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DC/DC Converters

✤ Initial criteria:
✤ voltage to voltage

✤ (can be varied)
✤ lossless conversion
✤ being controllable

✤ (voltage conversion ratio, power 
flow, etc.)

✤ The simplest converter as constrained 
by Kirchhoff’s laws should have
✤ one inductor (current interface)
✤ two switches
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Three simplest topologies

Boost converter

Buck-boost converter

Buck converter
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The buck converter

✤ Switch S  is turned on and off very quickly, at a 
rate much greater than the output filter natural 
frequency. Switching period = T.

✤ Control parameter is duty cycle, d

✤ OFF time: iL falls, and vL = – U. 
✤ ON time: iL climbs only if E > U, and vL = E – U.
✤ At steady state, average vL must be 0. Thus,

✤ Hence,  U = D E < E , i.e., step-down converter
5
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The buck-boost converter

6

✤ The inductor is connected to the source for 
DT and to the load for (1–D)T.

✤ ON time: iL climbs, and vL = E.
✤ OFF time: iL falls, and vL = – U.
✤ Thus, depending on the value of D, the 

output U can be either larger or smaller 
than E.

✤ At steady state, average vL must be 0, i.e.,

✤ Hence,  
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The boost converter
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✤ The inductor is connected to the source for 
T and to the load for (1–D)T.

✤ ON time: iL climbs, and vL = E.
✤ OFF time: iL falls, and vL = – (U–E).
✤ Thus, U must be larger than E for 

equilibrium to be achieved.
✤ At steady state, average vL must be 0, i.e.,

✤ Hence,  

✤ i.e., step-up converter
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Operating modes

✤ So far, we have assumed the inductor 
current maintains a positive value 
throughout the period. This operation is 
called continuous conduction mode 
(CCM).

✤ Let’s look at the buck converter. 
However, if
✤ the inductor is too small OR the 

period is too long,
✤ then the inductor current could fall to 

zero during OFF time and the diode 
would be open again. This introduces an 
IDLING interval in which iL = 0. This is 
discontinuous conduction mode (DCM).

8
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Discontinuous conduction mode

✤ Waveforms for the buck converter in DCM.
✤ Let the OFF time = HT; 

✤ and idling time = (1–D–H)T
✤ At steady state, the average output voltage, average 

inductor current, and peak inductor current can be 
found as

9
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✤ For the boost converter in DCM, we have

10

Discontinuous conduction mode
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Mode boundary

✤ At the borderline, the inductor current just touches zero at the end of the period. There 
is no idling interval, and yet the inductor current has a momentarily zero value.

✤ For the buck converter, at the boundary of two modes,
✤ the input power is 

✤ the output power is
✤ Also, 

✤ Equating the input power and output power, we get the boundary condition as

11
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Conditions for CCM:

✤ Buck converter

✤ Buck-boost converter

✤ Boost converter

12
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Fourth order converters

✤ The buck converter has pulsating input current.
✤ The boost converter has pulsating output current.
✤ The buck-boost converter has both pulsating input and output currents.
✤ We may add filter to the source side of the buck converter, and the load side of the boost converter. etc.
✤ The results are some higher order converters.

13
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4th order converters with a cutset 
of 2 inductors and 2 switches

✤ Ćuk converter

✤ Zeta converter

✤ SEPIC converter
14

Both input and output current 
are non-pulsating!
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The Ćuk converter
✤ At steady state, it behaves like a cascade 

connection of a boost converter and a buck 
converter, with the storage capacitor as 
intermediate output. In CCM, we have

✤ Hence, 

✤ Of course, it can operate in DCM, but the 
inductor currents may not go to zero, though 
their sum is zero in the idling interval.

✤ It also has a special discontinuous capacitor 
voltage mode (DCVM).

15
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Transformer isolated versions

✤ Flyback converter (buck-boost)

✤ simple
✤ storage inductor provided 

by transformer’s 
magnetizing inductance

16

✤ Push-pull converter (buck)

✤ Better core utilization as positive 
and negative flux polarities are 
used

✤ Heat dissipation shared by two 
switches

✤ Forward converter (buck)

✤ Simple core reset
✤ Limits d < 0.5
✤ Reduced voltage stress
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✤ Full-brdge converter (buck)

✤ Automatic core balance
✤ Switches operate in pairs
✤ Reduced peak current compared to 

half-bridge converter

Transformer isolated versions

✤ Half-brdge converter (buck)

✤ Automatic core balance
✤ Voltage stress shared by two 

devices (low voltage ratings 
of devices)
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General selection guideline

18
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Models

✤ Average models
✤ IDEA:

✤ Switching details are uninteresting
✤ Focus on the low-frequency dynamics

✤ Resulting models have no switch, but can be nonlinear
✤ Resulting models can be linearized to produce small-signal models

19

Time-varying 
nonlinear circuit

Time invariant 
nonlinear model

Time invariant 
linear model

Averaging Linearization

Linear small-signal
model

Nonlinear large-signal
model

Dc/dc converters
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Averaging

✤ Separate the dc/dc converter into two parts: 
✤ switching n-port (fast part) and 
✤ the remaining slow part.

