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Topics for Today

B A Quick Review of Three Network Models:

Random-Graph, Small-World, and Scale-Free Networks

m Consensus and Control over Complex Networks:

=  Pinning Control
Swaming, Consensus, Flocking

Coordinated Control

m DEMO



Network Topology

% A network I1s a set of nodes
Interconnected via links

% Internet: Nodes — routers Links —wires
% Neural Network: Nodes — cells Links —nerves
% Soclal Networks: Nodes — individuals Links —relations
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Regular Networks

(a) Globally coupled network
(b) Ring-coupled network
(c) Star-coupled network
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Basic Network Models

Random Graph Theory (Erdds and Renyi, 1960)
ER Random Graph model dominates for near 50 years

...... till today ......

Availability of databases and supper-computing

— rethinking of approach
Recent significant discoveries:

> Small-World effect (Watts and Strogatz, Nature, 1998)

> Scale-Free feature (Barabasi and Albert, Science, 1999)




Random Graph Theory

-- A revolution in the 1960s

Paul Erdos Alfred Rényi

»  Simplest model for most complex networks
» Rigorous mathematical theory



ER Random Graph Models

Erdos-Reny Features:
(Publ. Math. Inst. Hung. Acd. Sci. 5, 17 . ¥ .
(1960)) <« Connectivity
p=0, * Poisson distribution
DAL . . % Homogeneity
pair of node is
connected with . . All nodes have about
probability p . " the same number of
e = %ﬂﬂﬁ-;ﬁx links
AN < Non-growing
":l':,ll H.—*'}A:\“



Random Graph and Poisson Degree Distribution
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[Mlustration of Erdds-Rényi randon-graph network model



Small-World Networks

“Collective dynamics of

'small-world' networks”
--- Nature, 393: 440-442, 1998

D. J. Watts S. H. Strogatz

Cornell University



Small-World Networks

Watts-Strogatz Features:
(Nature 393, 440 (1998)) (Similar to ER Random Graphs)
<Connectivity

N nodes forms a Poisson distribution
regular lattice. With M
probability p, each ; 9 y
edge is rewired All nodes have about the
randomly same number of links

< Non-growing
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Scale-Free Networks

“Emergence of scaling in random networks”

Science, 286: 509 (1999)

A.-L. Barabasi R. Albert

Norte Dame University
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Scale-Free Networks

(Barabasi-Albert, Science, 1999)

Start with a network of size M, (initialization)

() Add new nodes (incremental growth):
With probability p, a new node is added into the network

(i) Add new links (preferential attachment):

The new node has m ( m < m, ) new links to the already
existing nodes in the network, with probability

k. +1

s > (K, +1)
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Scale-Free Networks

Features:
< Connectivity:
In power-law form
P(k) ~ kKM -r}
< Non-homogeneity:

Very few nodes have
many links but most
nodes have very few

links
< Growing

(Hawoong Jeong)
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Complex Networks and ICM

International Congress of Mathematics (ICM)
22-28 August 2006, Madrid, Spain

Jon M Kleinberg (Cornell Univ) received the
Nevanlinna Prize for Applied Mathematics

He gave a 45-minute talk —

“Complex Networks
and Decentralized Search Algorithms”

J M Kleinberg, “Navigation in a small world,”
Nature, 2000
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Consensus and Control
over Complex Networks

It has already started ...

1a



IEEE Control Systems Socilety

Information Gonsensus A
In Muitivehicle
Cooperative Gontrol

WEI REN, RANDAL W. BEARD, and ELLA M. ATKINS

COLLECTIVE GROUP BEHAVIOR
THROUGH LOCAL INTERACTION
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Pinning Control of
Complex Dynamical Networks

Pinning Control:

-- Only pin a small portion of nodes
Random / Specific Pinning:
R: Pin a portion of randomly selected nodes
S: First pin the most important node
Then select and pin the second-most important node
Continue ... till control goal is achieved

1k



Pinning Control Example

A network with 10-nodes
generated by the B-A scale-free model (N=10, m=m0=3)

X. F. Wang, G. Chen, Physica A (2002)
X. Li, X. F. Wang, G. Chen, IEEE T-CAS (2003)
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Control of Complex Networks

