

IBM Thomas J. Watson Research Center

Control and synchronization in systems coupled via a complex network

Chai Wah Wu

May 29, 2009

City University of Hong Kong

© 2009 IBM Corporation

Synchronization in nonlinear dynamical systems

- Synchronization in groups of nonlinear dynamical systems is an active research topic in engineering, biology and systems science.
- Applications:
 - Synchronous firing in groups of fireflies
 - Mobile autonomous robots with limited range of communications
 - Flocking behavior in animals
 - Epileptic behavior

 Coupled system is autonomous, no outside influence to facilitate synchronization

Synchronization via external control

- Synchronization behavior has also been studied where the synchronization is driven by external forcing (Wang and Chen, 2002).
- Want all systems to synchronize to a desired trajectory x(t). Apply x(t) to a subset of systems. What are the conditions under which the entire systems synchronize to x(t)?

Unforced network with linear coupling:

$$\frac{dx_i}{dt} = f(x_i, t) - \alpha \sum_j G_{ij} D(t) x_j$$

Linear control applied to network:

$$\frac{dx_i}{dt} = f(x_i, t) - \alpha \left(\sum_j G_{ij} D(t) x_j + c_i D(t) (x_i - u(t)) \right)$$

- u(t) is the desired trajectory.
- Two sets of parameters describing the coupling: α describes the coupling between all systems, c_i describes the control coupling.

Virtual system

If u(t) is the trajectory of an uncoupled system, i.e. u'(t) = f(u(t),t), then by setting x_{n+1}(t) = u(t) we get a network of n+1 systems:

$$\frac{dx_i}{dt} = f(x_i, t) - \alpha \sum_j G'_{ij} D(t) x_j$$

• With the new coupling matrix related to G as:

$$G' = \begin{pmatrix} G+C & -c \\ 0 & 0 \end{pmatrix}$$

- where $C = \text{diag}(c_1,...,c_n)$ and $c = (c_1,...,c_n)^T$.
- Synchronizing control is then reduced to a problem in synchronization.

Synchronization

- Various synchronization theorems relate criteria for synchronization with properties of the matrix G'.
- For a Lyapunov function based approach, we will used the quantity β_{min} : Under suitable conditions, control is achieved if

$$\beta_{\min} \geq \frac{1}{\alpha}$$

- Precise definition of β_{min} can be found in the literature. β_{min} is related to

$$\min_{\lambda} \Re(\lambda(G+C))$$

In fact, for vertex-balanced networks:

$$\beta_{\min} = \min_{\lambda} \Re(\lambda(G+C)) = \lambda_{\min} \left(\frac{1}{2} (G+G^T) + C \right)$$

Synchronization condition

Recall the synchronization condition:

$$\beta_{\min} \geq \frac{1}{\alpha}$$

- If $\beta_{\min} > 0$, then control is achievable for large enough α .
- Theorem: $\beta_{\min} > 0$ if and only if there exists a spanning directed forest in the graph of G such that $c_i > 0$ whenever the ith system is a root of a tree in the forest.
- Thus control can be achieved if and only if forcing is applied to roots of trees in a spanning directed forest of the network.

Spanning directed forest

- By writing the matrix of the graph in Frobenius normal form, we find *m* strongly connected components (SCC) which are independent of each other.
- *m* is the degree of irreducibility of the graph matrix and is the smallest number of trees in a spanning directed forest.
- All spanning forest must have roots in each of these SCCs.

Applying control at roots of spanning directed forest.

- Synchronizing control can be achieved if and only if forcing is applied to roots of trees in a spanning directed forest of network.
- Thus at least *m* systems need to be controlled to achieve synchronizing control.

How much and where to apply control

- It's clear that how the control is applied influences its effectiveness.
- Let us now consider 2 questions:
 - 1. How much control to apply?
 - 2. Where should control be applied to maximize effectiveness?

How much control to apply?

- Two things to consider here:
 - How many systems to apply control?
 - How much control to apply to each such system?
- Also look at asymptotically behavior as the number of systems n grows to infinity.
- Consider the case of undirected connected graph, i.e. there is only 1 strongly connected component.

