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Model Reduction for Control Systems

• Full Order Model

ẋ = f(x, u)

y = h(x)

u ∈ IRm, y ∈ IRp, x ∈ IRn, n >> 1

• Reduced Order Model

ż = a(z, u)

y = c(z)

u ∈ IRm, y ∈ IRp, z ∈ IRk, k << n
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Possible Goals

• The reduced order model should have essentially the same
input output behaviour as the full order model.

• A compensator that achieves a desired performance for the
reduced order model should also do so for the full order
model.

• The full order model is a compensator that achieves a
desired performance for another system and we seek a
reduced order compensator that does also.

• We shall focus on the first goal.
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Model Reduction of Dynamical Systems

• Full Order Model

ẋ = f(x)

x ∈ IRn, n >> 1

• Reduced Order Model

ż = a(z)

z ∈ IRk, k << n

• The reduced order model should display the ”essential”
behaviour of the full order model.
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Model Reduction of Dynamical Systems

• The model reduction problem for dynamical systems can be
viewed as one for control systems by adding an input and
output,

ẋ = f(x) + u

y = x

u ∈ IRn, y ∈ IRn

• But because the input and output dimensions are now large,
it may be difficult to reduce the model.
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Model Reduction of Dynamical Systems

• Separation into slow and fast modes. ẋ1
...
ẋn

 =

 λ1 0
. . .

0 λn


 x1

...
xn

+ f̄(x1, . . . , xn)

• Spectral Gap:

0 ≥ λ1 ≥ . . . ≥ λk >> λk+1 ≥ . . . ≥ λn

• Galerkin projection onto xk+1 = · · · = xn = 0, ẋ1
...
ẋk

 =

 λ1 0
. . .

0 λk


 x1

...
xk

+ f̄1(x1 . . . , xk, 0, . . . , 0)

• Other approaches: Petrov Galerkin, nonlinear Galerkin,
singular perturbations, center manifolds, inertial manifolds..
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...
ẋn
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...
ẋk
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Model Reduction of Control Systems

Galerkin projection onto the slow modes of the unforced
dynamics may not be a satisfactory method of model reduction
for control systems.

The control may not directly excite the slow modes.

The output may not be sensitive to changes in the slow modes.
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Model Reduction of Linear Control Systems

• We shall focus on state space methods which generalize to
nonlinear control systems.

ẋ = Fx+Gu

y = Hx

x(0) = 0

x ∈ IRn, u ∈ IRm, y ∈ IRp

λ(F ) < 0

• Since the unforced system is Hurwitz,
it defines an input-output map

IOn : L2(−∞,∞; IRm) → L2(−∞,∞; IRp)

IOn : u(−∞ : ∞) 7→ y(−∞ : ∞)

y(t) =
∫ t

−∞
HeF (t−s)Gu(s) ds
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Minimal Realization Theory

• What is the smallest state dimension necessary to realize a
given input-output map?

• The state dimension is minimal if the system is controllable,

rank
[
G FG . . . Fn−1G

]
= n,

• and observable,

rank


H
HF

...
HFn−1

 = n.

• Any system can be reduced to one that is minimal.
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Model Reduction of Linear Control Systems

• The input-output map is not a compact operator.

• The Hankel map takes past inputs to future outputs

Hn : L2(−∞, 0; IRm) → L2(0,∞; IRp)

Hn : u(−∞ : 0) 7→ y(0 : ∞)

• It factors through the current state x(0) and so it is of
finite rank hence compact.

u(−∞ : 0) 7→ x(0) =
∫ 0

−∞
e−F sGu(s) ds

y(t) = HeF tx(0)
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B.C. Moores’s Balanced Realization Theory.

ẋ = Fx+Gu

y = Hx

• Find a reduced order linear system with approximately the
same input-output map.

• Moore assumed that

• F,G is a controllable pair,

• H,F is a observable pair,

• F is Hurwitz, λ(F ) < 0 .

• If the system is uncontrollable and/or unobservable, we can
make it so by passing to a minimal realization.

• Hurwitz is needed to insure the existence of the
input-output map.
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ẋ = Fx+Gu

y = Hx

• Find a reduced order linear system with approximately the
same input-output map.

