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Automation & Robotics Research Institute (ARRI)
Relevance- Machine Feedback Control

High-Speed Precision Motion Control with unmodeled dynamics, vibration suppression,
disturbance rejection, friction compensation, deadzone/backlash control
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INTELLIGENT CONTROL TOOLS
Fuzzy Associative Memory (FAM) Neural Network (NN)

/ \ (Includes Adaptive Control)

Fuzzy Logic Rule Base
——
—_—
NN
—_—
. Output
Input Membership Fns. Output Membership Fns. l
Output u
I Input x l Output u

Both FAM and NN define a function u= f(x) from inputs to outputs

FAM and NN can both be used for: 1. Classification and Decision-Making
2. Control

NN Includes Adaptive Control (Adaptive control is a 1-layer NN)




Neural Network Properties

Dendrites

Learning

Recall

Function approximation
Generalization

Classification

Association

Pattern recognition

Clustering

Robustness to single node failure

Repair and reconfiguration

Axon terminals

\J

4 Mucleus

.,

Cell bady

Nervous system cell.
http://www.sirinet.net/~jgjohnso/index.htmi



Two-layer feedforward static neural network (NN)

X, > Y1
X, > Y2
X, > Ym

inputs outputs
_ hidden layer

Summation egs Matrix eqs
K n . T T
p-of S| Sues oot y=WTo(vTx)
k=1 j=1

Have the universal approximation property
Overcome Barron’s fundamental accuracy limitation of 1-layer NN



Dynamical System Models

Continuous-Time Systems H Discrete-Time Systems

Nonlinear system

x=f(x)+g(X)u Xeq = T (%) +9(x)u,

y = h(X) Y, =h(x,)
Linear system
X = Ax+ Bu Xip = AX + By
y =CX Y =CX,
Control Inputs Internal States Measured Outputs
Z-l

u X X y
—10(X) > 1/s — h(X)—

A

(%)




Neural Network Robot Controller Feedback linearization

Universal Approximation Property

Feedforward Loop l l l Nonlinear Inner Loop

(%)

v

2y
>
v

v

[A 1]

K 7 > Robot System

\Y

| Robust Control | V(t)
Term

Problem- Nonlinear in the NN weights so
PD Tracking Loop  that standard proof techniques do not work

Easy to implement with a few more lines of code

Learning feature allows for on-line updates to NN memory as dynamics change
Handles unmodelled dynamics, disturbances, actuator problems such as friction
NN universal basis property means no regression matrix is needed

Nonlinear controller allows faster & more precise motion



Extension of Adaptive Control to nonlinear-in parameters systems
No regression matrix needed
Theorem 1 (NN Weight Tuning for Stability)

Let the desired trajectory q,(t) and its derivatives be bounded. Let the initial tracking error be
within a certain allowable set U . Let Z,, be a known upper bound on the Frobenius norm of the

unknown ideal weights Z .
Can also use simplified tuning- Hebbian

Take the control input as But tracking error is larger

r=WTo(V X)+K,rr-v with v(t) =K, (2], +Zu)r.

Let weight tuning be provided by

W = ForT ~FoV T e V = Gx(6" Wr)" —xG|r|V

with any constant matrices F =F" >0,G=G" >07 and scalar tuning parameter « >0. Initialize

the weight estimatés as W =0,V = random .

V are uniformly ultimately
ay be leved by selecting large control

gains K. Backprop terms- Extra robustifying terms-
Werbos Narendra’s e-mod extended to NLIP systems



Flexible pointing systems
Vehicle active suspension

SBIR Contracts

Won 1996 SBA Tibbets Award
4 US Patents

NSF Tech Transfer to industry



Flexible & Vibratory Systems

Backstepping

Add an extra feedback loop
Two NN needed
Use passivity to show stability

2N | NN#1

»
» KI’

> [A 1]
_ | Y -
= |:qd:| L

Robust Control

Term

Tracking Loop

vi(t)

1Ky,

Nonlinear FB Linearization Looj

Kn
JAN l
I 2 (X)

Robot
System

NN#2

Backstepping Loop

v

Neural network backstepping controller for Flexible-Joint robot arm

Advantages over traditional Backstepping- no regression functions needed



Actuator Nonlinearities - Deadzone, saturation, backlash

NN in Feedforward Loop- Deadzone Compensation

q-d
Iy
Estimate

of Nonlinear
Function

little critic network

_______________

NN Deadzone
Precompensator

f(x)

(u)
e r u R T : q
&MR—‘» [AT 1] > K, IS Bl S N I B Mechanical .
) -4 yd System
V 1

Critic: W, =To, (U, w)r'i "o (UTu)U T —k,T[rW, - k,T i, g, AACtS like a 2-layer NN
Actor: w = ~So'(U TU)U TVViai(UiTw)rT _ k18||l‘”\/\7 Wlth enhanced
backprop tuning !




Needed when all states are not measured
l.e. Output feedback

NN Observers

Recurrent NN Observer

Z, =X, + KX,
22 = WoT 0, (X3, X,) + M7 (x,)7 (1) + KX,

Tune NN observer -

~

Neural Network Ay ~
Observer WO = _kD FOO-O (X) X]-_r
— Ko |:o”Xl"\No — Ko FoWo

o (%1, %, I
: l* Tune Action NN -

! S p L 4
[e] K A
L v : l W, = Feoe (X1, %p)FT
P > k c — FcOQc\ M1 A2

“Tg)

Neural Network
Controller




Also Use CMAC NN, Fuzzy Logic systems

Separable Gaussian activation
functions for RBF NN

Tune first layer weights, e.g.
Centroids and spreads-
Activation fns move around

Dynamic Focusing of Awareness

Fuzzy Logic System
= NN with VECTOR thresholds

Separable triangular activation
functions for CMAC NN



Elastic Fuzzy Logic- c.f. P. Werbos

#z,ab,c)=¢.(z,a,b)

Effect of change of membership
function spread "a"

2 .—Weights importance of factors in the rules
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Elastic Fuzzy Logic Control

Control

. Tune Membership Functions
u(t)=—-K,r—g(x,xy)

a=K,A"Wr —k,K,ar]

Tune Control Rep. Values b = K, B"Wr —k,K,br]|

W = Ky, (&— Ad—Bb—CE)r —k, Ky W]r| C =K CWr —k.K.]r]

Fuzzy Rule Base

Input Membership Output Membership
Functions Functions

| §(x,X,)