A network with N linearly coupled nodes:

P f(xi)+czl\|:aijl“(xj —X.),1=12,---,N
By
Here:
X = (X, X, -+, X, )e R" - state variables
f() - nonlinear continuously differentiable function
e R™ - constant 0-1 coupling matrix

Assume: T = diag(r,,---,r,) IS diagonal with r, =1
for a particular i and r; =0 for j=i.
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Control of Complex Networks

Control Objective: To stabilize the network onto a particular
solution of the network:

,([t)=X,({)=-=X,(t) > X, as t >
Here, x e R" IS an equilibrium point of an isolated node.

Selective Control:
Only a portion of nodes are selected for stabilization control

1. Specifically selective scheme
2. Randomly selective scheme

ang, G. Chen, Physica A (2002)

F. Wang, APWCCS (2003)

F. Wang, G. Chen, IEEE T-CAS (2003,2004)
an, G. Chen, Handbook (2004), CCDC (2005)

. W
I, X.
I, X.

TI
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Control of Complex Networks

Example: Consider a coupled CNN:

ol +cZaU 3
=1

2X., + X.o + cZa
=

ij ]2

14x., —14X., + cZa

=1

100x,, —100x,,
+100(|x;, +1 —|x;, — 1))

+cZaIJ 7

ij3

(i=12,

N)
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Control of Complex Networks

Here, network size N =60, coupling strength c=8.246, and
number of controlled nodes | =15

Specifically Selective Scheme: Only control the first 15
largest-degree nodes, with state-feedback control. Control gains are

10

k. =29.7603

0 5 0t 15 20 25
The controlled state x1
22



Control of Complex Networks

Comparison:

Randomly Selective Scheme: Randomly select 15 notes to pin.
Control gains are much larger:

k. =513.3709
a1 1 compared to the previous one:
ol R A k. = 29.7603
ua I And, it takes twice longer
time to stabilize the network
S0+

14 1B t 18 2 22
The controlled state x1
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Consensus and Control
over Complex Networks

= Swarm Dynamics/Modeling
= Consensus Protocols/Analysis
= Flocking Algorithms/Control
* DEMO

24



Fish Swarming

< Swarming:
to move or gather
INn group

25



Birds Flocking

Flocking: to congregate or travel in flock

26



Cconsensus
A position reached by a group as a whole

Battle space management scenario
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Fireflies Attitude
Synchronization Alignment

The attitude of each spacecraft is
synchronized with its two adjacent
neighbors via a bi-directional
communication channel
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What are in common ?

» Swarming
» Flocking

» Rendezvous
» Cconsensus
» Synchrony

» Cooperation

Distributed coordination of
a network of agents:

v Agents
v Network
v Distributed local control

v Global consensus

29



ing

Swarm
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> Position:

X, (t+1) = x.(t) + v. (t) At

> Heading:

O(t+1) =< 0(t) >, +A6

(a) Initial: Random positions/velocities
(b) Low density/noise: grouped
(c) High density/noise: correlated
(d) High density / Low noise
—> coordinated motion

Vicsek Model

!
1y

1
1 T

Vicsek, Czirok, Jacob, Cohen, Shochet, “Novel type of phase transition in a system of self-
driven particles,” Phys. Rev. Lett., 1995, 75 (6): 1226
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Convergence

T . . — T
B Iy - Pl o o
ot+1) =F; ,0(t) NSRS S
Pt A T Y O o B i
SOl i P S S o e P
« Strong condition: R S I AR N e
Yol g A oS0 IS A S Sl S P9 s
agents are always linked :@:’f““z“‘:”‘”gﬁﬁ
b Rl 7 S o i S
< Weak condition: .q-ff.f'”ifﬁﬂ‘:__;ﬁ ==
on some time intervals \'i“;‘m‘ ----- N T R e
[ti,ti+l),i 20’1’2,.“00, to :O | i | | T [
agents are linked together
| | | | | |
| | | | | | >

> !im o(t)=6.1

Jadbabaie, Lin, Morse, “Coordination of groups of mobile autonomous agents using
nearest neighbor rules,” IEEE Trans. Auto. Control, 2003, 48(6): 988-1001 32