• Moore assumed that

• F,G is a controllable pair,

• H,F is a observable pair,

• F is Hurwitz, λ(F ) < 0 .

• If the system is uncontrollable and/or unobservable, we can
make it so by passing to a minimal realization.

• Hurwitz is needed to insure the existence of the
input-output map.

12



B.C. Moores’s Balanced Realization Theory.
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Balanced Realization Theory.

• Moore’s insight was that we should restrict to the directions
that are easy to excite and ignore directions where changes
don’t affect the output very much.

• Controllablity Function

πc(x0) = inf
u(−∞:0)

1

2

∫ 0

−∞
|u(t)|2 dt

subject to the system dynamics and
x(−∞) = 0, x(0) = x0.

• Observability Function

πo(x0) =
1

2

∫ ∞

0
|y(t)|2 dt

subject to the system dynamics and
x(0) = x0, u(t) = 0, t ≥ 0.

13
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• πc(x) is the minimal input energy needed to excite the
system from the zero state to x .

• F,G controllable implies πc(x) is bounded.

• F Hurwitz implies πc(x) is positive definite.

• πo(x) is the output energy released by the system as it
decays from x back to the zero state.

• F Hurwitz implies πo(x) is bounded.

• H,F observable implies πo(x) is positive definite.

• πc(x) and πo(x) are quadratic functions because the
system is linear and the energies are quadratic,

πc(x) =
1

2
x′P−1

c x, πo(x) =
1

2
x′Pox
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Balanced Realization Theory.

• Pc, Po are the unique positive definite solutions of

0 = FPc + PcF
′ +GG′

0 = F ′Po + PoF +H ′H.

• They are called the controllablity and observability
gramians.

• πc(x) large implies that it takes a lot of input energy to
excite the system in the direction x and so this direction
might be ignored in a reduced order model.

• πo(x) small implies that changes in the direction x lead to
small changes in the output energy and so this direction
might be ignored in a reduced order model.

15
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Balanced Realization Theory.

• Pc, Po transform differently under a linear change of states
coordinates x = Tz

Pc 7→ T−1PcT
′−1

Po 7→ T ′PoT

• PoPc is a similarity invariant

PoPc 7→ T ′PoPcT
′−1

• Its eigenvalues are the squares of the singular values of the
Hankel map.
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Balanced Realization Theory.

• There is a linear change of state coordinates so that the
controllability and observability gramians are diagonal and
equal,

Pc = Po =

 σ1 0
. . .

0 σn



• The Hankel singular values can be ordered

σ1 ≥ σ2 ≥ . . . ≥ σn > 0

• In these new state coordinates the system is said to be
balanced.

• If the Hankel singular values are distinct then the balanced
coordinates are unique up to changes of signs xi 7→ −xi .
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Balanced Truncation

• The reduced model is obtained by Galerkin projection onto
the states corresponding to large Hankel singular values
because they can be reached with relatively small input
energy and they produce relatively large output energy.

• Suppose σk >> σk+1.
Let x1 denote the first k components of x
Let x2 denote the last n− k components.

• Full Order Model[
ẋ1

ẋ2

]
=

[
F11 F12

F21 F22

] [
x1

x2

]
+
[
G1

G2

]
u

y =
[
H1 H2

] [ x1

x2

]
• Balanced Truncation obtained by Galerkin projection.

ż = F11z +G1u

y = H1z
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Balanced Truncation

• The reduced model is obtained by Galerkin (orthogonal)
projection in balanced coordinates.

• In the original coordinates, it is a Petrov Galerkin (oblique)
projection.

• The Hankel singular values of the reduced model are
σ1, . . . , σk.

• But the reduced model is not an optimal Hankel norm
approximation of the full model because the singular vectors
are different. Typically

‖Hn − Hk‖ > σk+1

Adamjan-Arov-Krein, Glover
• Glover has shown that for balanced truncation

‖IOn − IOk‖ ≤ 2
n∑

j=k+1

σj
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Balanced Truncation

• Large and small are relative terms and we need one
quadratic form to normalize the other.

