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Cooperative behavior among selfish individuals




Evolutionary games

m Prisoner’s dilemma game (PDG)
m Snowdrift game (SG)
m Repeated games on lattices

Evolutionary games on complex networks

m Complex networks
m Review of games on complex networks

m Our works
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Introduction of PD and SG game
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Rescaled Payoff Matrix

Prisoner’s Dilemma Snowdrift Game
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Review of some fundamental works

LETTERS TO NATURE Prisoner’s dilemma game

Evolutionary games and
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Model rules

m Each pair of connected individuals play the
game simultaneously.

m Each node will be occupied by the highest-
score individual among its neighbors and
itself.

m Repeat above steps.



Results of evolutionary patterns

FIG. 1 The spatial Prisoners' Ditemma can generate a large variety of
qualitatively different patterns, depending on the magnitude of the para-
meter, &, which represents the advantage for defectors. This figure shows
two examples, Both simulations are performed on a 200 = 200 sguare lattice
with fived boundary conditions, and start with the same random initial
configuration with 10% defectors (and 90% cooperators), The asymptotic
pattern after 200 generations s shown. The colour coding is as follows:
bive represents a cooperator (C) that was already a C in the preceding
generatiom; red is a defector (D) following a D; yellow a D following a C;
green a G following a D, a Anirregular, but static pattern {mainly of interlaced

networks) emerges if 1.75 < b < 1.8 The equilisrium frequency of C depends
on the initial conditions, but Is usually between 0.7 and 0.95. For lower &
values (provided b =3, D persists as line fragments less connected than
shown here, or as scattered small oscillators {'D-blinkers'). b, Spatial chaos
characterizes the region 1.8-< b <=2 The large proportion of yellow and
green indicates many changes from one generation to the next Here, as
outlined in the text, 2 %2 or bigger C clusters can invade D regions, and
vice versa, C and D coexist indefinitely in a chaotically shifting balance, with
the frequency of C being (almost) completely independent of the initial
conditions at ~0.318.
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Spatial patterns from specific initial state:
a central defector in the cooperator sea

a
|

im
L]
1]
e

g pr

I
i 'Jr -LE' =
fm e

Cic
£t
E‘L
[¥u
i o

r .. 'lnl’_‘r[]
i

L _.F_:E:l

0o o

L

C
C
C
C31
C1
(W
C
o

[0
of

[~
FIG. 3 Spatial games can generate an ‘evolutionary kaleidoscope'. This always maintained, because the ruies of the game are symmetrical, The
simulation is started with a single D at the centre of a 99 = 99 square-lattice frequency of C oscillates (chaotically) around a time average of 12 log 2-8
world of C with fixed boundary conditions, Again 1.8 < b < 2. This generates lof course). & Generation £=30; b, {=21T, ¢ (=219, d =221

an {almost) infinite sequence of different patterns. The initial symmetry is
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letters to nature

Spatial structure often inhibits
the evolution of cooperation
in the snowdrift game

Christoph Havert & Michael Doebeli

Departenents of Zoology and Mathematics, University of British Colwsnliia,
6270 University Boulevard, Vancowver, British Columbia VT 124, Canada
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Figure 1. Four lattice configurations (top row) and the corresponding schemes used for the pair approximation with focal sites A
and B (bottom row). These schemes are used to determine changes in the pair configuration probabilities pa s— 5 5. @ square
lattice with W = 4 neighbours, b triangular lattice (V¥ = 3), ¢ hexagonal lattice (N = 6) and d square lattice (V¥ = 8). Note that on
hexagonal and square (N = 8) lattices, the edges from A and B fo their common neighbours are considered to be independent,

i.e., all corrections arising from loops are neglected.
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Figure 2 Snapzhots of equilibrium configurations of cooperators (black) and defectars
[whita) in the gpatial Frizoner's Dilemma and spatial snowdnft gamea on a square |attics
with N = 4 naighbours naar the axtinction threshald of cooperatars. a, Inthe Prizonar's
Dilermma, cooparators sundva by forming compact clugtars (F=1, T= 1.07,

5= ~0.07, P=10). b, In the corresponding snowdrift game, cooparators are spread
out, forming many amall and isolated patches (r= 0.62; that s, R=1, T= 162,
5=10.38, P=10). This rault alzo holds for other lattice structuras (not ghown).