Moreau Model

Linear or linearized model:

X(t+1) = A(G (1)) x(t)

with a stochastic matrix

WIk

1+ > wy

ieNeighbors(k,A)

1

If | € Neighbors(k, A)

(A(G))y = > it k=1

Wi K

ieNeighbors(k,A)
0} otherwise

Moreau, “Stability of multiagent systems with time-dependent
communication links,” IEEE Trans. Auto. Control, 2005, 50(2): 169-182
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Stability Analysis

x(t +1) = A(G (D) x(t)

It is uniformly globally attractive with respect to
the collection of equilibrium solutions if and only if
there exists a T > 0 such that for all t there is a
node (the “leader”) connecting to all other nodes,
directly or indirectly, over the time window [t, t+T].

Moreau, “Stability of multiagent systems with time-dependent communication links,”
IEEE Trans. Auto. Control, 2005, 52(2): 169-182
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Stability Analysis of a Swarm Model

<+ A swarm of M globally nonlinearly
coupled individuals:

Attraction/Repulsion function:

Iyl

g(y) =-y(a—-bexp(- )

< All the agents will converge to a hyperball:

B, = {x:|| x— x|< &}

aly!
I & " L o - r w I @
! ! T T H

£= %\/c/ 2 exp(-1/2)

Gazi, Passino, IEEE Trans. Auto. Control, 2003, 48: 692—697
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Stability Analysis of Foraging Swarms

A/R function:  g(y) ==Y[9.dl yI) =g, yID]

Linear attraction bounded repulsion
g.(IxX =x"[) =4, g, (I X" =x | x' =x [I<b,

- i ~ . M-) 25
IV, o(W)II<E = X(t)—B,(X(t) £=a="g; [b+y]

M—>x == &£=b/a

Gazi, Passino, IEEE Trans. Sys. Man Cybern., B: 2004, 34(1): 539-557
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Another Model

p;(t)—pi () 0;(t)
d. (t) = j i j
i lej(t)—pi(t)lJrzj:I@j(t)l

J#i

d.(t)  Desired direction of travel
P;(t)  Position

@.(t) Direction

Couzin, Krause, Franks, Levin,
“Effective leadership and decision-making

in animal groups on the move,”
Nature, Feb. 3, 2005, 513-516
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Yet Another Model
-- with more precise analysis

Model: every bird adjusts its velocity by adding to it a weighted average
of the differences of its velocity with those of the other birds. That is,
at time ¢ € IN, and for bird ¢,

vt +1) = wilt) = D ag(vs(t) — uilt), (1)

]

Cucker, Smale, “Emergent behavior on flocks,” IEEE Trans. Auto. Control, 52: 852-862, 2007
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We assume that this influence is a function of the distance between

birds, namely

K
(02 + ||lzi — z;?)P
for some fixed K,o > 0 and 6 > 0.

a?;j -

(2)

Convergence in continuous time

For z,v € IEF we denote

Theorem 1 Assume that

MK
@7+ i — PP

Ajj =

Assume also that one of the three following hypothesis hold:
(i) B <1/2,

.s K2
(ii) 8=1/2 and Ay < 15,
(iii) 8 > 1/2 and

1\ T 1\ 71 K2 \ 1 ‘
— — | = 2T e,
[(zﬁ) (26) ] (18m0> s Sty

Then there exists a constant By such that I'(t) < By for allt € IR,..
In addition, when t — oo, A(t) — 0 and the vectors x; — x; tend to
a limit vector z;;, for all i, j < k.

. 1 .
F(@) =35 llas =l

i#]

| ;
A@w) =5 D llvi — vyl
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Random
Model

G. Tang and L. Guo, “Convergence of a class of multi-agent systems in probabilistic framework,”
J. of Sys. Sci. and Complexity, 20 (2007): 173-197.

Model:
6t)=Pt-1)E(x-1)
x(t)=x(t-1)+vs(6(1))
where X is the position, @ € (—7, 7] is the angle, s(€)=(cos@,sinf), P(t—1) is the

average angle of the whole network attime 7—1,and v isa constant speed.