• The eigenvalues of the dynamics play an indirect role. It is
very hard to excite the system in a direction corresponding
to a very stable eigenvalue and so the controllability
function tends to be large in such a direction.

• Moreover, a very stable state direction damps out quickly
and so the observability function tends to be small in such a
direction.

• Hence the very stable directions of the dynamics tend to be
ignored in the reduction process.
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Balanced Reduction

Suppose we have a linear dyamical system in modal coordinates

ẋ =

 λ1 0
. . .

0 λn

x
0 > λ1 ≥ . . . ≥ λn .

As before we add a dummy input and output,

ẋ =

 λ1 0
. . .

0 λn

x+ u, y = x

21
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Balanced Reduction

Then

Pc = Po =

 − 1
2λ1

0
. . .

0 − 1
2λn

 , σi = −
1

2λi

So balanced truncation is the usual truncation onto the slow
modes.

−
1

2λ1
≥ −

1

2λ2
≥ . . . ≥ −

1

2λn
> 0
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Example

Chain of three masses connected by springs and dashpots
attached to a wall at one end. The input is a force applied to
the mass next to the wall and the output is the displacement of
the mass at the other end. Assume that each mass is µ , each
spring constant is c and each dampening constant is b.

23



Example

The system is linear,

F =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−2c
m

c
µ

0 −2b
µ

b
µ

0
c
µ

−2c
µ

c
µ

b
µ

−2b
µ

b
µ

0 c
µ

− c
µ

0 b
µ

− b
µ


G =



0
0
0
1
µ

0
0



H =
[

0 0 1 0 0 0
]

24



Example

If µ = 1, c = 3, b = 0.5 then after balancing

Pc = Po =



1.6895
1.4901

0.1404
0.1079

0.0077
0.0076



σ2 = 1.4901 >> 0.1404 = σ3

This suggests taking a reduced order model of dimension k = 2 .
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Example
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Error Estimate

Glover has shown that for balanced truncation

‖IOn − IOk‖ ≤ 2
n∑

j=k+1

σj

We know that

σk+1 ≤ ‖Hn − Hk‖ ≤ ‖IOn − IOk‖ ≤ 2
n∑

j=k+1

σj

For the spring mass example with k = 2 this yields

σ3 = 0.1404 ≤ ‖Hn − Hk‖ ≤ ‖IOn − IOk‖ ≤ 0.5672
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Error Estimate
If we restrict the Hankel maps to optimal inputs of the full
system then

‖Hn − Hk‖ ≤ 0.1432

Notice how close this is to σ3 = 0.1404.

   X0   U(t)

Hn

Hk

Error

Optimal
Control

Full
State

Full
Hankel
Map

Reduced
Hankel
Map
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Error Estimate
If we restrict the Hankel maps to optimal inputs of the reduced
system then

‖Hn − Hk‖ ≤ 0.0867

Notice how much smaller this is than σ3 = 0.1404.

   Z0   U(t)

Hn

Hk

Error

Optimal
Control

Reduced
State

Full
Hankel
Map

Reduced
Hankel
Map
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Balanced Truncation

• Balanced truncation does not minimize the difference
between the input-output maps of the full and reduced
models.

• Balanced truncation does not minimize the difference
between the Hankel maps of the full and reduced models.

• So what problem does it solve? And how can it be
generalized to nonlinear systems?

• Nonlinear balanced truncation of Scherpen.

• Stochastic interpretation of Newman and Krishnaprasad.

• Differential eigenstructure of nonlinear Hankel maps,
Fujimoto and Scherpen.

• Here is a new way of viewing and generalizing linear
balanced truncation.

30
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Balanced Truncation
Full Order Model

ẋ = Fx+Gu

y = Hx

We restrict to those reduced order models that can be obtained
by Petrov Galerkin projection. For this we need an injection Ψ
and a surjection Φ

Ψ : IRk → IRn

Ψ : z 7→ x = Ψz

Φ : IRn → IRk

Φ : x 7→ z = Φx

ΦΨz = z, (ΨΦ)2x = ΨΦx

Reduced Order Model

ż = ΦFΨz + ΦGu

y = HΨz
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Balanced Truncation
How should we choose the injection Ψ ?

