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1. Introduction

A general discrete system

xn+1 = f (xn), n ≥ 0,

wheref : D ⊂ X → X is a map and(X, d) is a metric space.

Orbit: x0, x1 = f (x0), x2 = f (x1), . . .

What is chaos?

♦ No general definition of chaos

Li and Yorke [1975], Devaney [1987], Wiggins [1990]

http://www.river-valley.com
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1. Li-Yorke chaos

The system has anuncountable scrambled set.

Scrambled set:

Let S ⊂ D, containing at least two distinct points. Then,S is

called a scrambled set if∀ x0, y0 ∈ S, x0 6= y0,

(i) lim infn→∞ d(xn, yn) = 0;

(ii) lim supn→∞ d(xn, yn) > 0.

http://www.river-valley.com
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2. Devaney chaos[1987]:

f : V ⊂ D → V satisfies

(i) dense periodic points inV ;

(ii) topologically transitive inV ;

(iii) sensitive dependence on initial conditions inV .

3. Wiggins chaos[1990]: (ii) + (iii)

http://www.river-valley.com
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Relationships: they are not equivalent in general.

1. Devaney chaos=⇒ Wiggins chaos.

2. LetV be a compact set ofX, containing infinitely many points,

and letf : V → V be continuous and surjective.

(i) Devaney chaos=⇒ Li-Yorke chaos.

(ii) Wiggins chaos + one periodic point inV =⇒ Li-Yorke chaos.

3. The converses are not true in general.

http://www.river-valley.com
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How to determine whether a given system is chaotic?

1. One-dimensional systems: periodk 6= 2n, positive entropy,

turbulence

2. Higher-dimensional systems: snap-back repeller

3. Infinite-dimensional systems?

http://www.river-valley.com
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2. Concept of coupled-expanding map

Block LS and Coppel WA[1992] Lecture Notes in Mathematics,

Vol.1513.

A C0 map f : I → I is said to beturbulent if ∃ closed and

bounded subintervalsJ andK, with at most one common point,

s.t.

f (J) ⊃ J ∪K, f (K) ⊃ J ∪K.

Further, it is said to bestrictly turbulentif J ∩K = φ.

* J andK are compact and connected.

http://www.river-valley.com
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♦ A turbulent mapf is chaotic in the sense of Li-Yorke.

Example 1.The logistic map:f (x) = µx(1− x), µ ≥ 4.

Example 2.The tent map

http://www.river-valley.com
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Extended to maps in metric spaces, 2005.

“Turbulent map”=⇒ “Coupled-expanding map”

DEFINITION f : D ⊂ X → X.

Assume that∃m (≥ 2) subsetsVi ⊂ D, 1 ≤ i ≤ m, s.t.

Vi ∩ Vj = ∂DVi ∩ ∂DVj, 1 ≤ i 6= j ≤ m

f (Vi) ⊃
m⋃

j=1

Vj, 1 ≤ i ≤ m.

Thenf is said to becoupled-expandingin Vi, 1 ≤ i ≤ m.

Strictly coupled-expanding: d(Vi, Vj) > 0 for all 1 ≤ i 6= j ≤ m.

coupled-expanding— CE

strictly coupled-expanding— SCE

http://www.river-valley.com
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DEFINITION [Shi, Ju and Chen, 2006]

Let f : D ⊂ X → X andA = ((A)ij) be anm × m transitive

matrix (m ≥ 2). Assume that∃m subsetsVi ⊂ D s.t.

Vi ∩ Vj = ∂DVi ∩ ∂DVj, 1 ≤ i 6= j ≤ m,

f (Vi) ⊃
⋃

j

(A)ij=1

Vj, 1 ≤ i ≤ m

Thenf is said to beCE for matrixA in Vi, 1 ≤ i ≤ m.

SCE for matrixA: d(Vi, Vj) > 0 for all 1 ≤ i 6= j ≤ m.

* A transitive matrixA = ((A)ij)m×m (m ≥ 2)

(A)ij = 0 or 1 for all i, j;∑m
j=1(A)ij ≥ 1 for all i;

∑m
i=1(A)ij ≥ 1 for all j.

http://www.river-valley.com
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3. SCE maps and subshifts of finite type
3.1. One-sided symbolic dynamical systems

S := {1, 2, . . . ,m}, m ≥ 2,∑+

m
:= {α = (a0, a1, a2, . . .) : ai ∈ S, i ≥ 0}

ρ(α, β) :=

∞∑
i=0

d(ai, bi)

2i
,

d(ai, bi) := 0 if ai = bi,

d(ai, bi) := 1 if ai 6= bi,

whereα = (a0, a1, a2, . . .) andβ = (b0, b1, b2, . . .).

