Integrating Compression and Encryption based on Chaos Theory

Kwok-Wo Wong

Department of Electronic Engineering

City University of Hong Kong

Content

- Background
- Existing Approaches for Integrating Compression and Encryption
- Compression + Encryption using Chaos
- Conclusions

Content

- Background
 - Cryptographic Standards
 - Compression + Encryption
- Existing Approaches for Integrating Compression and Encryption
- Compression + Encryption using Chaos
- Conclusions

Cryptographic Standards

• Private Key (Symmetric Key) Cryptography

- Block Ciphers
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)

Cryptographic Standards

• Ciphertext length = Plaintext length

	Plaintext Block Length	Ciphertext Block Length
DES	64 bits	64 bits
AES	128 bits	128 bits

- No compression
- Not suitable for the direct encryption of bulk multimedia data (image / video)
- Need [Compression + Encryption]

Compression First

• Example:

Original Image

Encrypted image by Advanced Encryption Standard (AES) running in the electronic code book (ECB) mode

Encryption First

Content

- Background
- Existing Approaches for Integrating Compression and Encryption
 - Based on Huffman Coding
 - Based on Arithmetic Coding
- Compression + Encryption using Chaos
- Conclusions

Based on the Framework of Compression

Entropy Coding

- Make use of the entropy (average information) of source symbols.
- A statistical model is required.
- High-occurrence symbol > short code.
- Low-occurrence symbol > long code.

Reduced average code length \square Compression

Based on the Framework of Compression

Embedding Encryption into Entropy Coding

- Turn entropy coder into cryptographic cipher using multiple statistical models.
- Select a statistical model by the secret key.
- Incorrect key

- Statistical model not matched
- > Wrong Decoding

Multiple Huffman Table Approach

- C. Wu and C. Kuo, "Design of integrated multimedia compression and encryption systems," *IEEE Trans. Multimedia*, vol. 7, no. 5, pp. 828-839, 2005.
- Use a secret key to
 - Choose a table from a set of 4 basic Huffman coding tables (trees)
 - Mutate the chosen tree

Multiple Huffman Table Approach

- The mutation process does not change the structure of the basic Huffman table, but only swaps the bit 0 and bit 1 in the Huffman code.
- The codeword length remains unchanged.

 \square favor chosen-plaintext attack.

 Jiantao Zhou, Zhiqin Liang, Yan Chen, Oscar Au, "Security Analysis of Multimedia Encryption Schemes Based on Multiple Huffman Table" *IEEE Signal Processing Letters*, vol. 14, issue 3, pp. 201-204, March 2007.

Randomized Arithmetic Coding

- M. Grangetto, E. Magli, and G. Olmo, "Multimedia selective encryption by means of randomized arithmetic coding," *IEEE Trans. Multimedia*, vol. 8, no. 5, pp. 905-917, 2006.
- The intervals may swap, controlled by the secret key.

Key-based Interval Splitting in Arithmetic Coding

- J. Wen, H. Kim, and J. Villasenor, "Binary arithmetic coding with key-based interval splitting," *IEEE Signal Processing Letters*, vol. 13, no. 2, pp. 69-72, 2006.
- Example:

p(A) = 2/3 p(B)=1/3

Content

- Background
- Existing Approaches for Integrating Compression and Encryption
- Compression + Encryption using Chaos
 - Based on the framework of Compression
 - Based on the framework of Cryptography
- Conclusions

Compression + Encryption using Chaos

- Based on the framework of Compression
 - Joint work with Prof. Ron Chen and Dr. Yaobin Mao
 - DCT \implies lossy image compression
 - Use a 2D chaotic map to permute the DCT coefficients
 - Use 1D chaotic tent maps to mix the DCT coefficients and mask the Huffman coding sequence
- Based on the framework of Cryptography
 - Baptista-type chaotic cryptosystem
 - Incorporate entropy information in the search look-up table (the codebook) to achieve compression

Lossy Compression + Chaotic Cryptography

- 1. Partition the plain-image into 8x8 blocks
- Transform each block by Discrete Cosine Transform (DCT)
- Permute the DCT-coefficients of all the blocks using 2D cat map
- 4. Mix the permuted DCT-coefficients to change the statistical structure in the transformed domain
- 5. Code the mixed and permuted DCT-coefficients using Dynamic Huffman Coding (DHC)
- 6. Mask the Huffman codes to form the final ciphertext

512 x 512 Lena with 256 grey levels

28

512 x 512 Lena 256 grey levels

• Encryption Time:

88.95 ms (no mixing) to 265.32 ms (100% mixing)

• Decryption Time:

114.02 ms (no mixing) to 258.77 ms (100% mixing)

• Highest Data Rate:

512 x 512 x 8 / 88.95 ms = 22.48 Mbps

• Lowest Data Rate:

512 x 512 x 8 / 265.32 ms = 7.54 Mbps

2048 x 1536 24-bit true color image

2048 x 1536 24-bit true color image

• Encryption Time:

2.193 s (no mixing) to 5.258 s (100% mixing)

• Decryption Time:

2.375 s (no mixing) to 4.833 s (100% mixing)

• Highest Data Rate:

2048 x 1536 x 24 / 2.193 s = 32.83 Mbps

• Lowest Data Rate:

2048 x 1536 x 24 / 5.258 s = 13.69 Mbps

Compression Ratio No 14 mixing 🔺 gray-scale image + true color image 10 12.65 100% (True-Compression Ratio 8 mixing color) 6 1.999 4 5.61 (True-2 (Graycolor) scale) 0 L 0 10 20 30 50 60 70 80 90 40 100 0.998 Mixing percentage η (Grayscale) 32