We choose Ψ : IRk → IRn so that its k dimensional range
maximizes output energy πo(x) for given input energy πc(x).

To do this it is convenient to put the system in
input normal form, that is, make a linear change of state
coordinates so that

πc(x) =
1

2

∑
i

x2
i , πo(x) =

1

2

∑
i

τix
2
i

This is just a diagonal change from balanced coordinates and

τi = σ2
i are the squared Hankel singular values.

If τk >> τk+1 then we should take the range of Ψ(z) to be
xk+1 = · · · = xn = 0 , e.g.,

Ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0)

32



Balanced Truncation
How should we choose the injection Ψ ?

We choose Ψ : IRk → IRn so that its k dimensional range
maximizes output energy πo(x) for given input energy πc(x).

To do this it is convenient to put the system in
input normal form, that is, make a linear change of state
coordinates so that

πc(x) =
1

2

∑
i

x2
i , πo(x) =

1

2

∑
i

τix
2
i

This is just a diagonal change from balanced coordinates and

τi = σ2
i are the squared Hankel singular values.

If τk >> τk+1 then we should take the range of Ψ(z) to be
xk+1 = · · · = xn = 0 , e.g.,

Ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0)

32



Balanced Truncation
How should we choose the injection Ψ ?

We choose Ψ : IRk → IRn so that its k dimensional range
maximizes output energy πo(x) for given input energy πc(x).

To do this it is convenient to put the system in
input normal form, that is, make a linear change of state
coordinates so that

πc(x) =
1

2

∑
i

x2
i , πo(x) =

1

2

∑
i

τix
2
i

This is just a diagonal change from balanced coordinates and

τi = σ2
i are the squared Hankel singular values.

If τk >> τk+1 then we should take the range of Ψ(z) to be
xk+1 = · · · = xn = 0 , e.g.,

Ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0)

32



Balanced Truncation
How should we choose the injection Ψ ?

We choose Ψ : IRk → IRn so that its k dimensional range
maximizes output energy πo(x) for given input energy πc(x).

To do this it is convenient to put the system in
input normal form, that is, make a linear change of state
coordinates so that

πc(x) =
1

2

∑
i

x2
i , πo(x) =

1

2

∑
i

τix
2
i

This is just a diagonal change from balanced coordinates and

τi = σ2
i are the squared Hankel singular values.

If τk >> τk+1 then we should take the range of Ψ(z) to be
xk+1 = · · · = xn = 0 , e.g.,

Ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0)

32



Balanced Truncation
How should we choose the injection Ψ ?

We choose Ψ : IRk → IRn so that its k dimensional range
maximizes output energy πo(x) for given input energy πc(x).

To do this it is convenient to put the system in
input normal form, that is, make a linear change of state
coordinates so that

πc(x) =
1

2

∑
i

x2
i , πo(x) =

1

2

∑
i

τix
2
i

This is just a diagonal change from balanced coordinates and

τi = σ2
i are the squared Hankel singular values.

If τk >> τk+1 then we should take the range of Ψ(z) to be
xk+1 = · · · = xn = 0 , e.g.,

Ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , 0)

32



Balanced Truncation
How should we choose the surjection Φ ?

We choose Φ : IRn → IRk to minimize the L2 norm of the
difference between the outputs from x and Ψ(Φ(x)).

Define the co-observability function

πoo(x, x̄) =
1

2

∫ ∞

0
|y(t) − ȳ(t)|2 dt

where y(t), ȳ(t) are the outputs from x(0) = x, x(0) = x̄.

Because the system is linear

πoo(x, x̄) = πo(x− x̄)

If the system is in input normal form then the optimal Φ is

Φ(x1, . . . , xn) = z = (x1, . . . , xk)
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How should we choose the surjection Φ ?

We choose Φ : IRn → IRk to minimize the L2 norm of the
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where y(t), ȳ(t) are the outputs from x(0) = x, x(0) = x̄.

Because the system is linear

πoo(x, x̄) = πo(x− x̄)

If the system is in input normal form then the optimal Φ is

Φ(x1, . . . , xn) = z = (x1, . . . , xk)

33



Balanced Truncation
How should we choose the surjection Φ ?