_	-			-
	_	_	_	_
				=
_	_	_		=
_	_	_		_

Upper and lower bounds on β_{min}

For an undirected graph

$$\beta_{\min} = \lambda_{\min}(G+C)$$

• Upper bounds:

$$\lambda_{\min}(G+C) \le \frac{1}{n} \sum_{i} c_i$$

 $\lambda_{\min}(G+C) \leq \lambda_{p+1}(G), \forall p < n$, *p* is number of nonzero elements in C

Lower bounds:

$$\beta_{\min} \geq \frac{\lambda_2}{\left(1 + \sqrt{1 + \frac{\lambda_2}{\sum_i c_i}}\right)^2 n + 1} > 0$$
$$\beta_{\min} \geq 2\min(c, 1) \left(1 - \cos\left(\frac{\pi}{2n + 1}\right)\right) > 0$$

How many systems to apply control?

• Upper bound:

 $\lambda_{\min}(G+C) \leq \lambda_{p+1}(G), \forall p < n$, p is number of systems where control is applied

• This implies that if *k* is the largest integer such that

$$\lambda_{k+1}(G) < \frac{1}{\alpha}$$

then you need to apply control to at least k+1 systems

	_	_	
			_
	_		
	100		

How much control to apply?

- It's clear that making α and c_i large enough, we obtained synchronized control.
- The lower bound

$$\beta_{\min} \ge 2\min(c,1)\left(1-\cos\left(\frac{\pi}{2n+1}\right)\right) > 0$$

provides a measure of how much is needed.

Asymptotic behavior of β_{min} as function of n

• Consider the upper bound

$$\lambda_{\min}(G+C) \leq \frac{1}{n} \sum_{i} c_i$$

- Assume a single control site (c₁ > 0, c_j = 0 for j>1).
- For fixed control parameter c_1 , β_{min} decreases at least as fast as 1/n.
- This means that for bounded control parameter c₁ and α, control cannot be achieved for large n

u(t)

α

α

 αc_1

- In other words, for fixed α, it is *necessary* for c₁ to grow on the order of *n* in order to achieve control.
- Same conclusion apply to vertex-balanced networks, i.e. graphs where the indegree of each vertex is equal to its outdegree.

α

α

Asymptotic behavior of β_{min} as function of n

- For fixed α, and m=1, it is *necessary* for c₁ to grow on the order of *n* in order to achieve synchronizing control.
- When is a growth rate of o(n) sufficient?
- Consider the lower bound

$$\beta_{\min} \ge \frac{\lambda_2}{\left(1 + \sqrt{1 + \frac{\lambda_2}{c_1}}\right)^2 n + 1} > 0$$

- Where λ₂ is the second smallest eigenvalue of G, i.e. the algebraic connectivity of the network.
- For fully connected graphs, or random graphs, λ₂ grows on the order of *n* and thus β_{min} will not vanish for large *n* and thus control is achievable for large enough c₁

α

α

u(t)

α

α

 αc_1

 -		
	-	
	_	
		_
 5		
100		

Locally connected graphs

• Theorem:
$$\beta_{\min} \leq \lambda_2(G)$$

- Theorem: for locally connected graphs, $\lambda_2(G) \to 0$ as $n \to \infty$
- Recall the synchronization condition:

$$\beta_{\min} \geq \frac{1}{\alpha}$$

• This means that for locally connected networks, control is not achievable for fixed α as $n \rightarrow \infty$

IBM Thomas J. Watson Research Center

	Statement in the local data in the
_	
_	

- We see that for the locally connected graph, β_{min} decreases as n increases, regardless of c_1 .
- For the fully connected graph, for fixed c_1 , β_{min} will decrease as n decreases, but for large c_1 , β_{min} will remain bounded from below.

Small number of control sites

- Similar conclusions as for m=1.
- If the number of control sites *m* grows slower than *n*, then α or c_i need to grow to maintain synchronization.
- Example: fully connected graph, with $c_i = \alpha = 1, m = \left|\sqrt{n}\right|$

Small number of control sites

- For a bounded parameter α and a locally connected network, control is not possible if *m* grows slower than *n*.
- control is not possible if *m* grows slower than *n*. • Example: cycle graph with $c_i = 100n, \alpha = 1, m = \lfloor \sqrt{n} \rfloor$

Where to apply control?