O Ly O e e O
X4(0) . -




Better Performance

Start with 5x5 uniform grid of MFS

After tuning-

membership functions at the end of simulation - e 1=0, e,=0 membership functions at the end of simulation - e, =0, e,=0
15 T T T T

10}

15 i | 1 | 1

-15 -10 -5 0 5 10

Builds its own basis set-
Dynamic Focusing of Awareness



Optimality in Biological Systems

Cell Homeostasis

Cellular Metabolism

The individual cell is a complex
feedback control system. It pumps
lons across the cell membrane to
maintain homeostatis, and has only
limited energy to do so.

transporied malecule
@g 0
bl |
- o channel @  carrier O ®
protein | protein I ‘D'..

lipid | EEE . . concentration
bilayer | || o gradiont
| . ]
\‘a:f-‘ l
F -
8
simple channael- carriar- . ..
diffusion ; mediated mediated ]
]

PASSIVE TRANSPORT ACTIVE TRANSFORT

Permeability control of the cell membrane

http://www.accessexcellence.org/RC/VL/GG/index.html



Optimality in Control Systems Design

Rocket Orbit Injection

\ STAR-27
o

- separalion and

Y

Fig. 1-1. Trajectory scheme

ISC Kosmotras Proprietary

Dynamics

Objectives

R. Kalman 1960

Get to orbit In minimum time
Use minimum fuel

http://microsat.sm.bmstu.ru/e-library/Launch/Dnepr_GEO.pdf



2. Neural Network Solution of Optimal Design Equations

Nearly Optimal Control

Based on HJ Optimal Design Equations

Known system dynamics
Preliminary Off-line tuning

1. Neural Networks for Feedback Control

Based on FB Control Approach
Unknown system dynamics
On-line tuning

Extended adaptive control
to NLIP systems
No regression matrix




Murad Abu Khalaf ~ H-Infinity Control Using Neural Networks

System Performance output disturbance
z d
«— I x=Ff(X)+gXu+k(X)d |«—
Measured Y y=X u  control
output Z =y (X,U)
u=1(y)
where

L, Gain Problem |2 =h"ho+uf

Find control u(t) so that

|z dt  [(hh+[u])at
2 _ 0 < 52 For all L, disturbances

.Hd(t)szt THd(t) 2 dt ) And a prescribed gain y?
0 0

Zero-Sum differential Nash game



Standard Bounded L, Gain Problem

J(u,d) = _f(hT h+ HUH2 —y° HdHZ )dt Game theory value function
0

rake [ =URY g Jdf ~d7d

Hamilton-Jacobi Isaacs (HJI) equation

0=V, f+h"h-1V "gR*g"V + 12 V, kk'V,
Stationary Point
u*=-1 R™*g" (X)V, Optimal control
1 T .
d*=—k (X)V, Worst-case disturbance

If HJI has a positive definite solution V and the associated closed-loop system is AS
then L, gain is bounded by y?

Problems to solve HJI

Beard proposed a successive solution method using Galerkin approx.

Viscosity Solution



Murad Abu Khalaf

Successive Solution- Algorithm 1.
1
Cannot solve HJI !! Let ¥ be prescribed and fixed.

U, a stabilizing control with region of asymptotic stability €2,

1. Outer loop- update control
Initial disturbance d° =0
2. Inner loop- update disturbance
Solve Value Equation
EIYAR T U
Consistency equation — V) (f +0u; + kd)+ h"h+ 2j¢‘T (V)dv —y*(d")'d' =0
For Value Function OX 0
Inner loop update disturbance

i+ l
d 1:2—7/2kT(X)

V'
OX

goto 2.
lterate i until convergence to d*,V*; with RAS Q7

Outer loop update control action
oV

7
OX

uj+1 = _% [gT (X)

Goto 1.
lterate j until convergence to U,V "« , with RAS Q"

CT Policy lteration for H-Infinity Control



Murad Abu Khalaf
Problem- Cannot solve the Value Equation!

OX
Neural Network Approximation for Computational Technique

b T y . .
o) (f +gu; +kd)+h"h+2[ ¢ (1)dv - y2(d")"d" =0
0

Neural Network to approximate V1 (x)

L
() (y) — (i) _\W T =
Vi (X)_Z;WJ’ o (x) =W, ", (x), (Can use 2-layer NN!)
J:

Value function gradient approximation is

6VL(I) L(L) W (i) V& T(X)W (1)
OX OX

Substitute into Value Equation to get

0=w, "Vo(x)x+r(xu d)=w "Vo(x) f(xu J,di)+hTh+HujH2_;/ZHdiuz

Therefore, one may solve for NN weights at iteration (i,))

VFA converts partial differential equation into algebraic equation in terms of NN weights



Murad Abu Khalaf

Neural Network Optimal Feedback Controller
Optimal Solution

d = % KT (X)VE, W, .

u=-1 (gT (x)VELTWL)

A NN feedback controller with nearly optimal weights




Finite Horizon Control Cheng Tao

Fixed-Final-Time HJB Optimal Control

Optimal cost

Optimal control

This yields the time-varying Hamilton-Jacobi-Bellman (HJB) equation

av(;(,t)* f(x)+Q(X)—%aV(2)’(t)*T g(x)R™g(x)' 8VS;,t)* =0



HJB Solution by NN Value Function Approximation Cheng Tao

L
V. ()= w,(t)o,(x)=w] (t)o (x) ~ Time-varying weights
=
Note that Irwin Sandberg

oV, (X, t) _ 0o, (X) w, (t) =Vo, (X)W L (t)

OX OX

where Ve (x)is the Jacobian ds, (x)/ox
Policy iteration not needed!

8VLa(tX’ t)_ wi (tho, (x)

Approximating V(x,t) in the HJB equation gives an ODE in the NN weights
-wi (o (x)-wi (t)Ve, (x)f(x)
+ZWTL (tho, (x)a(x)R g™ (X)o7 (x)w,(t)
-Q(x)=¢e,(x)
Solve by least-squares — simply integrate backwards to find NN weights

Controlis  u"(x)= —% Rg(x)' Vo w,(t)



ARRI Research Roadmap in Neural Networks
3. Approximate Dynamic Programming — 2006-
Nearly Optimal Control

Based on recursive equation for the optimal value
Usually Known system dynamics (except Q learning)

The Goal — unknown dynamics Extend adaptive control to
On-line tuning yield OPTIMAL controllers.
Optimal Adaptive Control No canonical form needed.