We choose Φ : IRn → IRk to minimize the L2 norm of the
difference between the outputs from x and Ψ(Φ(x)).

Define the co-observability function

πoo(x, x̄) =
1

2

∫ ∞

0
|y(t) − ȳ(t)|2 dt
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Nonlinear Balancing

Scherpen generalized Moore to nonlinear systems

ẋ = f(x, u)

y = h(x)

She defined the controllability function,

πc(x0) = inf
1

2

∫ 0

−∞
|u(t)|2 dt

subject to the system dynamics and x(−∞) = 0, x(0) = x0.

And the observability function,

πo(x0) =
1

2

∫ ∞

0
|y(t)|2 dt

subject to the system dynamics and x(0) = x0, u(t) = 0.
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Nonlinear Balancing

The controllability function πc(x) and the optimal control
u = κ(x) satisfy the HJB PDE

0 =
∂πc

∂x
(x)f(x, κ(x)) −

1

2
|κ(x)|2

0 =
∂πc

∂x
(x)

∂f

∂u
(x, κ(x)) − κ′(x)

The observability function πo(x) satisfies the Lyapunov PDE

0 =
∂πo

∂x
(x)f(x, 0) +

1

2
h′(x)h(x).
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Nonlinear Balancing

Suppose

• The system is smooth with Taylor expansion

ẋ = f(x, u) = Fx+Gu +f [2](x, u) + . . .

y = h(x) = Hx +h[2](x) + . . .

where [d] denotes a vector field that is a homogeneous
polynomial of degree d.

• The linear part of the system is Hurwitz, controllable and
observable

36
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Nonlinear Balancing

Then

• there exist smooth, positive definite local solutions to the
above PDEs around x = 0

•

πc(x) = 1
2
x′P−1

c x +π[3]
c (x) + . . .

πo(x) = 1
2
x′Pox +π[3]

o (x) + . . .

• Pc, Po are the controllability and observability gramians of
the linear part of the system.
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Nonlinear Balancing

Scherpen showed that there is a local change of coordinates
that brings the system into the form

πc(x) =
1

2
x′x, πo(x) =

1

2
x′

 τ1(x) 0
. . .

0 τn(x)

x

The τi(x) are the squared singular value functions,

τi(0) = τi = σ2
i

where σi are the Hankel singular values of the linear part of the
system.

Unfortunately neither these coordinates nor the squared singular
value functions are unique.

She obtained a reduced order model by Galerkin projection onto
the states with large τi(x).
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Input Normal Form of Degree One

The functions πc(x) and πo(x) have power series expansions

πc(x) = 1
2
x′P−1

c x +π[3]
c (x) +π[4]

c (x) + . . .

πo(x) = 1
2
x′Pox +π[3]

o (x) +π[4]
o (x) + . . .

Following Moore and Scherpen we can make a linear change of

coordinates so that

Pc =

 1 0
. . .

0 1

 , Po =

 τ1 0
. . .

0 τn


where τi = σ2

i and τ1 ≥ τ2 ≥ . . . ≥ τn > 0. After this linear
change of coordinates the system is said to be in
input normal form of degree one.
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Input Normal Form of Degree Two

For simplicity of exposition we shall assume that the τi are
distinct, τ1 > τ2 > . . . > τn > 0.

Now

π[3]
c (x) =

∑
i≤j≤k

γijk
c xixjxk

π[3]
o (x) =

∑
i≤j≤k

γijk
o xixjxk

Choose three indices 1 ≤ r ≤ s ≤ t ≤ n , at least two indices

are different, r < t . Consider the change of coordinates

xr = ξr + βrξsξt

xt = ξt + βtξrξs

xl = ξl otherwise

40



Input Normal Form of Degree Two

For simplicity of exposition we shall assume that the τi are
distinct, τ1 > τ2 > . . . > τn > 0.