Transmission Scalability

- A measure of scalable coding
- Decrypt only the first fixed percentage of cipher stream

Key Sensitivity Test Cat Map Parameters (a,b)

in terms of Percentage of Different Bits

(*a,b*) = (23,182) and then (*a,b*) = (23,181)

η	0%	10%	20%	30%	40%	50%
Different Bits (%)	49.97	49.99	50.01	50.08	50.05	50.01
η	60%	70%	80%	90%	100%	
Different Bits (%)	50.05	49.98	50.05	49.98	50.02	

- Key Sensitivity Test : Mixing Keys $k_1 \& k_2$
 - $k_1 = 0.1783929$ and then $k_1 = 0.1783928$

Percentage of Different Bits = <u>50.11%</u>

• $k_2 = 0.2381211$ and then $k_2 = 0.2381212$

Percentage of Different Bits = <u>50.01%</u>

• Both are very close to 50%.

FIPS 140-2 Randomness Tests

- 100 cipher stream segments, each of length 20,000 bits, are subject to the FIPS 140-2 randomness test.
- They all pass the test.

Test Type	Result	Reference
Monobit Test	9,916	9,725 < <i>x</i> < 10,275
Poker Test	8.79	2.16 < <i>x</i> < 46.17
Run=1	2,433	2,315 < <i>x</i> < 2,685
Run=2	1,343	1,114 < <i>x</i> < 1,386
Run=3	602	527 < <i>x</i> < 723
Run=4	306	240 < <i>x</i> < 384
Run=5	177	103 < <i>x</i> < 209
Run≥6	144	103 < <i>x</i> < 209
Long Run Test (Run > 25)	0	0

A typical act of test results (m = 200/)

Baptista's Chaotic Cryptosystem

- M.S. Baptista, "Cryptography with chaos," *Physics Letters A*, vol. 240, no. 1-2, pp. 50-54, 1998.
- Follow a chaotic orbit to search in the multiplepartitioned state space (lookup-table, or codebook)
- The number of iterations required to reach the target plaintext symbol is the ciphertext.

Baptista's Chaotic Cryptosystem

Logistic Map: $x_{n+1} = b x_n (1 - x_n)$ Secret Keys: $b=3.99 x_0=0.1$

Plaintext: GO!

145th iteration => Bingo

Generate a random number between 0 and 1.

If > a preset threshold, take 145 as ciphertext.

Otherwise continue the iteration.

Hit again at 259th iteration. Random number > preset threshold.

Ciphertext: 259 344 127 G O !

Some Modifications by K.W. Wong

- K.W. Wong, "A fast chaotic cryptography scheme with dynamic look-up table," *Physics Letters A*, vol. 298, pp. 238-242, 2002.
 - Use a changing look-up table to enhance the security and to increase the encryption speed.
- K.W. Wong, "A combined chaotic cryptographic and hashing scheme," *Physics Letters A*, vol. 307, no. 5-6, pp. 292-298, 2003.
 - The final look-up table depends on the plaintext, and can be considered as a hash.

How to Compress?

- Original and modified Baptista-type chaotic cryptosystem: a byte of plaintext is encrypted as an integer (number of iterations).
- As the required number of iterations to reach the target is usually larger than 256, the ciphertext is usually longer than the plaintext (about 1.5 – 2 times).
- <u>Problem</u>: All plaintext symbols occupy the <u>same</u> area in the state space.
- <u>Idea</u>: High occurrence symbols occupy a <u>larger</u> area than low occurrence symbols

Chaotic Cryptography + Compression

- Scan the whole plaintext sequence once
- Select *N* (e.g., 16) popular plaintext symbols.
- Generate the lookup-table (the codebook)
- If current symbol = one of the popular symbols,
 - encrypted by Baptista-type chaotic cryptosystem
 - use Huffman coding to encode the number of iterations.
- Otherwise, encrypt by masking plaintext block with a pseudo-random key stream generated by the chaotic map.

Results

File	Histogram	Percentage of non- masked symbols	Bit rate for 1- byte non- masked symbol	Ciphertext / Plaintext
<u>graph.</u> <u>bmp</u>		97.14 %	1.510	22.81 %
<u>data.xls</u>		73.21 %	1.910	57.68 %
db1.mdb		71.95 %	1.856	62.23 %
				44

Results

File	Histogram	Percentage of non- masked symbols	Bit rate for 1- byte non- masked symbol	Ciphertext / Plaintext
<u>document.</u> <u>doc</u>		12.08 %	2.645	95.79 %
seminar. ppt		22.83 %	2.362	95.97 %
<u>program.</u> <u>exe</u>		3.41 %	3.065	101.91 %
				45

Results

File	Histogram	Percentage of non- masked symbols	Bit rate for 1- byte non- masked symbol	Ciphertext / Plaintext
<u>document.</u> <u>pdf</u>		10.67 %	3.312	103 %
logo.eps		20.57 %	3.328	106.71 %
<u>music.wav</u>		10.04 %	2.986	106.8 %
				46

Content

- Background
- Existing Approaches for Integrating Compression and Encryption
- Compression + Encryption using Chaos
- Conclusions

Conclusions

- Introduced the topic of integrating compression and encryption.
- Reviewed some approaches to embed encryption into compression
- Based on the framework of compression, proposed a lossy image cryptosystem utilizing DCT and chaotic maps.
- Based on the framework of chaotic cryptography, suggested an approach to achieve compression in Baptista-type chaotic cryptosystem.