Neighborhood:
N, O =Ylx,0)-x0l<r} 1<k<n

where 7 1s the number of nodes in the network and 7 1s the radius of the ball (neighborhood).

Optimization:

min (0-6,(-1)f

JEN (t-1)

where & is the target angle.

Theorem: For any given speed v >0, any given radius r >0, and any large enough size #,

the network will synchronize with probability no less than 1— O(ng” ) where g =n/In°n.



Consensus Protocol

Design a network connection topology, or design local
control law, so that [FEPSIBY (consensus = synchronization)

Consensus Is reached asymptotically
If there exists an infinite sequence of
bounded intervals such that the union
of the graphs over such intervals is
totally connected.

| | | | | |
| | | | | | >

Olfati-Saber, Murray, “Consensus problems in networks of agents with switching
topology and time-delays,” IEEE Trans. Auto. Control 2004, 49(9): 1520-1533
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Small-World Networks
are better for Consensus

A, /2,2 Condition number -- the smaller, the better

Regular networks Small-world networks

130

100t

3 2 4 B ] 10 12 14 5 10 15 o0 25
eigenvalues EgENYa Ues

1000 times average

Olfati-Saber, “Ultrafast consensus in small-world networks,” Amer. Control Conf., 2005
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Flocking

43



Boids Flocking Model

Three Rules:

Separation: Steer to avoid crowding local flockmates
Alignment: Steer to move toward the average heading of local flockmates
Cohesion: Steer to move toward the average position of local flockmates

_,r” N / 7
aﬂf \ / }} \3 AN D, N

| H \ | [,/ \
\ / iz'\\} }:-X \} / &[‘\
RSN N

Reynolds, “Flocks, herd, and schools: A distributed behavioral model,”
Computer Graphics, 1987, 21(4): 15-24 http://www.red3d.com/cwr/boids/
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Flocking: Feedback Control

“The larger the group, the smaller the portion of agents who need
navigational feedback™ (H.S. Su, X. F. Wang, Phys Rev E, 2007)

“We reveal that the
larger the group the
smaller the proportion of
Information individuals
needed to guide the

group”

095

=
w

o
fu)
o

Accuracy
=
. [}
m (mu)
T

=
-

|. D. Couzin, J. Krause, N. R.
Franks, S. A. Levin, Nature,
08702 03 04 05 06 07 08 09 1 Feb. 3, 2005

Froportion of informed agents

065
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Flocking: Model Predictive Control

Small-world communication generates “pseudo-leaders”
who control their neighbors

p steps
1 step 2 steps \J?/;‘:ﬂ-_{/ M |n|m|Z|ng
current - -7 __ -
-~ 5 ,-}f
P .
‘?:CK _,_,-"’. I: (]/N)Zizl‘vi _Vleader‘

O O ,/”./’O / :' N XCK leade:‘
el 4 ! \\ pseudo
A" O IIA}\A\O \ A leader

) O d\\ Q QQJ () follower

O | 7T long link

O

Zhang, Chen, “Small-world network-based coordinate predictive control of flocks,”

PhysCon, Germany, 2007
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Flocking: Model Predictive Control

3 Leadér
Y 1

77777777777777777777777777777777777777777

©000 |4 o
o ® Ool
,,,,,,,,,,,, % O 777%,QT,,,,,,,4,,,,,,,,
‘ | b |
Pseudo Follower
leader | ‘ ‘

77777777777777777777777777777777777777777

Initial position of the flock

Flock position after 40
iterations under MPC

Zhang, Chen, “Small-world network-based coordinate predictive control of flocks,”

PhysCon, Germany, 2007



Flocking: MPC DEMO

Small-world MPC

I I (I T T 1 L T
________________ .::i:. gy e e o o o 2l o e m e b me e b e o o e
ID ;
':%CDED. & of
o o Sod !
B ogof  da
"""" R e by Bty
bogly & Bo
o hg ol B
o B o
-------- vl T L R NP NGIIN M. R —
----------------------------------------------------------------------- -

Zhang, Chen, “Small-world network-based coordinate predictive
control of flocks,” PhysCon, Germany, 2007
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Another Flocking Algorithm: DEMO

Time=23

Lu et al. in progress (2007)
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