Now

π[3]
c (x) =

∑
i≤j≤k

γijk
c xixjxk

π[3]
o (x) =

∑
i≤j≤k

γijk
o xixjxk

Choose three indices 1 ≤ r ≤ s ≤ t ≤ n , at least two indices

are different, r < t . Consider the change of coordinates

xr = ξr + βrξsξt

xt = ξt + βtξrξs

xl = ξl otherwise

40



Input Normal Form of Degree Two

For simplicity of exposition we shall assume that the τi are
distinct, τ1 > τ2 > . . . > τn > 0.

Now

π[3]
c (x) =

∑
i≤j≤k

γijk
c xixjxk

π[3]
o (x) =

∑
i≤j≤k

γijk
o xixjxk

Choose three indices 1 ≤ r ≤ s ≤ t ≤ n , at least two indices

are different, r < t . Consider the change of coordinates

xr = ξr + βrξsξt

xt = ξt + βtξrξs

xl = ξl otherwise

40



Input Normal Form of Degree Two

Then the quadratic parts of πc, πo are left unchanged but the
cubic parts each pick up an extra term,

π[3]
c (ξ) =

∑
i≤j≤k

γijk
c ξiξjξk + (βr + βt)ξrξsξt

π[3]
o (ξ) =

∑
i≤j≤k

γijk
o ξiξjξk + (τrβr + τtβt)ξrξsξt

Since τr > τt we can solve the linear system

[
1 1
τr τt

] [
βr

βt

]
= −

[
γrst

c

γrst
o

]
This change of coordinates cancels the monomials ξrξsξt from

π[3]
c (ξ), π[3]

o (ξ) .
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Input Normal Form of Degree Two

But if r = s = t then we can cancel the monomial x3
r from only

one of π[3]
c (ξ), π[3]

o (ξ) by a change of coordinates of the form

xr = ξr + βrξ
2
r

xl = ξl otherwise

We do so in π[3]
c (ξ) to obtain input normal form of degree two,

π[3]
c (ξ) = 0

π[3]
o (ξ) =

∑
i

γiii
o ξiξiξi

If the three indices are distinct r < s < t then there are many

ways to cancel xrxsxt from πc, πo.
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Input Normal Form of Degree d

We can do similarly for higher degrees and in this way bring the
system into input normal form of degree d ,

πc(x) =
1

2

n∑
i=1

x2
i + O(x)d+2

πo(x) =
1

2

n∑
i=1

τ
[0:d−1]
i (xi)x2

i + O(x)d+2

where the squared singular value polynomials τ
[0:d−1]
i (xi) are of

degrees 0 through d− 1

τ
[0:d−1]
i (xi) = τi + τi,1xi + . . .+ τi,d−1x

d−1
i

We have ”simultaneously diagonalized” πc(x), πo(x) through

terms of degree ≤ d+ 1. There are no cross terms, xixj . . .
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Input Normal Form of Degree d

The squared singular value polynomial τ
[0:d−1]
i (xi) measures the

relative importance of the state coordinate xi.

There may be several ways to bring the system to input normal

form of degree d but if d ≤ 6 then the τ
[0:d−1]
i (xi) are unique.

If the system is odd

f(−x,−u) = −f(x, u)

h(−x) = −h(x)

then πc(x), πo(x) are even and the τ
[0:d−1]
i (xi) are unique for

d ≤ 12.
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Nonlinear Model Reduction
As with linear balancd truncation we restrict to reduced order
models that can be found by nonlinear Galerkin projection.

For this we need an embedding ψ and a submersion φ

ψ : IRk → IRn

ψ : z 7→ x = ψ(z)

φ : IRn → IRk

φ : x 7→ z = φ(x)

φ(ψ(z)) = z, (ψ ◦ φ)2(x) = (ψ ◦ φ)(x)

Reduced Order Model

ż =
∂φ

∂x
(ψ(z))f(ψ(z), u)

y = h(ψ(z))

45
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Nonlinear Model Reduction
We would like to choose the embedding ψ : IRk → IRn so the k
dimensional submanifold that is its range ”maximizes” the
output energy πo(x) for given input energy πc(x).

If k > 1 then this prescription is not mathematically well-defined
so we shall settle for a submanifold that approximates it.

