Emergent Behavior on Flocks

Felipe Cucker and Steve Smale



Introduction
General theme: reaching of consensus without a central direction.

Examples:

(1) emergence of a common belief in a price system when activity takes
place in a given market.

(2) emergence of common languages in primitive societies, or the dawn
of vowel systems.

(3) flocking in a population, say of birds or fish, whose members are
moving in IE := IR3.

It has been observed that under some initial conditions, for example on
their positions and velocities, the state of the flock converges to one in
which all birds fly with the same velocity. Our goal is to give a possible
model of this behavior.



Model: every bird adjusts its velocity by adding to it a weighted average
of the differences of its velocity with those of the other birds. That is,
at time ¢ € IN, and for bird 7,

vi(t+1) —vi(t) = ) ag(v; i(1)). (1)

j=1

Here the weights {a;;} quantify the way the birds influence each other.



We assume that this influence is a function of the distance between

birds, namely
K

(0% + |l — (1)
for some fixed K,0 > 0 and 3 > 0.

(2)

aij m—

We can write the set of equalities (1) in a more concise form. Let
Az = (ai;)

be the adjacency matrix, D, be the k x k diagonal matrix whose 7th
diagonal entry is d; = ngk a;; and L, = D, — A,.



Then

vt +1) o) = =3 ay(vt) - v(t)

- — ' CLij) Uz-(t) + Z A5 Uy (t)
— —[ xv(t)]i =+ [Ax?}(t)]z
— [va(t)]z

and (adding a natural equation for the change of positions) we obtain
the system

x(t) + v(t) (3)
(Id — L) v(t).



We also consider evolution for continuous time. The corresponding
model is given by the system of differential equations

o= v (4)
v = —L,.
Our two main results give conditions to ensure that the birds’ veloci-

ties converge to a common one and the distance between birds remain
bounded, for both continuous and discrete time.



Convergence in continuous time

For x,v € IEF we denote
1
(@) = 2 3 i =
i#]

and

1
Aw) = 5 37 o= v

7]

In the following we fix a solution (x,v) of (4). To simplify notation we

write
A(t) == A(v(t)), I'(t) :==T(v(t)).



Theorem 1 Assume that

K
(02 + i — a5[]2)7

Clij =

Assume also that one of the three following hypothesis hold:
(i) B<1/2

(ii) B =1/2 and Ay < £,
(iii) # > 1/2 and

1 2,3 1
1 26—1 1 28—1 K? 268—1
— — [ — > 2T 2.
(25) (25) (18k2A0> oto

Then there exists a constant By such that I'(t) < By for all t € IR, .
In addition, when t — oo, A(t) — 0 and the vectors x; — z; tend to
a limit vector x;;, for all i,j < k.



Convergence in discrete time

A motivation to consider discrete time is that we want to derive (possibly
a small variation of ) our model from a mechanism based on exchanges
of signals. The techniques to do so, learning theory, are better adapted

to discrete time.



a2

Theorem 2 Assume that K < oD VT and

K

Clij —

(02 + [ — ]]2)7

Assume also that one of the three following hypothesis hold:

(i) B <1/2,

K

(ii) 0 =1/2 and |[v(0)|| < 375,

(iii) 8 > 1/2 and

DNORSON

Here o =26, Vy:= ||v(0)

Y

> 92k (v02 1 2Vo((aa) w1 — 02)(\6/{)—1) +b.

a =32V, b= \/2k|z(0)| + 0.

Then there exists a constant By such that ||[I'(t)|| < By for all t € IN.
In addition, v;(t) — v;(t) — 0 and the vectors z; — x; tend to a limit

vector x;;, for all i,j < k, when t — oo.
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The proof for the continuous case.

The matrix L, in (3) and (4) is the Laplacian of A,. It acts on IE* and
satisfies the following:

(a) Forallv eIk, L,(v,...,v) =0.
(b) It is symmetric positive semidefinite,
(c) If Aq,..., A\x are the eigenvalues of L, then

0=X\ <X <...<N =Ll

The second eigenvalue Ay of L, is called the Fiedler number of A,. We
denote it by ¢,.



Let A be the diagonal of IEF, i.e.,
A={(v,v,...,v) |velE}

and A+ be the orthogonal complement of A in IE¥. Every x € IEF
decomposes in a unique way as ¢ = za+2, withxza € Aand z; € A+,

A




Proposition 1 The projections over At of the solutions of (4) are
the solutions of the restriction of (4) to A+. That is,

ZIZ/J_ — UV (5)

/

Remark 1 The condition “the velocities v;(t) tend to a common
limit v € IE” is equivalent to the condition “v,(f) — 0.” Also,
the condition “the vectors z; — z; tend to a limit vector z;;, for all
i,7 < k7 is equivalent to “z(t) tend to a limit vector Z in A+.”
This suggests that we are actually interested on the solutions —on
the space A+ x A+— of the system (5) induced by (4). Since (4)
and (5) have the same form we will keep referring to (4) but we will
consider positions in

X =FE"/A ~ A+

and velocities in

Vi=FE/A ~ A+



Consider () : IEF x IEF — IR defined by

k
Q(u,v) = % Z(uz — Uj, V; — Vj).