✤ Identify the switching n-port and replace it by equivalent average 
controlled sources.
✤ Essential idea:

✤ The switching n-port has high-frequency operation, and the rest 
can be considered very slow and hence can be regarded as 
“constant” while modeling the switching n-port.

20

fast slow
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Example: buck converter in CCM

✤ In the buck converter in CCM, the inductor 
current is continuous and varying slowly. 

✤ The switching n-port (fast part) contains only 
D and S. 

✤ So, when we model this switching n-port, we 
may treat the part outside the n-port as 
“constant” source.

✤ Derive the average terminating voltage or 
current.

21
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✤ Finally, the inductor dynamics is resumed for analysis. The average model for CCM 
buck converter is

✤ Small-signal model:

Example: buck converter in CCM

✤ E, IL, U and D are the steady state values.
✤ δx is the small-signal value of x.
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Example: buck converter in DCM

✤ In the buck converter in DCM, the inductor is 
absorbed in the switching n-port (fast part).  

✤ Again, when we model this switching n-port, 
we can treat the part outside the n-port as a 
“constant” source.

✤ Derive the average terminating voltage or 
current.

+
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+
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+
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E

+
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Example: Cuk converter in CCM

24
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Example: Cuk converter in CCM
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Small-signal model of the buck 
converter
✤ From the model, we identify two 

inputs:

✤ The output is        .
✤ We can develop transfer functions:

✤ Control-to-output t/f:

✤ Input-to-output t/f:

26
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Small-signal dynamics of the buck 
converter
✤ BUCK CONVERTER

✤ When ESRs are included, a zero 
at –1/rcC appears. Thus, a 
+20dB/dec response is expected 
from 1/2πrcC Hz.

✤ A pair of complex poles at fixed 
locations. Thus, a –40dB/dec 
response is expected from 
1/2πLC Hz.

27
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Small-signal model of the boost 
converter
✤ BOOST CONVERTER (CCM)
✤ Average model (nonlinear):

✤ Linear small-signal model:
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Transfer functions for the boost 
converter
✤ Control-to-output t/f:

✤ Input-to-output t/f:

29
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Small-signal response of the boost 
converter
✤ A right-half-plane zero exists in 

the control-to-output transfer 
function of the boost converter!

✤ The complex poles are not fixed, 
but depend on the duty cycle D.

✤ The ESR zero still exists at 
1/2πrcC Hz.

30
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Right-half-plane zero or 
Non-minimum phase response
✤ In the time domain, a non-minimum phase 

response is characterize an initial momentarily 
drop in output when a step increase in duty 
cycle is applied. The output eventually rises.

✤ The physical origin can be easily understood 
from the structure of the boost converter.
✤ Increasing the duty cycle means that the 

inductor is charged for a longer interval. 
This makes the output capacitor discharge 
for a longer time. But as soon as more 
current is supplied to the output network 
in subsequent cycles, the output eventually 
increases.

✤ This phenomenon occurs in boost and buck-
boost (flyback) converters.

31
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Note on DCM converters

✤ Essentially first-order, because inductor 
current assumes zero value periodically, and 
its average becomes devoid of dynamics.

✤ The dynamics is a single-pole response, roll-
off at 1/CR. Of course ESR zero still exists.

✤ Easy control!

32
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Probing further

✤ How does the input like look?
✤ Can it become resistive? Under what condition?
✤ Any application if it has a resistive input?

✤ Cheap and simple power-factor-correction converter!

33
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Conclusion

✤ Simple converters: buck, buck-boost and boost converters
✤ Fourth order converters: Cuk converter
✤ Transformer isolated converters
✤ Average models

✤ Switching details removed
✤ Nonlinear models for analysis
✤ Linearization to yield small-signal models

✤ Transfer functions
✤ Dynamic responses
✤ Converters with RHP zero need special control strategies.

34
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