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CONTROL AND OTHER ISSUES
PART V



Control Strategy
• Basic Control 

• Frequency control - changing operating frequency 
• Fixed frequency PWM control - changing fundamental magnitude 
• Phase locked loop control 

• System Control 
• Phase-locked loop control and downstream dc-dc converter control 
• Phase-locked loop control and phase-shift PWM control 
• Primary side combined control



Basic Control Strategy
Frequency control is the basic 
method for IPT systems as it 
varies the frequency to directly 
adjust the output voltage or 
current according to the resonant 
characteristic. 
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Disadvantages: 
☹ Not suitable for varying loads and varying coupling coefficient. 
☹ In the region of monotonic variation of the output voltage, the voltage gain is 
quite low, and the frequency is high. 



Basic Control Strategy
Fixed frequency PWM control is 
another basic method for IPT 
systems as it varies the duty cycle of 
the input voltage to directly adjust 
the amplitude of the input voltage, 
and hence the output voltge. p
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Disadvantage: 
☹ At small duty cycle, the soft switching condition can be violated, affecting 
the efficiency of the system. 
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Phase-locked Loop Control
Advantage: 
😀 Using PLL control, the converter 
can be ascertained to work under 
soft switching conditions, 
maintaining good efficiency. 

Disadvantage: 
☹ Imprecise control of frequency 
leads to imprecise output voltage 
or current control. Thus, an 
additional stage is often needed. 
☹ Under light load or low 
coupling condition,  the PLL 
frequency range may not reach 
the required output voltage. 
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Primary-side PLL control
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COMBINED CONTROL

At light load, fixed frequency 
and low duty cycle are used. The 
duty cycle equals the preset 
value at end of soft start. This is 
just enough to give a low 
magnitude at fundamental 
frequency, hence giving low 
output voltage.  

For heavier load, phase shift 
PWM is used. The duty cycle 
increases according to the load 
linearly, and eventually to normal 
or full load under the PLL control 
with full duty cycle. 



Primary-side Self-oscillating Control
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Advantages: 
😀 Simple. 
😀 Soft switching, high efficiency. 
😀 Adaptive to air gap and load 
variations 
😀 Fast transient response 

Disadvantages: 
☹ Relatively large overshoot 
during transient. 
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CONVENTIONAL

Control Design for Max Efficiency



The load-side dc/dc converter is solely responsible for output 
regulation, while the front-side converter is responsible for 
impedance-matching of the IPT converter by controlling its input-
to-output voltage ratio. The controls are linear and therefore fast. 

Voltage ratio of SSIPT 
at max efficiency:

Efficiency is optimized 
at a particular load for 
the SSIPT. 
The transconductance 
at max efficiency:

Decoupled Control Design



Design Example 1 
Series-series Compensated IPT Converter

Specification: 
DC Input: 30 V 
DC Output: 24 V 
Output Power: 12 ~ 60 W 
Gap: 10 ~ 20 mm

Basic calculation: 
Transformer turns ratio:  
         n = 24/30 = 0.8 
Considering the actual resistance 
voltage drop, the physical turns can be 
n = 17 : 19. 
Then, we decide the Q factor range. 
Usually we limit Qmax < 10 to limit the 
voltage stress on the compensation 
capacitor. 

Take

Qmax

Qmin
=

Po max

Po min
=

60

12
= 5

Qmax = 7.5;Qmin = 1.5

Transformer Design: 
According to the air 
gap width and size, the 
transformer should be 
designed to maximize 
coupling. 

Choices: 
• Type of core (E core) 
• Material grade 

(3C30, 3F3, …) 
 

Performed by: Qianhong Chen, NUAA, China



Design Example 1 
Series-series Compensated IPT Converter

TRANSFORMER 
PARAMETERS Gap = 10 mm Gap = 20 mm

Primary Self-
inductance Lp

52.93 µH 45.32 µH

Secondary Self-
inductance Ls

44.14 µH 39.31 µH

Primary Leakage 
Inductance LL1

22.17 µH 31.37 µH

Secondary Leakage 
Inductance LL2

19.52 µH 28.14 µH

Magnetizing 
Inductance LM

30.76 µH 13.95 µH

Coupling Coefficient k 0.569 0.296

E-core 64/10/50; Ferrite grade 3F3
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   PRIMARY 
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SECONDARY          

Performed by: Qianhong Chen, NUAA, China



CORE 
SELECTION 

Ferroxcube 
Soft ferrites and 
accessories 

Core material grade: 
Frequency of operation 

https://ptelectronics.ru/
wp-content/uploads/
Obschii-katalog-
FERROXCUBE.pdf



Design Example 1 
Series-series Compensated IPT Converter

Compensation Design: 
Frequency & compensation capacitors 
With efficiency consideration, the 
operating frequency may be chosen as 
200 kHz. 