♦ (
∑+

m, ρ) is a complete metric space and a Cantor set(compact,

perfect, and totally disconnected).

http://www.river-valley.com
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The shift map

σ :
∑+

m
→

∑+

m
, σ(a0, a1, a2, . . .) = (a1, a2, a3, . . .).

(
∑+

m, σ) is called the one-sided symbolic dynamical system onm

symbols.

It is chaotic in the sense of both Devaney and Li-Yorke.

http://www.river-valley.com
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3.2 Subshift of finite type

Let A be anm×m transitive matrix.∑+

m
(A) := {α = (a0, a1, . . .) ∈

∑+

m
: (A)aiai+1 = 1, i ≥ 0}

is a compact invariant set underσ.

The subshift of finite type

σA := σ|∑+
m(A) :

∑+

m
(A) →

∑+

m
(A).

Q: Under what conditions the subshifts are chaotic in the sense of

Li-Yorke or Devaney?

http://www.river-valley.com
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THEOREM[Shi, Ju and Chen, 2006]

Assume thatA is irreducible. Then the following statements are

equivalent:

(i) σA is chaotic in the sense of Devaney on the infinite set
∑+

m(A);

(ii) σA is chaotic in the sense of Li-Yorke;

(iii)
∑+

m(A) is infinite;

(iv)
∑+

m(A) is a Cantor set;

(v)
∑m

j=1(A)i0j ≥ 2 for somei0;

(vi)
∑m

i=1(A)ij0 ≥ 2 for somej0.

* Irreducible transitive matrix: ∀ (i, j), 1 ≤ i, j ≤ m, ∃ k ≥ 1 s.t.

(Ak)ij > 0.

http://www.river-valley.com
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3.3. Relationships

THEOREM [Shi, Ju and Chen, 2006] f : D ⊂ X → X is C0.

f is topologically conjugate toσA

if and only if

∃m disjoint compactsubsetsVi ⊂ D, 1 ≤ i ≤ m, s.t.

(i) f is SCE forA in Vi, 1 ≤ i ≤ m;

(ii) ∀α = (a0, a1, . . .) ∈
∑+

m(A),

∞⋂
n=0

f−n(Van
)

is a singleton.

http://www.river-valley.com
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THEOREM [Shi, Ju and Chen, 2006] f : D ⊂ X → X.

Assume that∃ m(≥ 2) nonemptybounded and closedsubsets

Vi ⊂ D with d(Vi, Vj) > 0 s.t.f is C0 in
⋃m

i=1 Vi and satisfies

(i) f is SCE for someA in Vi, 1 ≤ i ≤ m;

(ii) ∀α = (a0, a1, . . .) ∈
∑+

m(A),

d(

n⋂
i=0

f−i(Vai
)) → 0 as n →∞.

Thenf in some invariant setV ⊂
⋃m

i=1 Vi is topologically conju-

gate toσA.

http://www.river-valley.com
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4. Chaos induced by coupled-expanding maps

4.1. SCE maps in compact sets

4.2. SCE maps in bounded and closed sets

http://www.river-valley.com


Home Page

Title Page

JJ II

J I

Page 19 of 35

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4.1. SCE maps in compact sets

THEOREM [Shi and Chen, 2004]

Let Vj, 1 ≤ j ≤ m, be disjoint compactsets ofX, andf :⋃m
j=1 Vj → X beC0. If

(i) f is SCEin Vj, 1 ≤ j ≤ m;

(ii) ∃ λ > 1 s.t.

d(f (x), f(y)) ≥ λ d(x, y), ∀ x, y ∈ Vj, 1 ≤ j ≤ m;

then∃ a Cantor setΛ ⊂
⋃m

j=1 Vj s.t. f : Λ → Λ is topologically

conjugate toσ :
∑+

m →
∑+

m.

=⇒ Chaotic onΛ in the sense ofDevaneyas well asLi-Yorke.

http://www.river-valley.com
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THEOREM [Shi and Yu, 2005]

If f satisfies (i) and

(ii ′) ∃ a j0, andλ > 1 s.t.

d(f (x), f(y)) ≥ λ d(x, y) ∀x, y ∈ Vj0;

andf is injectivein the other setsVj, j 6= j0;

thenf is chaotic in the sense of both Wiggins and Li-Yorkeon a

perfect and compact invariant set.

http://www.river-valley.com
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THEOREM [Shi, Ju and Chen, 2006]

Assume that∃ an m × m irreducible transitive matrixA with∑m
j=1(A)i0j ≥ 2 for somei0; m disjoint compactsubsetsVi of

D, 1 ≤ i ≤ m, andf is C0 in
⋃m

i=1 Vi.

If f satisfies that

(i′) f is SCE forA in Vi, 1 ≤ i ≤ m;

(ii) ∃ λ > 1 s.t.

d(f (x), f(y)) ≥ λ d(x, y) ∀ x, y ∈ Vi, 1 ≤ i ≤ m.