2. Neural Network Solution of Optimal Design Equations — 2002-2006

Nearly Optimal Control Nearly optimal 30|Uti0_n of
Based on HJ Optimal Design Equations | controls design equations.
Known system dynamics No canonical form needed.

Preliminary Off-line tuning
1. Neural Networks for Feedback Control — 1995-2002

Based on FB Control Approach Extended adaptive control
Unknown system dynamics to NLIP systems
On-line tuning No regression matrix

NN- FB lin., sing. pert., backstepping, force controt, dynamic imversion, etc.



Four ADP Methods proposed by Werbos

Critic NN to approximate:

Heuristic dynamic programming AD Heuristic dynamic programming
(Watkins Q Learning)
Value V(%) Q function Q(X,,u,)
Dual heuristic programming AD Dual heuristic programming
0 0
Gradient N Gradients 9 , Q
OX ox  ou

Action NN to approximate the Control
Bertsekas- Neurodynamic Programming

Barto & Bradtke- Q-learning proof (Imposed a settling time)



Dynamical System Models

Continuous-Time Systems H Discrete-Time Systems

Nonlinear system

x=f(x)+g(X)u Xeq = T (%) +9(x)u,

y = h(X) Y =h(x,)
Linear system
X = Ax+ Bu Xip = AX + By
y =CX Y =CX,
Control Inputs Internal States Measured Outputs
Z-l

u X X y
—10(X) > 1/s — h(X)—

A

(%)




Discrete-Time Optimal Control
cost Vh(xk):iy/i‘kr(xi,ui)
i=k

Value function recursion Vi, (X ) = (X, h(x, ) + Ny (X 1)

u, =h(x,) =the prescribed control input function
Hamiltonian H (X, VV(X),h) =r(x.,h(x))+ N, (X.1) Vi (X)
Optimal cost V()= mhin(r(xk () + N (%)
Bellman’s Principle vV 7(x,) = min(r(x,,u,)+ N (X))

Optimal Control h*(x,)=arg n]jn(r(xk U )+ NV (X))

System dynamics does not appear

Solutions by Comp. Intelligence Community



Use System Dynamics

System X1 = f (Xk) + g(Xk)uk
V(%) =D xQx +uRu,
k=0

DT HJB equation

V*(x,) =min| X' Qx, +u; Ru, +V*(xk+1)]

= min| X, Qx, +Ug Ru, +V" (£ (x)+g(x)u,) |

Uy

1

U*(Xk) _ _E R—lg(xk )T dV (Xk+1)

k+1

Difficult to solve

Few practical solutions by Control Systems Community



DT Policy Iteration

Cost for any given control h(x,) satisfies the recursion

Vi (%) = (X, h(X)) + My (Xi0) Lyapunov eq.
Recursive form
Recursive solution Consistency equation

Pick stabilizing initial control
Find value

Vi (X)) =r(x,h;(x))+ WV .(X1) () and g(.) do not appear

Update control

hj+1(xk) =alg rrlljin(r(xk 1 uk) + Wj+1(xk+1))

Howard (1960) proved convergence for MDP



DT Policy Iteration — Linear Systems

« For any stabilizing policy, the cost is

V(%) =D % Qx, +U, (X )Ru; ()
k=0
DT Policy iterations
V, (%) =% Q% +U; (X )RU, (%) +V, (X,,)

dV; (%.1)
ka+1

1 __
uj+1(Xk) = _E R 1g(xk)T

« Equivalent to an Underlying Problem- DT LQR:

(A+BL;)"P;,;(A+BL;)-P;,; =—Q—-LjRL, DT Lyapunov eq.
L; =—(1+B"P;B)'B'P;A

Hewer proved convergence in 1971



Implementation- DT Policy Iteration

Value Function Approximation (VFA)

V (X) :V{/Tgo(x) approximation error is neglected in the literature
weights basis functions

LQR case- V(X) is quadratic
V(x) =W To(x) = x" Px

! . . .
o= [2%,...,2120,25,.. ., 22@n, ..., 5] . Quadratic basis functions
T
W :[pll P12 ]

Use only the upper triangular basis set to get symmetric P
- Jie Huang 1995

Nonlinear system case- use Neural Network



Implementation- DT Policy Iteration

Value function update for given control
Vi (i) = (X, hy (%)) + V10 (Xei1)
Assume measurements of x, and x,,, are available to compute u,,,

VFA V(%) =W o(x,)

Then regression matrix Since x,,, Is measured,
. — do not need knowledge of f(x)
Wj+1[(0(xk) — 70 (%1)| = T (%, h; (X)) or g(x) for value fn. update

Solve for weights using RLS
or, many trajectories with different initial conditions over a compact set

Then update control using

Need to know f(x,) AND g(x,)

h_ X =L.X, =— I—l—BTPB _1BTP-AX
i () = Ljxie =~( iB) 177K for control update

Model-Based Policy Iteration Robustness??
This gives u,,,(X,,,) —itis OK



Greedy Value Fn. Update- Approximate Dynamic Programming
ADP Method 1 - Heuristic Dynamic Programming (HDP)

Paul Werbos
Policy Iteration

Vﬂ(Xk) — r(Xk’hj (Xk)) + Wﬂ(xkﬂ_)

hj+1(Xk) =dlJ rrlljin(r(xk 1 uk) + 7Vj+1(xk+1))

Lyapunov eq.
For LQR  (A+BLj)"Pjy(A+BLj)—Pj,, =—Q-LjRL, —
Underlying RE L, =—(1+ BT P, B)'B' P; A Hewer 1971

Initial stabilizing control is needed
ADP Greedy Cost Update

Vﬂ(xk) = (X, h; (%)) + 7/Vj_(xk+1)
h;..(x) =arg I’Tlljin(l’(Xk U ) + N (X)) / Simple recursion

For LQR Pi,s =(A+BL;)' P; (A+BL;)+Q+LRL;

Underlying RE Lancaster & Rodman

Ly =—(1+ BT P, B) B’ P, A proved convergence

Initial stabilizing control is NOT needed



DT HDP vs. Receding Horizon Optimal Control

Forward-in-time HDP

R..=A"RA+Q-A"RB(I+B'RB)*B'RA

i+1

P, =0

Backward-in-time optimization — RHC
P=AP_A+Q-A"P_B(1+B'P,B)*B'P, A

PN = Control Lyapunov Function



Q Learning - Action Dependent ADP

Value function recursion for given policy h(x,)

Vi (%) = r(x., h(x,)) + WV, (X.1)

Define Q function .
u, arbitrar
Q.0 ) l) |

policy h(.) used after time k
Note Qy (%, N(x,)) =V, (%)

Recursion for Q Qh (Xk : uk) = F(Xk , Uk) + }'Qh (Xk+1, h(Xk+1))

Simple expression of Bellman’s principle

V(%) = min(Q" (., ,)) n* (%) = argmin(Q"(,, )



Q Function Definition
Specify a control policy u; =h(x;); J=kk+1...