Based on the leakage data for min gap 
(10 mm), we have 

fo =
1

2⇡
p
LL1Cp

=
1

2⇡
p
LL2Cs

= 200 kHz

Cp = 28.6 nF; Cs = 32.5 nF

COMPONENTS TYPES

Inverter MOS 
Switches FB3307

Rectifier B40250TG

Compensation 
Capacitor Cp

28.2nF

Compensation 
Capacitor Cs

33nF

Transformer Core
Ferrite 3F3,  

Planar E-Core 64/10/50 
Np = 19, Ns = 17

Main Parameters:

Performed by: Qianhong Chen, NUAA, China



Design Example 1 
Series-series Compensated IPT Converter

kmax,  RL_min

kmax,  RL_mid

kmax,  RL_max

kmin,  RL_min

kmin,  RL_mid

kmin,  RL_max

90 110 130 150 170 190 210 230 240

fs(kHz)

0

0.5

1

1.5

2

2.5

3

3.5

Gv

4

fL_kmin
123k

fL_kmax
105k fH_kmin

167k fH_kmax
200k

Voltage Gain Calculation Measured Voltage Gain
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Design Example 1 
Series-series Compensated IPT Converter

191.869kHz

vAB:[10V/div]

ip:[2A/div]

is:[2A/div]

Time:[1us/div]
kmax; Po = 55 W

193.569kHz

vAB:[10V/div]

ip:[1A/div]

is:[1A/div]

Time:[1us/div]
kmax; Po = 30 W

vAB:[10V/div]

ip:[0.5A/div]

is:[0.5A/div]

Time:[1us/div] 194.550kHz
kmax; Po = 13 W

168.320kHz

vAB:[10V/div]

ip:[2A/div]

is:[2A/div]

Time:[1us/div]
kmin; Po = 60 W

vAB:[10V/div]

ip:[2A/div]

is:[1A/div]

Time:[1us/div] 169.334kHz

kmin; Po = 30 W

vAB:[10V/div]

ip:[1A/div]

is:[0.5A/div]

Time:[1us/div] 168.324kHz
kmin; Po = 13 W

Self oscillating 
control

Performed by: Qianhong Chen, NUAA, China



Design Example 1 
Series-series Compensated IPT Converter
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Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter
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Performed by: Qianhong Chen, NUAA, China

Specification: 
DC Input: 528 V 

DC Output: 400 V 
Output Power: 1500 W 

Gap: 10 ~ 20 mm



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

* *
i

Extended planar transformer Planar distributed windings

Increased area under perfect alignment. 
Reduced fringe leakage fluxes. 

Improved coupling.

Reduced primary direct magnetic path 
Improved coupling. 
Reduced volume.

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter
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Design calculation: 
Voltage Gain 
         
Turns ratio: n = 0.935. 
Considering primary voltage resistive drop 
and frequency variation, take n = 1. 
Also,  
Assuming IP and VAB are in phase, we apply 
the Faraday law: 

Hence, 

Gv =
8n

⇡2
=

400

528
= 0.7575

u = N
d�

dt

udt = Nd� = NSdB )
Z t

0
u.dt = NS

Z B(t)

B(0)
dB

As long as VAB is larger than the peak of VC1, 
we can integrate over half cycle to get 

Thus, max flux density Bm is proportional to 
input voltage.  
If max Bm = 60 mT, S = 1778 mm2, f = 40 kHz, 
then we get 

N = 30.9 (primary turns)

Bm =
Vin

4fNS

PV

Pf

VAB

VP = VAB � VC1

u = VP

�VC1
+ –

NOTE 
VP = DC (input voltage) + 
cosine (cap voltage). This 
voltage is the primary 
terminal voltage that 
gives the flux density Bm. 
Integrating cosine over 
half cycle is 0.

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

Parameter Determination

Assembled core PLT 64 3C96 
Np = 28, litz wire φ 0.2mm x 145 
Ns = 28, litz wire φ 0.1mm x 500 

Weight: 13.6 kg (primary + secondary)

GAP k Inductances

10 cm kmax = 0.475 LL1 = 324.967 mH, LL2 = 362.56 mH,  
LM = 310.948 mH

12 cm kmid = 0.434 LL1 = 347.03 mH, LL2 = 379.265 mH,  
LM = 277.815 mH

20 cm kmin = 0.231 LL1 = 435.275 mH, LL2 = 462.95 mH,  
LM = 134.85 mH

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60
fs(kHz)

G
v

Full Compensation at 10 mm

0

1

2

3

4

5

6

7

8

9

10

G
v

20 30 40 50 60
fs(kHz)

Full Compensation at 20 mm

0

1

2

3

4

5

6

7

8

9

10

G
v

20 30 40 50 60
fs(kHz)

Full Compensation at 15 mm

2
1 1 2 2 3

1 1 1
r

L L M
L C L C n L C

w = = =

C1 =  48.717 nF 
C2 = 43.665 nF 
C3 = 50.914 nF

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

VP
udt = Nd� = NSdB )

Z t

0
u.dt = NS

Z B(t)

B(0)
dB

Max flux density can be found by applying VP (which is the 
sum of a DC (input voltage) and a cosine (cap voltage)) as 
the EMF u at the primary terminals. 