Then,f in a Cantor setV is topologically conjugate toσA.

=⇒ f is chaotic onV in the sense ofDevaney as well as Li-Yorke.

http://www.river-valley.com
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4.2. SCE maps in bounded and closed sets

In the following,(X, d) is acomplete metric space.

THEOREM [Shi and Chen, 2004] Let Vj ⊂ X, 1 ≤ j ≤ m,

be bounded and closedsubsets ofX with d(Vi, Vj) > 0, andf :⋃m
i=1 Vi → X beC0. If

(i) f is SCEin Vj, 1 ≤ j ≤ m;

(ii) ∃ µ ≥ λ > 1 s.t.

λ d(x, y) ≤ d(f (x), f(y)) ≤ µ d(x, y) ∀ x, y ∈ Vj, 1 ≤ j ≤ m;

then∃ a Cantor setΛ ⊂
⋃m

i=1 Vi s.t. f : Λ → Λ is topologically

conjugate toσ :
∑+

m →
∑+

m .

=⇒ f is chaotic onΛ in the sense ofDevaneyas well asLi-Yorke.

* Similarly, these two conditions can be weakened as we have

done before.
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5. Some applications
1. Anti-control of chaos (or chaotification)

The original system

xn+1 = f (xn), n ≥ 0.

Objective:Design a control input sequence{un} s.t.

xn+1 = f (xn) + un, n ≥ 0

is chaotic.

un = µ g(xn) or un = g(µ xn).

* Shi Y and Chen G[2005] Int J Bifur Chaos, 15, 547–556. (Rn)

* Lu J [2005] Chinese Physics 14, 1082-1087; 1342-1346. (Rn)

* Shi Y, Yu P and Chen G[2006] Int J Bifur Chaos, 16, 2615-2636.

(Banach spaces)

http://www.river-valley.com
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2. Snap-back repeller theory

Marotto FR[1978] J. Math. Anal. Appl. 63, 199-223.

f : Rn → Rn is C1, f (z) = z.

A snap-back repeller implies Li-Yorke chaos.

http://www.river-valley.com
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Recent developments:

(1) The concept is extended to maps in metric spaces in 2004:

Regular and singular; nondegenerate and degenerate.

* In the Marotto paper, a snap-back repeller is regular and nonde-

generate.

(2) C1 maps inRn:

• Improvement of the Marotto theorem:

A snap-back repeller in the Marotto paper implies Devaney chaos

as well as Li-Yorke chaos.

• The assumptions of the Marotto theorem were weakened:

A regular snap-back repeller implies Li-Yorke chaos.

(3) Snap-back repellers in Banach spaces and in general complete

metric spaces.

http://www.river-valley.com
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3. Partial difference equations [Y Shi, 2006]

4. Time-varying discrete systems [Y Shi and G Chen, 2005]

5. PDEs, FDEs?

http://www.river-valley.com
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6. Examples with simulations

Example 1.

The origin is aregular and nondegenerate snap-back repeller.

=⇒ f is chaotic in the sense of both Devaney and Li-Yorke.

http://www.river-valley.com
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Figure 1a: Simulation result in the(x, y) space in the rectangular

box [−8, 8]× [−8, 8].
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Figure 1b: Simulation result in the(x, y) space in the rectangular

box [−4, 4]× [−4, 4].
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Figure 1c: Simulation result in the(x, y) space in the rectangular

box [−1, 1]× [−1, 1].
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Example 2.

The origin is aregular and degenerate snap-back repeller.

=⇒ f is chaotic in the sense of both Wiggins and Li-Yorke.

http://www.river-valley.com
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Figure 2a. Simulation result in the rectangular box[−8, 8]× [−8, 8]
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Figure 2b. Zoom area of the rectangular box[−4, 4]× [−4, 4]
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Thanks for your attention!
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DEFINITION [Shi and Chen, 2004] f : X → X, f (z) = z.

Expanding fixed point(EFP):∃λ > 1 s.t.

d(f (x), f(y)) ≥ λ d(x, y), ∀ x, y ∈ B̄r(z).

Snap-back repeller(SBR):z is an EFP inB̄r(z).

∃ x0 ∈ Br(z), x0 6= z, s.t.fm(x0) = z for somem ≥ 2.

Nondegenerate SBR: ∃ µ > 0 s.t.

d(fm(x), fm(y)) ≥ µ d(x, y), ∀x, y ∈ B̄r0(x0) ⊂ B̄r(z).

Regular SBR: f (Br(z)) is open, and∃ δ0 > 0 s.t. z is an interior

point offm(Bδ(x0)) for anyδ ≤ δ0.

* In the Marotto paper, a SBR is regular and nondegenerate.
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