Assume the system is in input normal form of degree d , that
the range of input energy of interest is

πc(x) ≈
1

2
|x|2 ≤

1

2
c2

and that

τ
[0:d−1]
i (xi) >> τ

[0:d−1]
j (xj)

for 1 ≤ i ≤ k < j ≤ n and |xi|, |xj| ≤ c.

Then a ”reasonable” choice of ψ(z) = x is

ψ(z1, . . . , zk) = x = (z1, . . . , zk, 0, . . . , , 0)
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Nonlinear Model Reduction

How should we choose the submersion φ ?

We choose φ : IRn → IRk to minimize the L2 norm of the
difference of the outputs from x and ψ(φ(x)).

Define the co-observability function as before

πoo(x, x̄) =
1

2

∫ ∞

0
|y(t) − ȳ(t)|2 dt

where y(t), ȳ(t) are the outputs from x(0) = x, x(0) = x̄.
when u(t) = 0 .

Then πoo satisfies the Lyapunov PDE

0 =
∂πoo

∂(x, x̄)
(x, x̄)

[
f(x, 0)
f(x̄, 0)
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Nonlinear Model Reduction

How should we choose the submersion φ ?
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Nonlinear Model Reduction

As before πoo has a power series expansion

πoo(x, x̄) =
1

2

∑
i

τi(xi − x̄i)2 + π[3]
oo(x, x̄) + . . .

that can be computed term by term.

We define φ(x) = z as

φ(x) = argminzπoo(x, ψ(z))

so φ(x) satisfies

0 =
∂πoo

∂x̄
(x, ψ(φ(x)))

∂ψ

∂z
(φ(x))
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Nonlinear Model Reduction
From the choice of ψ ,

∂ψ

∂z
(φ(x)) =

[
I
0

]

so φi(x) = zi satisfies for 1 ≤ i ≤ k

φi(x) = xi

+
1

τi

(
∂π[3]

oo

∂x̄i
(x, (φ(x), 0)) +

∂π[4]
oo

∂x̄i
(x, (φ(x), 0)) + . . .

)
This can be solved term by term via repeated substitution.

φ
(1)
i (x) = xi

φ
(2)
i (x) = xi +

1

τi

∂π[3]
oo

∂x̄i
(x, (φ(1)(x), 0))

...
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Nonlinear Error Estimate

Full Order Model x ∈ IRn

ẋ = f(x, u)

y = h(x)

Reduced Order Model z ∈ IRk

ż = a(z, u) = ∂φ
∂x

(ψ(z))f(ψ(z), u)

y = c(z) = h(ψ(z))

What is the error between their input-output maps?

What is the error between their Hankel maps?

What is the error between their Hankel maps restricted to
optimal inputs?
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Nonlinear Error Estimate
Full Order Optimal Feedback

u = κ(x) =
(
∂πc

∂x
(x)

∂f

∂u
(x, κ(x))

)′

= G′x+

(
x′∂f

[2]

∂u
(x,G′x)

)′

+ . . .

This can be solved term by term via repeated substitution.

Combined closed loop system[
ẋ
ż

]
=

[
F +GG′ 0
BG′ A

] [
x
z

]
+ . . .

F +GG′ is antistable.
A is stable.
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Nonlinear Error Estimate

So there is an unstable manifold z = θ(x) satisfying

a(θ(x), κ(x)) =
∂θ

∂x
(x)f(x, κ(x))

This PDE can be solved term by term.
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Nonlinear Error Estimate

So there is an unstable manifold z = θ(x) satisfying

a(θ(x), κ(x)) =
∂θ
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(x)f(x, κ(x))

This PDE can be solved term by term.
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Nonlinear Error Estimate

Define the cross-observability function

ρ(x0, z0) =
1

2

∫ ∞

0
|y(t) − w(t)|2dt

where

ẋ = f(x, 0) ż = a(z, 0)
y = h(x) w = c(z)

x(0) = x0 z(0) = z0

Then ρ satisfies the Lyapunov PDE

0 =
∂ρ

∂(x, z)
(x, z)

[
f(x, 0)
a(z, 0)

]
+

1

2
|h(x) − c(z)|2

which can be solved term by term.
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Nonlinear Error Estimate

