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FUNDAMENTAL THEORY
PART II



Some Basic Circuit Theory (Revision)
Inductor 
Impedance increases with frequency 

Capacitor 
Impedance decreases with frequency
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Inductor + Capacitor 
When a capacitor is connected in series with an 
inductor, their impedances cancel. 
At low frequency, it is like a capacitor. 
At high frequency, it is like an inductor. 
At resonant frequency 
the impedance is ZERO, which is a short circuit. 

When connected in parallel, their admittances cancel. 
At low frequency, it is like an inductor. 
At high frequency, it is like a capacitor. 
At resonant frequency 
the impedance is INFINITY which is  
an open circuit.
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A voltage source behind a 
sufficiently large inductor is 
approximately a current source

Some Basic Circuit Theory (Revision)
Voltage source 

Current source

≈

useless addition
A current source parallel a 
sufficiently large capacitor is 
approximately a voltage source

≈

Thévenin & Norton Equivalences
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When tuned to the resonant frequency, a series LC can be regarded as short circuit.

Some Basic Circuit Theory (Revision)

–– ⇢

Similarly, when tuned to the resonant frequency, a parallel LC can be treated as open circuit.
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Basic Circuits
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The Heart: A Bad Transformer!
• Why so difficult to design? 

• Understanding the transformer is MOST important!
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Transformer
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Usual Physical Model

LL1 LL2

LM

* *

1:n

Leakage InductanceLeakage Inductance

Magnetizing Inductance

Turns Ratio

Ideal Transformer:  
Vp/Vs = 1/n 

Ip/Is = n
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Transformer
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Basic Coupled Inductors Model
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VP = j!LP IP � j!MIS

VS = j!MIP � j!LSIS
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VP = LP
diP
dt

�M
diS
dt

VS = M
diP
dt

� LS
diS
dt
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LP = LL1 + LM

LS = LL2 + n2LM
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Equivalent Models
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Two-port Models
Common two-port models for analysis 
of transfer characteristics, driving point 
impedance, and output impedance: 
• z-parameter model 
• y-parameter model 
• T-parameter model (ABCD model) 
• s-parameter model (Scattering 

parameters for waves)
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Scattering Paremeters
• For high frequency operation, the lumped circuit model fails, and distributed 

circuit model must be used. Scattering matrix is the appropriate choice. 
    a1, b1 are the incident and reflected waves at port 1 
    a2, b2 are the incident and reflected waves at port 2 
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Equivalent Representations
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Input and Output Characteristics
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Compensation
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Poorly coupled transformer has large leakage inductance, causing lots of reactive power circulating! 
Compensation IS MANDATORY!

What is “compensation”? 

Cancel the inductance! 

Eliminate reactive power. 

Lower the current magnitude. 

Improve efficiency. 

Correct input power factor. 

補
償
的
作
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One main technical problem of IPT is 
compensation
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The General IPT Core Circuit 
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Form factor at load side
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Simple series-series compensation
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Efficiency for s/s compensation
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Some results for s/s compensation
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Resonant Frequency fo 85 kHz

Primary Self Inductance LP 254.16 µH

Secondary Self Inductance LS 36.27 µH

Mutual Inductance M 37.65 µH

Primary Compensation Cap CP 9.899 nF

Secondary Compensation Cap CS 96.662 nF
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Challenges

Main challenges 
• Compensation of the inductances 
• Optimization of the contactless 

transformer 
• Effective control methods
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Characteristics of transformer 
• (Very) loose coupling 
• Wide parameter variation



Interim Conclusion
• Although most of the basic theory is well known, specific application to WPT still requires 

substantial reconsideration and reorganization so as to allow more focused development 
of relevevant design methods 

• Key points: 

✴Transformer being leaky, i.e., high leakage inductance, low coupling 

✴Appropriate transformer models: physical turns ratio, coupled inductor model 

✴Compensation types: series and parallel for different terminations, with different 
properties and wide varying parameters 

✴In Part III, we will examine compensation in detail.
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