=1

Then @ is bilinear, symmetric, and, when restricted to A+ x A+, positive
definite. It therefore defines an inner product (, )o on IEF/A ~ A+

Now note that that I'(z) = I'(z,) and A(v) = A(v,) and that A(v) =
|v[|§ and I'(z) = [|=(3.



Proposition 2 For all v € X, ¢, > mina;;. In particular, if

i7#J
_ K
Gij = @z P then

K
(02 4T,)%

Do >



Denote ®; = min ¢..
T€[0,t]

Proposition 3 For all t > 0, A(t) < Age™#®.
PROOF. Let 7 € [0,¢]. Then

N(r) = u(r),o(r)e = 200/ (r), ()

= —2(Lv(7),v(7))q < —2¢(r)A(T).

Here we have used that L, is symmetric positive definite on V. Using

this inequality,
t t / t
A
:/ (T>d7'§/ —2¢7-d7'g _th)t
0 0 A(T) 0

In(A(7))

- In(A(£)) — In(Ag) < —2td,.



A
Proposition 4 For T > 0, I'(T) < 2 (Fo + —0>.

PROOF.  We have |I(2)| = |2(v(t), z(1))g| < 2||v(t)|lol|lz(t)|g- But
|z(t)||o = F(t)1/2 and Hv(t)Hg2 = A(t) < Age ?**t, by Proposition 2.
Therefore,

(1) < |T(1)] < 2 (Age™%) 2 T(1) /2

and, using that t — ®; is non-increasing,

b ! —2td;\ 1/2
/OF(t)l/th < 2/0 (Aoe™ %) " dt




which implies

NORE

T T / 1/2
:1/ NORAY
2 ['(t)1/2 P

0

from where
A1/2 2
I(T) < (FW + )
P

The result now follows from the inequality (o + 6)? < 2(a? 4+ 5%). W



Lemma 1 Let ¢y,co > 0 and s > q > 0. Then the equation

F(z)=2"—c127— ¢ =0

|

has a unique positive zero z,. In addition

W =

2 < naax;{(2cl)siq,(202)

and F(z) <0 for 0 < z < z*.

PROOF OF THEOREM 1. By Proposition 4, for all x € X,
K
> .
¢CB — (0.2 _|_Fx)ﬁ
Let t* € [0, ¢] be the point maximizing I' in [0,¢]. Then
K K

®, = min ¢, > mi > .
! £&¢-<%%@ﬂ+mﬂw—(ﬂ+rwwﬁ



By Proposition 3

e )

Since t* maximizes I' in [0, 7] it also does so in |0,t*]. Thus, for t = t*,
(6) takes the form

D(¢) < 2T + 2

(0> + (1))

(02 + D(t)) — 200 ——

— (2F0 + 0'2) S 0. (7)

Let z = I'(t*) + o2,

20\
<

Then (7) can be rewritten as F'(z) < 0 with

a and b =2l + o°.

F(2)=2%z—az*’ —b.



(i) Assume § < 1/2. By Lemma 3, F(z) < 0 implies that z =
(02 +T(t*)) < Uy with

4y T
Up = max { (ﬁ) ,2(21 + (;2)} .

That is T'(¢t*) < By := Uy —0c?. Since By is independent of ¢, we deduce
that, for all t € R, I'(t) < By. But this implies that ¢, > (024{;0)@ for
all t € IR, and therefore, the same bound holds for ®;. By Proposition 2

K

A(t) < Age 507" (8)

which shows that A(¢) — 0 when t — oc.



(ii)  Assume now (3 = 1/2. Then (7) takes the form

2\
(o® + (")) (1 — 7;) — (2T 4+ 0%) < 0.
Since Ay < KTZ this implies that
21 2
() < Byi= =200 — 5% >0
- K2

We now proceed as in case (i).



(iii)  Assume finally 6 > 1/2 and let a = 203 so that F'(z) = 2z —
az® — b. The derivative F'(z) = 1 — aaz®! has a unique zero at

Ky — (L)ﬁ and

aa

Fz) = (@%) (O}a>b
N ANAOEE
Z O(DM_@M(DM_”

the last by our hypothesis. Since F(0) = —b < 0 and F'(z) —» —o©
when z — oo we deduce that the shape of F' is as follows:



-

Recall, (7) shows that, for all ¢ > 0, F(I'(t*) + ¢?) < 0. And the
mapping ¢t — F(I'(t*) + o*) is continuous. Thus the image of

t — T'(t*) + o is either included in [0, 2] or in [z,, o).



In addition, when ¢ = 0 we have t* = 0 and

FQ—I—O'Q < 2F0—|—O'2:b

JONBEEON
o

= 2.

This implies that 'y + 0 < 2, and then, for all t > 0,
D(t*) + 0% < 2z < 2,

We conclude that
1

1
1 a—1 K2 a—1
['(t") < By = — — 0% = —o°.
( )_ 0 (()é&) d (20&/\@) ?

We now proceed as in case (i).