Let ux(−∞ : 0) be the optimal control that excites the full
order system to x(0) = x . Then the nonlinear Hankel maps
satisfy

|Hn(ux(−∞ : 0)) − Hk(ux(−∞ : 0))|2 ≤ ρ(x, θ(x))

A good estimate of the error between the nonlinear Hankel

maps is

sup
(
ρ(x, θ(x))

πc(x)

)1/2
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Nonlinear Error Estimate

As with input normal form we can make a change of coordinates
so that

πc(x) =
1

2
|x|2 + O(x)d+2

ρ(x, θ(x)) =
1

2

∑
ε
[0:d−1]
i (xi)x2

i + O(x)d+2

ε
[0:d−1]
i (xi) are the error polynomials of degrees 0 through
d− 1.

The error polynomials are unique for d ≤ 6.
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Nonlinear Example

Three linked rods connected by planar rotary joints with springs
and dampening hanging from the ceiling. The input is a torque
applied to the top joint and the output is the horizontal
displacement of the bottom. Each rod is uniform of length
l = 2, mass µ = 1, with spring constant c = 3, dampening
constant b = 0.5 and gravity constant g = 0.5.
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Nonlinear Example

We approximated the nonlinear system by its Taylor series
through terms of degree 5.

The Taylor series of controllability and observability functions
πc(x), πo(x) were computed through terms of degree 6 .

The system was brought into input normal form of degree 5 by a
changes of state coordinates of degrees 1 through 5.

The Hankel singular values of the linear part of the system are[
15.3437 14.9678 0.3102 0.2470 0.0156 0.0091

]
Apparently only two dimensions are linearly significant.
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Nonlinear Example

Here are the squared singular value polynomials.

τ
[0:4]
1 (x1) = 235.4298 − 3.4163x2

1 − 0.3104x4
1

τ
[0:4]
2 (x2) = 224.0356 − 3.2750x2

2 − 0.2941x4
2

τ
[0:4]
3 (x3) = 000.0962 + 0.0014x2

3 − 0.0001x4
3

τ
[0:4]
4 (x4) = 000.0610 + 0.0006x2

4 + 0.0000x4
4

τ
[0:4]
5 (x5) = 000.0002 + 0.0000x2

5 + 0.0000x4
5

τ
[0:4]
6 (x6) = 000.0001 + 0.0000x2

6 + 0.0000x4
6

Apparently only two dimensions are nonlinearly significant.
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Nonlinear Example

Semilog plot of the squared singular value polynomials τ
[0:4]
i

Notice the difference in scale and how flat they are.
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Nonlinear Example

Let ux(−∞ : 0) be the optimal input that excites the full
system to x.

The error between the nonlinear Hankel maps satisfies

|Hn(ux(−∞ : 0)) − Hk(ux(−∞ : 0))|2

≤ 0.0965|x|2 − 0.0009|x|4 + . . .

By way of comparison, the square of the third Hankel singular

value is

0.0962

so this estimate is tight.
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Nonlinear Example

Here are the error polynomials ε
[0:2]
i
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Nonlinear Example

Here are outputs of the Hankel maps of the full and reduced
systems excited by an optimal control ux(−∞ : 0) for random
x.

0 10 20 30 40 50 60 70 80 90 100
!1.5

!1

!0.5

0

0.5

1

1.5
Nonlinear output blue, reduced nonlinear output green
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Nonlinear Example

Here are the responses of the full nonlinear model (blue), the
reduced nonlinear model (green) and the linear part of the full
model (red) to a sinusoidal input.

0 10 20 30 40 50 60 70 80
!15

!10

!5

0

5

10

15
Sinusoidal response of all three systems
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Conclusion

• We gave a new interpretation of linear balanced truncation
that readily generalizes to nonlinear systems.

• The nonlinear method is compuationally feasible for
moderate state dimensions and moderate degrees of
approximation.

• For both linear and nonlinear model reduction, we gave new
computable error bounds for the difference of the full and
reduced Hankel maps restricted to optimal inputs.

• We believe that these bounds are typical of the errors for
inputs that are used in practice.

• The methodology extends directly to other methods of
balancing such as LQG, H∞ .

• Thank you for listening.
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