Define Q function .
u, arbitrar
Q.5 )l M) |

policy h(.) used after time k
Note Qp (X, N(x,)) =V, (%)

Recursion for Q Qh (Xk : uk) = F(Xk , Uk) + 7'Qh (Xk+1, h(xk+1))

Optimal Q function Q (X, u ) =r(X,u)+W (X))

Q*(Xk ) uk) = r(Xk ) uk) + 7'Q*(Xk+l’ h*(xk+1))
Optimal control solution

V(%) = Q" (%, (%)) = min(Q, (%, (x,))) h™(x,) = argmin(Q; (X, h(x,))
Simple expression of Bellman’s principle

V(%) = min(Q" (., ,)) n* (%) = argmin(Q"(,, )



Q Function ADP — Action Dependent ADP

Q function for any given control policy h(x,) satisfies the recursion

Q (X Uy ) = (X, Uy ) + 7Qp (X i1s N(X 1))

Recursive solution
Pick stabilizing initial control policy
Find Q function

Qi (X U ) = 1%, U ) + 7Q; (X1, (X))

Update control

hj.. (%) =arg ”Jin(Qjﬂ(Xk Uy))

Bradtke & Barto (1994) proved convergence for LOR



Implementation- DT Q Function Policy lteration

For LOR
Q function update for control u, =L;X, Is given by

Qja (X, U ) =T (X, Uy ) + 7Q 112 (Xieas LX)
Assume measurements of u,, x, and x,,, are available to compute u,,,
QFA — Q Fn. Approximation

Q(x,u) =W "@(X,u)  Now u is an input to the NN- Werbos- Action dependent NN

Then regression matrix
Since x,,, IS measured,
WjT+1 [(P(Xk 1 uk) _ 7/¢(Xk+11 LJ Xk+l)] = r(xk 1 LJ Xk) do not rl;eled know|edge of
f(x) or g(x) for value fn.
Solve for weights using RLS or backprop. update

For LOR case

2 2 !
@(X) = [mls"'1313371)5321"':3322’7”°"Jmn] .



Q Learning does not need to know f(x,) or g(x,)

For LOR V (X) :WT¢(x) — x' Px V is quadratic in x

Qn (X, Uy ) = (X, Uy ) + Vi (X 11)

= X, Qx, +U, Ru, +(Ax, +Bu, )" P(Ax, +Bu,)

— Xk ! Q+ATPA ATPB Xk _ Xk TH Xk _ Xk ! Hxx qu Xk
Uc| | BTPA R+B'PBUc| [Ux] [Uc] |Uc| [Hix Huy | U
Q is quadratic in x and u

Control update is found by 0= S—Q = 2[B"PAX, + (R+B"PB)u,]=2[H X +H U]
Uy

SO U, =—(R+B"PB)"B'PAX, =—HHuX = LjaX,

Control found only from Q function
A and B not needed



Model-free policy iteration
Q Policy Iteration

o — arto

WjT+1 [(D(Xk Ui ) = (X1, L Xk+1)]= r(X, LX)

Control policy update Stable initial control needed

hj+l(Xk) = arg rT;IJEn(QJ{].(Xk ! uk)) uk — _Hu_ulHUXXk — LJ+]_X|(

Greedy Q Fn. Update - Approximate Dynamic Programming
ADP Method 3. Q Learning
Action-Dependent Heuristic Dynamic Programming (ADHDP)

Paul Werbos
Greedy Q Update Model-free ADP

Qj_+1(xk’uk) =Tr(X,,Uy) +7QL(XK+1’ hj (Xk:1))

WjT+1(0(Xk U ) =r(%, LX) +WjT7/§0(Xk+1’ LX) = target;,

Update weights by RLS or backprop.



Q learning actually solves the Riccati Equation
WITHOUT knowing the plant dynamics

Model-free ADP
Direct OPTIMAL ADAPTIVE CONTROL

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?




Asma Al-Tamimi

ADP for Discrete-Time H-infinity Control
Finding Nash Game Equilbrium

 HDP

» DHP

*» AD HDP — Q learning
* AD DHP



Asma Al-Tamimi

ADP for DT H_, Optimal Control Systems

Penalty output

Disturbance
Wy

Zk <— Xk+l = AXk + Buk + EWk

Measured Y |y, =x,,

output

%
Uy Control

%

where 2z, z, =X, QX, +U, U,
Find control u, so that

Z X QX + Uy U,
=0

S W w,
=0

<7/2

u,=Lx,

for all L, disturbances
and a prescribed gain
v?> when the system is

at rest, x,=0.



Asma Al-Tamimi

Two known ways for Discrete-time

H-infinity iterative solution
Policy iteration for game solution

. T 2T
P AR A=Q+LRL - 'KIK, Requires stable
A= A+EK, +BL initial policy
A =A+EK,
A =A+BL
L =-(1+B"PB)'B'PA
K, =7 *(E'RE-7*I)*E'RA,

ADP Greedy iteration | L BTPR RTPE 1 RTP A
P,=A"PA+Q-[A'PB A'PE] o h ! }{ i}

ETPiA ETPiE—yZI ETPiA
Does not
Both require full knowledge of system dynamics require a stable

initial policy



Asma Al-Tamimi DT Game
Heuristic Dynamic Programming:
Forward-in-time Formulation

* An Approximate Dynamic Programming Scheme (ADP) where one has the
following incremental optimization

Vi1 (%) = min max e Qx, +uygu, = wiwi, +V, (x,.,)
which is equivalently written as

Via(X) = XI Qx, + uiT (X )u; (X, ) — 7/2WiT (X )W; (%) +Vi (X 11)