- So far we look at the number of forced systems and the amount of control to apply to each such system.
- The choice of the set of forced system is also important and depends on the underlying network.
- Where should control be applied to maximize effectiveness?

Localization to maximize control effectiveness

- Give a control budget $\sum_{i} c_{i} \leq \gamma$, how and where should the control signal be applied in order to maximize control effectiveness, i.e. maximize β_{\min} ?
- Recall that $\beta_{\min} \leq \sum c_i / n$
- Answer is simple if we are allowed to apply control to every system (m = n).
- By applying control $c_i = \gamma/n$ to every system, we get $C = \gamma/n I$ and $\beta_{min} = \gamma/n$. Thus β_{min} is maximized subject to the control budget.
- What happens if m < n?

Example: 2D grid graph

- Consider a 2D grid graph where every node is connected to its 4 nearest neighbours on a rectangular grid.
- Employ the following heuristic to maximize β_{min}
 - 1. Randomly assign m locations to be the control locations
 - 2. Randomly move one of these locations if such a move increases β_{min}
 - 3. Repeat step 2

Maximize β_{min}

- Apply heuristic for the following parameters: n = 100, m = 20, c = 100, $\alpha = 1$.
- The resulting control locations are:

We note that the control locations are spread out.

_	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Minimize β_{min}

- Repeat same heuristic, but move control locations only if it decreases β_{min}
- Result for n = 100, m = 20, c = 100, $\alpha = 1$.

We note that the control locations are clustered.

Control locations

- It seems intuitive that control should be applied to locations such that any node is reachable by some control signal via a short path.
- Two characterizations to quantify this idea.
- Let P be the set of control locations

1.
$$D_P = \max_{v \in V} d(v, P)$$

2.
$$D_P^a = \frac{\sum_{v \in V \setminus P} d(v, P)}{|V \setminus P|}$$

- D_P describes the maximal distance between vertices in P and any other vertex, where D_P^a describes the average distance from P to vertices outside of P.
- D_P provides a lower bound to β_{min}

$$\beta_{\min} \geq \frac{c}{2} \left(2 \left(r + \frac{1}{2} (2r)^{-D_P} \right) \right)^{-D_P} > 0$$

Minimizing D_p does not maximize β_{min}

- Example: single control site (m=1), c = 10.
- Applying control at vertices 4 or 5 minimizes D_P whereas applying control at vertices 1 or 2 maximizes β_{min.}

How about **D**_p^a?

- For a fixed number of control sites *m*, is β_{min} maximized by a configuration that minimize D_p^a?
- Experiment 1: 20000 random sets of 20 control locations on the grid graph.

Upper and lower envelope appears to be convex.

Experiment 2

A random graph with 100 vertices and 500 edges, c = 100. Single control site

Experiment 3

• Path graph with 100 vertices and 5 control sites, c = 100.

Experiment 4

- Undirected graphs of n vertices are enumerated
- For each graph, a single control is applied with c = 10.
- Check whether the location where β_{min} is maximized corresponds to a minimal D_{P}^{a}
- Experiments show that this is true for all graphs of 6 vertices or less, single control site (m=1), c = 10.
- Counterexamples exist for n=7

- D_P^a is minimized at vertex 1, whereas β_{min} is maximized by applying control at vertex 6.
- β_{\min} is second largest at vertex 1.
- Similar results for the question whether the location where $β_{min}$ is minimized corresponds to a maximal D_P^a (true for n ≤ 6, false for n = 7)

Some provable results

- Theorem: for the cycle graph and large enough forcing, the optimal placement of P minimizes D_P, i.e. the forcing systems are spread out on the cycle.
- A similar result can be shown for path graphs.

Summary

- To achieve synchronizing control, it is necessary to apply control to roots of a spanning directed forest.
- For vertex-balanced networks and a small number of control sites, it is necessary to increase c_i as *n* increases.
- This is sufficent for graphs with a strong connectivity such as fully connected graphs and random graphs.
- However, for locally connected networks, control is not achievable for fixed α as n increases, i.e. the intersystem coupling α also need to increase.
- There appears to be an inverse relationship between D_{P}^{a} and β_{min} .
- Applying control to location that minimizes the average distance to non-control vertices will (almost?) maximize control effectiveness.

		-
	_	_
		_
_		
_		_

Thank you very much. Any questions?