Peak Bm = 70 mT 

Secondary side VS is a sine wave. Integrating over half a 
cycle gives 

Peak Bm = 114.26 mT 

VS

Primary side voltage

Secondary side voltage

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

Inverter Design: 
Taking a less perfect scenario of input angle 20o, and 
assuming an efficiency of 90%, we get the primary current as 

So, the peak primary current is 
Use MOSFET SPW47N60CFD - 600 V, 40 A. 
  
Rectifier Design: 
Full load output current = Io = Po/Vo = 3.75 A 
Diode rms current = ID (rms) = 2.65 A 
Diode average forward current = 2.65 / 1.57 = 1.69 A 
Parallel compensation cap peak voltage = 1.8 Vo = 720 V 
Use diode DSEP 30 - 12A,1200 V, 30 A

IP =
Po

⌘VAB cos ✓
= 3.36 A

IP
p
2 = 4.75 A

Cs

D1

D2

D3

D4

Lf

Cf
RL

is io

Performed by: Qianhong Chen, NUAA, China
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Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

VOLTAGE GAIN

At frequency 39.22 kHz, the circuit gives load independent voltage gain or constant output.

Performed by: Qianhong Chen, NUAA, China



Design Example 2 
Series-‘series-parallel’ Compensated IPT Converter

vAB:[400V/div]

i1:[5A/div]

vC2:[1kV/div]iS:[10A/div]

Time:[5us/div]
Gap 10 mm, full load

vAB:[400V/div]

i1:[10A/div]
vC2:[1kV/div]iS:[10A/div]

Time:[5us/div]
Gap 20 mm, full load

Operating frequency 39.22 kHz
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Performed by: Qianhong Chen, NUAA, China



Safety Standards

ICNIRP WTO 
EN62233

Range of Freq. Limit values

1Hz~10MHz Current density（Influence on nervous system）

100kHz~10MHz Current density & SAR

100kHz~10GHz SAR-Specific Absorption Rate（Fever of body）

10GHz~30GHz Power density

ICNIRP, "Guideline for Limiting 
exposure to time-varying electric, 
magnetic, and electromagnetic 
fields," 1998. 

ARPANSA, "Maximum Exposure Levels 
to Radiofrequency Fields - 3 kHz to 
300 GHz," 2002.



    µT      

Safety Standards

http://www.an-cheng.com.cn/download/view_115.html

Magnetic induction [µT] in the vicinity of the IPT track for 125 A 
track current and a track conductor spacing of 100 mm. The 
points marked with x are the measurement positions.



Max Tolerable Field Strength

ICNIRP, "Guideline for Limiting exposure to time-varying electric, magnetic, and electromagnetic fields," 1998. 
ARPANSA, "Maximum Exposure Levels to Radiofrequency Fields - 3 kHz to 300 GHz," 2002.



ICNIRP Limits
• General public:  

• Body average RMS flux density less than 27 μT in the frequency range of 3 kHz to 
10 MHz.  

• Electric field limits is 83 V/m. 
• Occupational exposure: 

•  Magnetic flux density less than 100 μT. 
• E field exposure is 170 V/m 

• Car chassis has shielding effect to magnetic field. Thus, the magnetic field inside a car 
is far below ICNIRP limits.



IEEE Limits
IEEE International Committee on Electromagnetic Safety.  

IEEE Std. C95.1-2005 
• The maximum permissible exposure of head and torso is 205 µT for general public, 

and 615 µT for occupation.  
• The maximum permissible exposure for the limbs is even higher, which is 1130 µT 

for both the general public and occupation.



Field Strengths at Worst Position Near EV Charging



Conclusions
• Power supply systems will see increasing use of wireless power transfer for 

convenience, safety, and standardized product development. 
• EV charging will be an important market. 
• Efficiency optimization, standardization, and tolerance of misalignment are the key 

technical challenges. 
• Control methods will improve as the characteristics of various compensation 

configurations are better understood. 
• More research needed: 

• Transformer optimization and physical design 
• Circuit design for higher order compensation to achieve more design flexibility 

and functionalities. 
• IPT systems are generally very safe for human use.
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FUTURE WORK
• OPTIMIZATION 

• HIGHER ORDER COMPENSATION 

• STANDARD 

• DIRECT APPLICATION (SAVE A STAGE) 

• CONTROL 

• DESIGN-BASED, ELIMINATING PERTURB&OBSERVE 

• MORE TRANSFORMER STUDIES (EMPIRICAL AND ANALYTICAL)
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