Asma Al-Tamimi
HDP- Linear System Case

V(x,p) = p; X

Value function update Solve by batch LS

piT+17k = XIQXk + (LiXk)T (Lixk)_?/z(KiXk)T (KX, )+ piT Xy 11 or RLS

Control update  G(x,L;) = L{ W(x, K;) = K/ x
L, =(1+B"PB—B'PE(E'PE-»?1)*E"PB)x
T TPE—+2)ETPA—RBT Control gain
(B'PE(ETPE-21)*E'PA-BTPA), g A B. E needed
®

Ki=(E"RE-"1 -E'RB(I+B'RB) "BTRE) " Disturbance gain
(ETPB(1+B"PB)'B"PA-E'PA).
Showed that this is equivalent to iteration on the Underlying Game Riccati equation

P.=ATPA+Q-[ATPB APE]

|+B'PB B'PE | [B"PA
E'TPA  E'PE-»’1| |ETPA

Which is known to converge- Stoorvogel, Basar



Q-Learning for DT H-infinity Control:
Action Dependent Heuristic Dynamic

Asma Al-Tamimi Programmlng

 Dynamic Programming: Backward-in-time
Q" (X» Uy, W) = (X Rx, +uguy — 7w w, +V " (X))
= (u;. ;) = arg{min max Q" (x,, U, W, )}

« Adaptive Dynamic Programming: Forward-in-time

T T 2 T .
Qi+1(xk , uk’Wk) = X RX, +u U, —7 W, w, + min maxQ, (Xk+1’ uk+1’Wk+1)

U1 Wi
T T 20,7
= X« RX +U U =7 W Wy +V (X 1)
= X, RX, +u;u, —*w; w, +V, (Ax, +Bu, +Ew,)

u; (%) = L, W; (X ) = KX,



Linear Quadratic case- V and Q are quadratic
V*(x) =X, Px,

Asma Al-Tamimi

0 (.l W) = T U W) 4V (X, ) Q learning for H-infinity Control

.
T T T T T T
=[xk U, wk}H [xk U, Wk:|

Q function update

Qi (% G (% ), W (%)) = Xy RX + 0 (%) G (%) = 7 W, (%, )" W (%, ) +
Qi (Xk+1’ L,ji (Xk+1)’ V’\\Ii (Xk+1))

T T /T T T 117 T T 2ua,T T T T T T T 17
[Xk uk Wk ]Hi+1[xk uk Wk ] = Xk ka +uk uk —7 Wk Wk +[Xk+1 uk+1 Wk+1]Hi[Xk+1 uk+1 Wk+1]

Control Action and Disturbance updates H, H,, H,,
HUX HUU HUW
U =Lxe wi4)=Kx, Huo Huw Ha,

L = (Hiy — HyyHo T HL) T (Hy Hy, THG, = HL),

. o _ v _ _ A, B, E NOT needed
Ki = (H\;vw_ H\;qulIJu_lHIW)_l(H\INquIJu_lHl:X - HI ) @

u WX



: : : : : Asma Al-Tamimi
Quadratic Basis set is used to allow on-line solution

R _ T = 2 2 2
Q(Z,hi)ZZTHiZZhiTZ where Zz[xT u' WT:| and Z=(Zl,...,leq,zz,2223,...,zq_lzq,zq)

Q function update Quadratic Kronecker basis
Q11 (% Gy (% ) W (%)) = X Rx 05 (%, )" Gy (%) = 772 (%, )T W (%, ) +
Qi (Xk+1' lji (Xk+1)’ V’\\/i (Xk+1))

Solve for ‘NN weights’ - the elements of kernel matrix H

A A A A Use batch LS or
hiTJrlz(Xk) - XI ka +U; (Xk )T U; (Xk) - 7/2Wi (Xk )T W, (Xk) + hiT Z(Xk+1) online RLS

Control and Disturbance Updates

U(x)=Lx  W(x)=K,x

Probing Noise injected to get Persistence of Excitation
Ugi (X)) = L%, +1y, Wy (X, ) = KX, + Ny,

Proof- Still converges to exact result



Asma Al-Tamimi

H-inf Q learning Convergence Proofs

Convergence — H-inf Q learning is equivalent to solving

Q 0 o][A B ET [A B E]
H.,=/0 I 0 |[+/LA LB LE|H|LA LB LE
0 0 -] |[KA KB KE| |KA KB KE|

without knowing the system matrices

The result is a model free Direct Adaptive Controller that
converges to an H-infinity optimal controller

No requirement what so ever on the model plant matrices

Direct H-infinity Adaptive Control



Lemma 1 It:srati_;ng on equations (20). and (34) is equiva-
lent to
4 B E] [4 B E]
H,=G+|L4 LB LE| H,| LA LB LE (33)
KA KB KE |\K.A KB KE|

Lemma 2 The matrices H, ;. L, and K, , can be written

A"P4+R 4'PB A'PE
H._,-| B'P4 B'PB+I B'PE | (36)
E'PA E'PB  E'PE-yII

L.,=(I+B"PB-B RE(E'RE-y' Iy E'RB)" x

; . . r ; (37)
(B'PE(E'PE-y'IN'E'TPA-B P A).
K. . =(ETPE-y'I-E'PB(I+B"PB)y'B"PEY" G8)
(ETBB(I+B"PBY'B"PA-E'PA).
where F, 1s given as
p=[1 I K'H[1 £ KT (39)

Asma Al-Tamimi

Lemma 3: [terating on A, 1s sinular to iterating on F as
P, =APA+R-

r - S -
r r . \I+B'RB B'RE | |B'R4|(0)
[4RB A PRE]| -' - | 5 4id

| E'BA  E'RE-yI| |E'R4]

with F defined as m (39).

Theorem 1: Assume that the linear quadratic zero-sum
game 1s solvable and has a value under the state feedback
information structure. Then, iterating on equation(33) in
Lemma 1. withH, =0. L,=0 and K, =0 converges
with H, —H . where H 15 corresponds fo
Q" (x,.u,,w,)as m (10) and (12) with correspondmg P
solving the GAERE (3).