¢, Microzcopic pattam formation in the spatial znowdnift game. An izolatad cooperator can
grow into a ow of cooperators and then form cmoes-lika stnictures; howsver, cooparators
cannat expand to compact clusters bacause tha payoff structure pmtacts the defactors in
the cornars, Eventually, cooperators farm & dandntic skaleton. Occasionally, dendrites
braak off to form new zeads.



ComPIex networks
Definitions

m Degree: the number of neighbors of a node.

1
ST

1]

m Average distance:

m Clustering coefficient: density of triangular structures

1
C(k)=———— ) c,C = a .a ., a.
( ) NP(k)i/ki:kl kl(kl_l)z ) 1,h =N

1)
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Common properties of complex networks
m Small-world property

1 Short average distance
2 High clustering coefficient

m Scale-free property i |
Power-law degree distribution LR

Real networks R R

m Small-world networks Barabasi-Albert model
Many collaboration networks, power grid networks, train
networks...

m Scale-free networks

The Internet, WWW, airport networks, citation networks, protein-
protein interaction networks, brain function networks...



N
EGames on comp‘ex networks

PHYSICAL REVIEW E 69. 036107 (2004)

Gvyorgy Szabo and Jeromos Vukov

Cooperation for volunteering and partially random partnerships

Research Insititute for Technical Physics and Materials Science, PO. Box 49, H-1525 Budapesi, Hungary

Public goods game
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Updating rule

-

1

Individual X randomly selects a neighbor
Y, then calculates the probability W

W T expl (M= M7 KT

(Fecetved 3 July 2003; published 19 March 2004)

Small-world networks
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Adding links

R

Rewiring links
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FIG. 2. Trajectories on temary diagram if the system 1s started
from a random imitial state for 5=1.5. The solid line shows the
system where all the coplayers are chosen randomly (P=1 or
mean-field Imut). Evolution on the square lattice (P=0=0) 1s
illustrated by the dotted line. For a weak annealed (P=0.03) or
quenched {@=0.03) randomness the system tends toward a It
cycle indicated by the dashed and dash-dotted lines.

FIG. 3. A typical snapshot on the distribution of the three strat-
egies on a square lattice for 5=1.5. The different gray scales of
xd at the top.

. defector

O cooperator

. loner

FIG. 4 Typical subsequent pafterns cccurring along the limit
cycles shown in Fig. 2. These snapshots are small parts (4040
sites) of a larger “homogeneous™ phase.
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Scale-Free Networks Provide a Unifying Framework for the Emergence of Cooperation

F.C. Santos' and J. M. Pacheco™!
VGADGET, Apartade 1329, [009-00] Lisboa, Portugal
*Centro de Fisica Tedrica e C omputacional and Departamento de Fisica da Faculdade de Ciéncias,

P-1649-003 Lishoa Codex, Portugal
(Received 23 November 2004; published 26 August 20035)
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Our works on evolutionary games

m Effects of average degree on cooperation in
networked evolutionary game

m Memory-based snowdrift on networks

m Randomness enhances cooperation: a
resonance type phenomenon in evolutionary
games



Eur. Phys. 1. B 53, 411-415 {2006
DOI: 10.1140/epjb /e2006-00305-2
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Effects of average degree on cooperation in networked

evolutionary game

C.-L. Tang, W.-X. Wang®, X. Wu, and B.-H. Wang"

Department of Modern Physics and Nonlinear Science Center, University of Science and Technology of China,

Hefei, 230026, P.R. China

Scale-free networks

Small-world networks
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Random networks

There exist optimal values of <k>, leading to the highest cooperation level
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Memory-based snowdrift game on networks

Wen-Xu "in“w"ang,l'2 Jie Ren,E Guanrong Chen,l‘:r and Bing-Hong "il-‘inr"ﬂllg2

Then each player records
the best strategy in his
limited memory.

history

\

M bits /
/

(1) Probability strategy (2) Determined strategy
C : 4/6

 Now! Now! c

D : 2/6

| am a defector , my payoff this round is #8287 §,
but if | was a cooperator, what is my payoff 777
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Cooperation on lattices W|th 4 and 8 nelghbors
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Spatial patterns on lattices with 4 neighbors

For the first two cooperation levels
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Spatial patterns on lattices with 8 neighbors

For the third and fourth cooperation levels
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Osclllation of cooperation

In the case of M=1 (memory lenght)
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Cooperation on scale-free networks
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Strategy occupation distribution for scale-free networks

r=0.2 r=0.49
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Generalize memory-based snowdrift game to
public goods game

