mode control
✤ Current mode control

+

–

voltage-mode fb

current-mode fb 28
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Voltage-mode control

General control configurations

29

+

–Vin

–

+

C R v o

+

–

D

L

–

+

Vref

Z f

comp

Current-mode control

+

–
Vin

R

S

Q
–

+

clock

C R v o

+

–

DL

iL

–

+

Vref

Z f
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Voltage-mode control

✤ A general feedback circuit representation is:

Z f

Vref

–

+

Vout

–

+

Vm

vcon R1

R2
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Small-signal analysis

✤ We can separate the AC from the DC 
component.

✤ Let’s not worry about the steady-state 
operating point.

✤ The small-signal AC equation is:

✤ Taking into account the PWM, we have

If we know the duty-cycle-to-output 
small-signal transfer function, then 
we can find the loop gain and hence 
be able to design the required 
compensator to give sufficient 
bandwidth and stability.

HERE, we need small-signal models 
from circuit theory.
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Design criteria

✤ Fast response — high gain and wide bandwidth of loop gain
✤ Stability — phase shift must be well below 180deg at 0dB 

crossover.

✤ The converter is a second-order system which can become 
unstable under closed-loop condition, especially when the gain 
is high causing the phase shift of the loop gain to get close to 
180deg at 0dB crossover.

✤ We must limit the bandwidth somehow if we allow a high DC 
gain.
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A simple practical approach

✤ POLE — frequency location where the gain begins to roll off. 
✤ Simplest circuit analogy: a resistance connected to a 

grounded capacitor forming an RC network. A low-frequency 
pole exists at 1/2πCR Hz. 

33

C

R

✤ A simple educated trial-and-error to achieve lag compensation:
✤ Select an RC combination (in the compensation circuit associated with the control 

IC) for a deep lag compensation — narrow band first.
✤ Then, relax the time constant (widen the band) until the circuit begins to loss 

stability!
✤ Finally, reduce the capacitor value down 10 times to restore stability.
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Current-mode control

✤ Essential concept —  The system reduces 
to first order, more or less!

✤ The system is therefore faster, with less 
chance for instability.

✤ IDEA:
✤ Make the inductor current 

dependent on the output voltage by 
forcing the current peak to follow the 
output voltage analog.

✤ Disqualify the inductor current as a 
state variable.

✤ The converter becomes first order.
34
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Application

✤ Current-mode control is particularly useful for 
controlling boost and buck-boost types of 
converters. 

✤ Boost and buck-boost types of converters 
are non-minimum phase systems*. 
Current-mode control essentially 
“destroys” the dynamics of the inductor! 
The resulting first-order system becomes 
much easier to control.

✤ The design of the outer voltage loop is 
relatively simple, mainly for achieving 
adequately fast output voltage regulation.

35
* The origin of non-minimum phase response will be examined in detail when we study the basic 
topologies and models of converters. 

second
order

converter
iL

vo

voltage loop

current loop

vin

first order
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Fourth problem: isolation

✤ Need for isolating the load from the mains.
✤ But the control circuit connects the two!

Primary side control Secondary side control
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Fifth problem: filter

✤ An input filter is always needed to prevent differential-mode and 
common-mode noise from getting into the mains.

L

N

E

~ differential

commoncommon

SMPS

Basic requirement:
Let 50Hz gets in, but 
prevent high frequencies 
from getting out!
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Basic theory

✤ Voltage filter (low-pass left-to-right)

✤ Current filter (low-pass right-to-left)

✤ Voltage filter (low-pass right-to-left)

noise current
at switching
frequency
and above

50Hz SMPS load

x

noise voltage
at switching
frequency
and above

x
+
–

Rs

Rs

Rs
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Conceptual placements

✤ Voltage filter (low-pass left-to-right)

✤ Current filter (low-pass right-to-left)

✤ Voltage filter (low-pass right-to-left)
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Practical placements

✤ NOTE:
✤ The EMI filter often fails 

to do what it is 
supposed to do.

✤ Does the theory fall 
short of anything?

✤ Or have we missed out 
some important things?!
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Conclusion

✤ Theory is often made inadequate or even inconsistent!
✤ In an EMI filter, a capacitor may not behave as a capacitor, and an 

inductor may not behave as an inductor.
✤ Signals get around the filter, instead of being filtered.
✤ Parasitics and nonlinearity come into play and have contributed 

sufficiently to invalidate the theory that has been constructed 
from ideal considerations.

✤ The theory does not fail. The problem is that we often fail to take 
into consideration all important relevant practical conditions when 
we construct our models for analysis.
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