Compare to Q function for H, Optimal Control Case

Qn (X, Uy ) = (X, Uy ) + Vi (X 11)

= X, Qx, +U, Ru, + (Ax, +Bu, )" P(Ax, +Bu,)
T T T T T
. Xk Q"‘A PA A PB Xk _ Xk H Xk _ Xk Hxx qu Xk
Uy B'PA  R+B'PB U | |Uy U ] (U] [Hux Huu ]l U

H-infinity Game Q function

A"P4+R A'PB A"PE
H.=| B'PA B'PB+I B'PE
E'PA E'PB E'RE-y'I|




Asma Al-Tamimi

ADP for Nonlinear Systems:
Convergence Proof

% HDP



Asma Al-Tamimi Discrete-time Nonlinear
Adaptive Dynamic Programming:

System dynamics
X = f (Xk ) + g(Xk )U(Xk)
V(%)= xQx+u/Ru,

Value function recursion
V(%) =% QX +u Ru +> " X Qx +u Ru,

i=k+1 "1
T T
= X%, QX +Uu, Ru, +V(X,,,)

HDP
u, (x,) =argmin(x, Qx, +u’ Ru+V,(x...))

V.., =min(x, Qx, +u' Ru+V,(x,,,))

= X QX+ (X IRU, (%) +V; (F (%) +9(x)u; (%))



Asma Al-Tamimi

Lemma 1 Let g, be any arbitrary sequence of control
policies, and  w, 1s the policies as in (10). Let ¥, be as in
(11yand A as

Ao dx ) =x0v, +o Ru, + A ix,,). (12)
IFV,=A,=0,then V¥, = A, ¥i.

Lemma 2 Let the sequence {V,] be defined as in(11). If

the system 1s controllable, then there is an upper bound Y
suchthat 0=V =Y wi,

Theorem 1 Define the sequence {V,} as in (11), with
Vo=0. Then {V,} is a nondecreasing sequence in which
.E-PI.-I-.'

the DT HIB, ie. V., =V as i ==,

ix 0= Vix ) Wi, and converge to the value function of

Proof of convergence of DT nonlinear HDP

Flavor of proofs

Proaf: Let V= =0 where V 15 updated as in (11)
and, and <, is updated as

Dy () = 05 O+, Rutgy + (6,000 (1)
with the policies w, as in (10). We will first prove by
induction that <&, (x, )=V, ix, ). Note that

Vix, -, (x)=x Ox, =0

Vix, 1z (x5 )
Assume that Viix, )= & ix ) ¥x, . Since

@, (x, )= x5,0% +u Ru, +D, ix,,,)

Vi

then

Vil ) =i b =Viix, -, (x, 020,
and therefore

P )=V ). (12)
From Lemma 1 V(x, )= &, (x, ) and therfore

Vix)=d(x )=V, (x)

Vi =V, ix,)

(X, ) =x,Ch, +“.TR“£ +Vilx,) .

hence proving that {V,} is a nondecreasing sequence
bounded from above as shown in Lemma 2. Hence
V=V asiow=.



Standard Neural Network VFA for On-Line Implementation

NN for Value - Critic
Vi (%, W) :WvTi¢(Xk)

NN for control action
G; (%, W) =W, o (x,)

HDP Vi, = min(x Qx, +u"Ru+V;(x.,))

= X QX + U/ (% )RU; (%) +V, (F (%) + 9 (XU (X))

u; (x,) =arg min(xl QX + u'Ru +Vi (X.1))

(can use 2-layer NN)

Define target cost function d(B0x )W) = X Q% +0] (X RG, (%) +V; (%)
= XI Qx, + l'jiT (Xk)Rai (Xk) +WvTi ¢(Xk+1)
Explicit equation for cost — use LS for Critic NN update

W,;,, = arg rvuiif{ﬂwvlﬁ(xk) —d (¢(Xk)’WvTi) |2 dx .} ——» Wi = (I¢(Xk)¢(xk )T dX] j¢(xk)dT (¢(Xk)’WvTi 1WuT )dx

Implicit equation for DT control- use gradient descent for action update

W, =argmin

a

A~

[lexk +0" (%, a@)RU(X,, ) +j
Vi(f (%) +a(x)u(x,a))

Q

W

. ui(j+1) =W,

o(x; Qx, +0' R,

i(j) i(]) +Vi(xk+1)

u(j) — &

oW

ui(j)

W, =W,/ - ao (X )(2RG; ;) + g(x)’ MWW )

an+1

Backpropagation- P. Werbos



Issues with Nonlinear ADP

LS solution for Critic NN update Selection of NN Training Set
-1
W, = [ [ (x0T dx] JA(xdT (@) W7 Wi Yl
Q Q

A C——» X2‘

o——» ¥ X
o/>1

G Xl

time
> , lime
Integral over a region of state-space
Approximate using a set of points

Batch LS Recursive Least-Squares RLS

Take sample points along a single trajectory

Set of points over a region vs. points along a trajectory

For Linear systems- these are the same

Conjecture- For Nonlinear systems
They are the same under a persistence of excitation condition
- Exploration



Interesting Fact for HDP for Nonlinear systems

Linear Case hj(x)=L;x =—-(1+B'P;B)™"B'P;Ax,
must know system A and B matrices

NN for control action

l’ji (Xk ’Wui) :Wu-li-a(xk)

Implicit equation for DT control- use gradient descent for action update

T AT ~ 7
o(x, Qx, +ui(j)Rui(j) +V. (%,,1)

aVvui(j)

~

W, =argmin R
Vi( (6) + g (xJu(x, @)

a

{szxk +0" (X, @)RU(X,, ) +]

Q

W, =W,/ - ao (X )(2RU; ;) + g (X, )’ %Ww )
k+1

Note that state internal dynamics f(x,) is NOT needed in nonlinear case since:
1. NN Approximation for action is used

2. X, 1S measured



Draguna Vrabie

ADP for Continuous-Time Systems

*» Policy Iteration
% HDP



Continuous-Time Optimal Control

System ( = i
y X = f(x,u) c.f. DT value recursion,

Cost  V(X()=[r(xu)dt=[(Q)+u"Ru) dt where f(), g() do not appear

Hamiltonian Vi (Xk) = r(xk , h(xk ) + A (Xk+1)
0=V +r(x,u) = (ﬁ) X+r(X,u) = (&j f(x,u)+r(x,u)=H (x,ﬁ,u) V(0)=0
OX OX OX
WAy v Y
Optimal cost 0= T('t')"[r(x’ u) +(&) X] = T(itg{r(x, u) +(&j f(x,u)
Y v
Bellman 0= T(it;][r(x’u)—i_[ax ] X} = T(it;\[r(X,U) +( x J f(x,u)
« B oV~
Optimal control h™(x(t)) =-%R™g’ (x)W