Payoff Matrix

C: cooperator lX\Y D|C|L
D: defector | |
L: loner | D |0\0|b\c|o\o

- C |c\b|1\l|o\o
| L Jo\ojo\olo\o]




Phase diagram for the memory-based public goods game
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Sigma=0.9, r=0.15,M=7

Sigma=0.6, r=0.45,M=7
Sigma=0.7, r=035,M=5

Sigma=0.85, r=0.15,M=5
Sigma=0.9, r=0.1,M=11
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Randomness enhances cooperation:
a resonance type phenomenon in evolutionary games

Jie Ren', Wen-Xu Wang?. and Feng Qi®*
! Department of Physics, University of Fribourg, CH-1700, Fribourg, Switzerland
2 Department of Electronie Engineering, City University of Hong Kong, Hong Kong SAR, China
3 Biotechnology and Bioengineering Center and Department of Physiology,
Medical College of Wiseonsin, Milwaukee, Wisconsin 53226, USA
(Dated: January 19, 2007)

m Topological and dynamical randomness
m A resonance type phenomenon
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Topological randomness P

(a) (b)

FIG. 1: {a) Hlustration of a regular ring graph with connectiv-
ity z = 4. Two edges are chosen and marked by thick lines.
(b) Swap the ends of the two chosen edges. The swapped
edges are marked by thick lines.

Dynamical randomness T

1
~ 1+ exp[(M, — M,)/T]’

_?'
W 85— 8y

where T characterizes the stochastic uncertainties, in-
cluding errors in decision, individual trials, etc. T=0
denotes the complete rationality, where the individual
always adopts the best strategy determinately.



Cooperation depends on parameters b and P
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b: parameter in payoff matrix of the prisoner’s dilemma game
P: the probability of swapping links
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Cooperation depends on both topological and
dynamical randomness

The existence of the optimal island resembles a resonance type phenomenon.



More Information can be seen In
http://www.univie.ac.at/virtuallabs/

Future works

m The spreading pattern of the cooperative
action

m Evolutionary games on weighted adaptive
networks

m Apply game theory to other dynamics

m Study the strategy evolution by using
series analysis



" S
Recent publications

-X. Wang, B.-H. Wang, B. Hu, G. Yan, and Q. Ou, Phys. Rev. Lett. 94,188702 (2005).
-X. Wang, B. hu, T. Zhou, B.-H. Wang, and Y.-B. Xie, Phys. Rev. E 72,046140 (2005).
hao, T. Zhou, B.-H. Wang, and W .-X. Wang, Phys. Rev. E 72, 057102 (2005).
ang, B.-H. Wang, W.-C. Zheng, et al., Phys. Rev. E 72, 066702 (2005).
ang, B. Hu, B.-H. Wang, and G. Yan, Phys. Rev. E 73, 016133 (2006).
ang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou, Phys. Rev. E 73, 026111 (2006).
Yin, W.-X. Wang, G. Chen, and B.-H. Wang, Phys. Rev. E 74, 047102 (2006).
ang, J. Ren, G. Chen, and B.-H. Wang, Phys. Rev. E 74, 056113 (2006).
ang, C.-Y.Yin, G. Yan, and B.-H. Wang, Phys. Rev. E 74, 016101 (2006).
u, W.-X. Wang, R. Jiang, Q.-S. Wu, Y.-H. Wu, Phys. Rev. E 75, 036102 (2007).
.-B.Xie, W.-X. Wang, and B.-H.Wang, Phys. Rev. E 75, 026111 (2007).
. Yan, Z.-Q. Fu, J. Ren, and W.-X. Wang, Phys. Rev. E 75, 016108 (2007).

~X.
-Y.

$x0zzzE=x
sssi

VA
=X,
=X,
=X,
-Y.

X.
X.
L.
L.

EE

I

N

-B.
.Ren Wang, and F. Qi, Phys. Rev. E (2007 In press).

Tang, B.-Y. Lin, W.-X. Wang, M.-B. Hu, and B.-H. Wang, Phys. Rev. E 75, 027101 (2007).
Yin, B.-H. Wang, W.-X. Wang, G. Yan, H.-j. Yang, Eur. Phys. J. B 49, 205 (2006).

Tang, W.-X. Wang, X. Wu, B.-H.Wang, Eur. Phys. J. B 53, 411 (2006).

-B. Hu, W.X.Wang, R. Jiang, Q.-S. Wu, B.-H. Wang, and Y.-H. Wu, Eur. Phys. J. B 53, 273
(2006).

Thanks for your attention

200020 =<Z
=



