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Example
The visual pathway
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Context
Cooperativeness

Case 1: asynchronous case
(weakly coupled)

Case 2: synchronous case
(strongly coupled)
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» Weakly correlated motion

» Strongly correlated motion (synchronization)



Context
The challenge of Networks

» Graph topology
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» Non linear dynamics



Goal
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A generic problem
Neuroscience

• EEG, MEG, LFP

Population dynamics
• migration

Physiology
• heart-lungs-brain

Inferring cooperative behavior
from measurements of the network

Issues when approaching this problem:

» Accessibility of the network

» Amount and quality of data
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Outline

Model

Application to 
Real Data

Validation

Cooperativeness 
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Partial 
Cooperativeness 

Validation



Model & Working Hypotheses
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Reference model
heterogeneous network of dynamical sub-systems

(Continuous time)

(Discrete time)
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Cooperativeness
Assessment from multivariate measurements

Ex.: cooperativeness of the
       ensemble
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 Bivariate time series

» Four approaches
• Linear
• Information Theory
• State-Space
• Phase

 Multivariate time series

• Information theory

• Phase



Cooperativeness
I synch therefore I shrink
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Case 1: asynchronous case Case 2: synchronization case
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» Assessing the shrinking by measuring 

   the relative importance of the embedded sub-spaces
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Assessing Cooperativeness
I synch therefore I shrink
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Case 2: uncorrelated signals

Case 1: completely correlated signals
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» Collect the measurements

» Pearson-like correlation matrix
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Assessing Cooperativeness
S estimator

In the generic (M-dimensional) case

Case 1: completely correlated
signals

Case 2: uncorrelated signals
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The difference is the distribution of eigenvalues
•Entropy to assess it
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Assessing Cooperativeness
S estimator
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» A delay-embedded signal for each sub-system
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» A (scalar) signal for each sub-system

is a scalar

( , )i j
C is a matrix

(i, j )



S estimator
Numerical Validation

S measures the degree of cooperativeness in a network:

1.  Coupling strength 

2.  Average connectivity degree
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for different values of

coupling strength
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1) Setup 1) Result

C

strongweak
0

1
S



S estimator
Numerical Validation
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2) Setup:

» Network of 128 sub-systems 

  (128 time series)

» For different values of 

   average connectivity degree

2) Result:

highlow

average connectivity degree
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» Similar results with 

   different graph topologies



S estimator
Applications to real data

Experimental Paradigm: the split of visual pathway

» Manifestation of 
   neuronal cooperativeness:

• EEGs (macro)

• LFPs  (meso) 
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S estimator
Application to real data - EEG

Paradigm: the split of visual pathway

Assessing inter-hemispheric cooperation
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S estimator
Extracting cooperativeness topography in EEG data
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S estimator
Result on human EEG data

High

Low
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Outline
On the way

Model

Application to 
Real Data

Validation

Cooperativeness
Partial

Cooperativeness
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Partial Cooperativeness
Motivation

indirect

Solution:

» Marginalization of the knowledge of thirds

» Direct vs. Indirect
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Partial Cooperativeness
Partial S estimator
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» S estimator

• Correlation matrix • Entropy-like statistic

» Partial S estimator
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Scalability to large systems
Inferring “0” – “1” interactions

Setup:

» Network of 128 sub-systems
» 256 interactions

Result:

• 85%   true “1”

• 99%   true “0”

» Sensitiveness upon amount of data and observational noise intensity
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Assessing directionality

» Direct vs. Indirect and strength
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Addressing:

» Direct vs. Indirect, strength and direction
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A modeling approach

Further hypothesis:

•weak coupling

» Algorithmic setup tuned to the specific application

» Model of local behavior

Working principle

identify self model for sub-system i

•only use y(i)

•nonlinear model

cross relates the y(j)| j  i

• to the modelling residuals at system

i

•strength of interaction from j to i, for

all j  i
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A modeling approach
Numerical Validation

» Proved able to discern direct vs. indirect interactions

» Directionality assessed in 2 sub-systems bi-directionally coupled
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Assessing saliency:

3

4
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Rest of the world



A modeling approach
Numerical Validation - Saliency

Result:

» Sensitiveness upon amount of data

1 2

1 2
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1 32 64 96 126

# of third sub-systems



Conclusions

» Methods to infer cooperativeness from multivariate data

• S estimator

• Partial S estimator

• Modeling approach

• Numerical validation 

» Application to brain data

• Stimulus-dependent modulation of neuronal cooperation

• New insight about the role of inter-hemispheric interactions (not shown)
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Free download at:

http://library.epfl.ch/theses/?nr=3651



Outlook
Ongoing and future work

» Methodological development

• Decomposing mixed signals (no ICA)

» Clinical Neuroscience

• Schizophrenia

• Alzheimer
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Free download at:

http://library.epfl.ch/theses/?nr=3651