«\ T #\T *
HJB equation OZLdV j f+Q(X)_%£d;/ j gR—lgTddL V(0)=0
X X



Linear system, quadratic cost -

System: x=Ax+Bu
Utility:  r(x,u)=x"Qx+u'Ru;R>0,Q0>0

The costis quadratic Vv (x(t) = [ r(x,u)dz =x' (t)Px(t)
t

Optimal control (state feed-back):
u(t) =—R'B" (X)Px(t) = —Lx(t)

HJB equation is the algebraic Riccati equation (ARE):

0=PA+A'P+Q-PBR'B'P



CT Policy Iteration

bility  r(x,u) =Q(x)+u'Ru
Cost for any given u(t)

.
0= @—Vj f(x,u)+r(x,u)=H (x,%—v,u) Lyapunov equation
X X

lterative solution

» Convergence proved by Saridis 1979 if

Pick stabilizing initial control Lyapunov eq. solved exactly

Find cost o _ _
» Beard & Saridis used complicated Galerkin

oV ! Integrals to solve Lyapunov eq.
0= v f(x,h; (X)) +r(x h;(x))
Vj (0)=0 * Abu Khalaf & Lewis used NN to approx. V for
Update control nonlinear systems and proved convergence

oV :
hj, (X)=-%Rg" (x)a—x‘

Full system dynamics must be known



LOR Policy iteration = Kleinman algorithm

. For a given control policy u=-L,x solve for the cost:
0=A'R +RA +C'C+L RL Lyapunov eq.
A = A-BLy

. Improve policy:

L =RBTA 4

If started with a stabilizing control policy Ly the matrix P
monotonically converges to the unigue positive definite
solution of the Riccati equation.

Every iteration step will return a stabilizing controller.

The system has to be known.
Kleinman 1968



Policy Iteration Solution

Policy iteration

(A-BB'P) P, +P_ (A-BB"P)+PBB'P +Q =0

This is in fact a Newton’s Method

Ric(P)= AP +PA+P—-PBB'P

Then, Policy Iteration is

P, =P —(Ricy ). Ric(P), i=0.L...

i+1

Frechet Derivative

Ric', (P)=(A-BB'P)' P+P(A-BB'P)



Synopsis on Policy Iteration and ADP

Discrete-time

Policy iteration

If x.., IS measured
V' — ,h . " N k+1 ’
i+ (%) = T N5 06) + Vg (Kieaa) do not need knowledge of

= (X, hj (%)) + V[T () + a(x)h; (%] f(x) or g(x)

hj (%) =L;=~(1+B"P;B) "B P;Ax, Need to know f(x,) AND g(x,)
for control update
ADP Greedy cost update

Vj+1(Xk) — r(Xk , hj (Xk )) + Wj (Xk+1)
Continuous-time

Policy iteration

av. ) av. \' Either measure dx/dt
oz(a—xlj X+r(x,hj(x)):(6—ij [F00+g0oh; 091+ 1 h; () or must know f(x), g(x)

h:.1(X)= _}/ R—lgT (x)% Need to know ONLY
a 2 OX g(x) for control update

What is Greedy ADP for CT Systems ??



Draguna Vrabie

Policy Iterations without Lyapunov Equations

« An alternative to using policy iterations with Lyapunov equations is
the following form of policy iterations:

Vj (Xo) — jooo [Q(x) +\W (uj )]dt Measure the cost

.\
uj+1(x):—¢(%R 19 dxj)

* Note that in this case, to solve for the Lyapunov function, you do not
need to know the information about f(x).

Murray, Saeks, and Lendaris



Methods to obtain the solution

= Dynamic programming
* built on Bellman’s optimality principle — alternative
form for CT Systems [Lewis & Syrmos 1995]

(t+At
V7 (x(t)) = min 1 j r(x(z),u(z))dr  + v*(x(t+At))}

u(r)
t<r<t+At &

r(x(z),u(z)) = x" (£)Qx(z) +u' (r)Ru(z)



Draguna Vrabie

Solving for the cost — Our approach

For a given control u=-Lx

t+T

The cost satisfies V (x(t)) = J‘(XTQx+uT Ru)dt + V(x(t+T))

c.f. DT case

f(x) and g(x) do not appear
Vi, (%) = 1%, h(x,)) + WV, (X,1)

LQR case t+T

x(t)" Px(t) = j (X" Ox+u"Ru)dt + x(t +T)T Px(t+T)

Optimal gain is | =R !BTP



Policy Evaluation — Critic update

Let K be any state feedback gain for the
system (1). One can measure the associated

cost over the infinite time horizon

t+T

V(L xt)= | x()" (Q+K' RK)X(r)dz+W (t+T, X(t+T))
t

where W(t+T.x(t+T)) is an initial infinite

horizon cost to go.

What to do about the tail — issues in Receding Horizon Control



Draguna Vrabie Now Greedy ADP can be defined for CT Systems

Solving for the cost — Our approach
CT ADP Greedy iteration

Control policy uX (t) = —L, x(t)

to+T
Cost update Vi (x(t) = | (T Qx+ Uk’ RUK)dt +Vig (x(to + )
t, _
to+T T
LQR x(T,H<+1x0: j (x"Qx + u Ruk)dt+x1TF1<x1

[

Control gain update A and B do not appear

1T
Ly =R "B Ry B needed for control update

Implement using quadratic basis set
t+T
Pia XM= [x@)7 (Q+RBR™BTR)X(@)dz+ 7 X(t+T)
t

u(t+T) in terms of x(t+T) - OK * No initial stabilizing control needed

Direct Optimal Adaptive Control for Partially Unknown CT Systems



Algorithm Implementation

: : . T
Measure cost increment by adding V as a state. Then V = X' Qx + uk’ RuX

The Critic U[:r)date

t+
X' (t)PLax()= [ X" (2)(Q+K; RKy)x(x)dr+x" (t+T)Rx(t+T)
t

can be setup as Quadratic basis set
t+T

Pia' X()= [ x(0)" (Q+K;' RK)x(r)dz+ P X(t+T)=d (X(t), K;)
t
Evaluating d(x(t).K;) for n(n+1)/2 trajectory points,
one can setup a least squares problem to solve
= Ty\-1
Pia=(XXT) XY k) %2 .. XN O]
Y=[d(x}, K:) d(x?,K) .. dxN,K)]

Or use recursive Least-Squares along the trajectory



Direct Optimal Adaptive Controller

7
LACEV u, System X

X=Ax+BU %

A

V=X Qx+U'R
Y
ZOH T A1

T Critic

T

v

A hybrid continuous/discrete dynamic controller
whose internal state is the observed value over the interval



Draguna Vrabie

Analysis of the algorithm

= L X with L, =RB'R

For a given control policy U
X = Ax+ Bu; x(0)

X = eAktx(O) A =A-BRTB'R

Greedy update V, ,(x(t)) = LHT{XTQXJruiT Ru; fdz+V,(x(t+T)), V, =0 is equivalent to

to+T
T T
Pea= [eM' Q@+ LT RL M dt+e™ TR eA T
t

\/ a strange pseudo-discretized RE

c.f. DT RE

P.,=A"PA+Q-ATRB(P +B"PB) B'PA
P.,=APA +Q+L (P +B"PBIL,



Draguna Vrabie

Analysis of the algorithm

Lemma 1. The ADP iteration between (13) and (14) 1s
equivalent to the Quasi-Newton method

. 4 T ™y
By =B —(Ricg)™| Ric(B) - ™" Ric(B)e™ | (19)
b g ) A
Y . .
This extra term means the initial
Lemma 2. CT HDP is equivalent to Control action need not be stabilizing

y
PP =[e"(RA+AP +Q-LRL)eMdt A =A-BRB'R
0

| N

When ADP converges, the resulting P satisfies the Continuous-Time ARE !!

Lemma 3. Let the ADP algorithm converge so that
Pi— P  Then P satisfies Rff‘[:P*:l —0.1e. P is the solution
the continuous-time ARE.

ADP solves the CT ARE without knowledge of the system dynamics f(x)



Solve the Riccati Equation
WITHOUT knowing the plant dynamics

Model-free ADP
Direct OPTIMAL ADAPTIVE CONTROL

Works for Nonlinear Systems

Proofs?
Robustness?
Comparison with adaptive control methods?




Gain update (Policy)

Lk A
o 1 N 4 5 kK
Control
u“(t) = —L, x(t)
—_ /\/
e N

Sample periods need not be the same

Continuous-time control with discrete gain updates



Neurobiology

Higher Central Control of Afferent Input

Descending tracts from the brain influence not only motor neurons but
also the gamma-neurons which regulate sensitivity of the muscle spindle.

Central control of end-organ sensitivity has been demonstrated.

Many brain structures exert control of the first synapse in ascending
systems.

Role of cerebello rubrospinal cortex and Purkinje Cells?

T.C. Rugh and H.D. Patton, Physiology and Biophysics, p. 213, 497,Saunders,
London, 1966.



Cerebral Cortex operates at:
alpha waves 8-12 Hz — thalamus

activity of the visual cortex in an idle state

theta waves 4-8 Hz

Integration of sensory information with motor output

Muscular system operates at 200 Hz



Small Time-Step Approximate Tuning for Continuous-Time Adaptive Critics

; Vi, -V V..-V. r°(x,u
H 062 1) =V (0 + 1) = Y (& e Ve TG0
OX At At At

re (Xt : ut) +V (Xt+1) _V*(Xt)
At

Ai*(xt’ut):

Baird’s Advantage function

Advantage learning is a sort of first-order approximation to our method



Results comparing the performances
of DT-ADHDP and CT-HDP

Submitted to IJCNN’07 Conference

Asma Al-Tamimi and Draguna Vrabie



System, cost function, optimal solution

System — power plant

Xx=Ax+Bu xeR" ueR"

(-0.665 8 0 0

0 -3663 3.663 0
A=l 686 0 1373 _13.736
6 0 0 0

B'=[0 0 13.736 O]

CARE:
ATP+PA-PBRIB'P+Q=0

CARE

Cost
V7 (%) = min [ (x"Qx+u' Ru)dz
0

Wang, Y., R. Zhou, C. Wen -

[ 0.4750
0.4766
0.0601

 0.4751

u(t)
Q=I,;R=1,

1993

0.4766
0.7831
0.1237
0.3829

0.0601
0.1237
0.0513
0.0298

0.4751
0.3829
0.0298
2.3370




CT HDP results

2.5

1.5+

0.57

-0.5

P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

—_.—.—O—C—CO'L
"
-*
‘ el . P@,1)
Rq ——P(1,3)
’0/ rrrnaguann P(2,4)
/ === P(4,4)
',.
4
g
4
,. Leessccecce o o:::::::::::::::::::::::
/! ."-c-c"'.".
] .0
'WWH—WHW
10 20 30 40 50 60
Time (s)
Convergence of the P matrix parameters
for CT HDP

P =
CT-HDP 1 0.0602 0.1238 0.0513 0.0302

V7 (%) =min [ (X" Qcr X +U" Reru)dz

u(t) 0

The state measurements were
taken at each 0.1s time
period.

A cost function update was
performed at each 1.5s.

For the 60s duration of the
simulation a number of 40
iterations (control policy
updates) were performed.

(0.4753 0.4771 0.0602 0.4770
0.4771 0.7838 0.1238 0.3852

10.4770 0.3852 0.0302 2.3462



DT ADHDP results

P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

2.5

Continuous-time used only 40 iterations!

Convergence of the P matrix parameters

—Pay| |
Vall — P(1,3)
.......... P(2,4) |
— - P(4,4)
0 10 20 30 40 50 60

Time (s)

for DT ADHDP 5

voo=p
te] Kk,

The discrete version was obtained by discretizing the continuous time
model using zero-order hold method with the sample time T=0.01s.

N 2 [ Qe T +ul (Rey Tl |

The state measurements were
taken at each 0.01s time
period.

A cost function update was
performed at each .15s.

For the 60s duration of the
simulation a number of|400

Iterations (control policy
updates) were performed.

DT -ADHDP

0.4802
0.4768
0.0603

 0.4754

0.4768
0.7887
0.1239
0.3843

0.0603
0.1239
0.0567
0.0300

0.4754 |
0.3834
0.0300
2.3433




Comparison of CT and DT ADP

. CTHDP

— Partially model free (the system A matrix is not
required to be known)

« DT ADHDP - Q learning
— Completely model free

The DT ADHP algorithm is computationally more
Intensive than the CT HDP since it is using a smaller
sampling period



Neural Network
Control of Robot
Manipulators
and Nonlinear
Systems

F. L. Lewis, S. Jagannathan
and A. Yesildirek

4 US Patents

World Scientific Series in Robotics and Intelligent Systems — Vol. 21

High-Level Feedback
Control with
Neural Networks

World Scientific

Murad Abu-Khalaf AIC
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