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Synchronization in nonlinear dynamical systems

� Synchronization in groups of nonlinear dynamical 
systems is an active research topic in engineering, 
biology and systems science.

� Applications:
– Synchronous firing in groups of fireflies

– Mobile autonomous robots with limited range of 
communications

– Flocking behavior in animals

– Epileptic behavior

� Coupled system is autonomous, 
no outside influence to facilitate 
synchronization
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Synchronization via external control

� Synchronization behavior has also been studied where the 
synchronization is driven by external forcing (Wang and 
Chen, 2002).

� Want all systems to synchronize to a desired trajectory x(t).  
Apply x(t) to a subset of systems.  What are the conditions 
under which the entire systems synchronize to x(t)?
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State equations

� Unforced network with linear coupling:

� Linear control applied to network:

� u(t) is the desired trajectory.
� Two sets of parameters describing the 

coupling: α describes the coupling between all
systems, ci describes the control coupling.
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Virtual system

� If u(t) is the trajectory of an uncoupled system, i.e. u’(t) = f(u(t),t), then by 
setting xn+1(t) = u(t) we get a network of n+1 systems:

� With the new coupling matrix related to G as:

� where C = diag (c1,…,cn) and c = (c1,…,cn)T .
� Synchronizing control is then reduced to a problem in synchronization.
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Synchronization

� Various synchronization theorems relate criteria for synchronization 
with properties of the matrix G’.

� For a Lyapunov function based approach, we will used the quantity 
βmin: Under suitable conditions, control is achieved if 

� Precise definition of βmin can be found in the literature.  βmin is 
related to 

� In fact, for vertex-balanced networks: 
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Synchronization condition

� Recall the synchronization condition:

� If                  , then control is achievable for large enough α.
� Theorem:                    if and only if there exists a spanning 

directed forest in the graph of G such that ci > 0 whenever the 
ith system is a root of a tree in the forest.

� Thus control can be achieved if and only if forcing is applied to 
roots of trees in a spanning directed forest of the network.
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Spanning directed forest

� By writing the matrix of the graph in Frobenius normal form, we 
find m strongly connected components (SCC) which are 
independent of each other.

� m is the degree of irreducibility of the graph matrix and is the 
smallest number of trees in a spanning directed forest.

� All spanning forest must have roots in each of these SCCs.
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Applying control at roots of spanning directed forest.

� Synchronizing control can be achieved if and only if forcing is applied 
to roots of trees in a spanning directed forest of network.

� Thus at least m systems need to be controlled to achieve 
synchronizing control.
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How much and where to apply control

� It’s clear that how the control is applied influences its 
effectiveness.

� Let us now consider 2 questions:
1. How much control to apply?

2. Where should control be applied to maximize effectiveness?
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How much control to apply?

� Two things to consider here:
How many systems to apply control?

How much control to apply to each such system?

� Also look at asymptotically behavior as the number of systems n
grows to infinity.

� Consider the case of undirected connected graph, i.e. there is 
only 1 strongly connected component.
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Upper and lower bounds on βmin

� For an undirected graph

� Upper bounds:

� Lower bounds:
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How many systems to apply control?

� Upper bound:

� This implies that if k is the largest integer such that

then you need to apply control to at least k+1 systems

npGCG p <∀≤+ + ),()( 1min λλ ,p is number of systems where control is applied
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How much control to apply?

� It’s clear that making α and ci large enough, we obtained synchronized 
control.

� The lower bound

provides a measure of how much is needed.
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Asymptotic behavior of βmin as function of n

� Consider the upper bound

� Assume a single control site (c1 > 0, cj = 0 for j>1).
� For fixed control parameter c1, βmin decreases at least as fast as 1/n.
� This means that for bounded control parameter c1 and α, control cannot be 

achieved for large n
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� In other words, for fixed α, it is necessary for c1 to grow on the order of n in 
order to achieve control.

� Same conclusion apply to vertex-balanced networks, i.e. graphs where the 
indegree of each vertex is equal to its outdegree.
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Asymptotic behavior of βmin as function of n

� For fixed α, and m=1, it is necessary for c1 to grow on the order of n in 
order to achieve synchronizing control.

� When is a growth rate of o(n) sufficient?
� Consider the lower bound

� Where λ2 is the second smallest eigenvalue of G, i.e. the algebraic 
connectivity of the network.

� For fully connected graphs, or random graphs, λ2 grows on the order 
of n and thus βmin will not vanish for large n and thus control is 
achievable for large enough c1
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Locally connected graphs

� Theorem: 

� Theorem: for locally connected graphs,                         as 

� Recall the synchronization condition:

� This means that for locally connected networks, control is not
achievable for fixed α as 
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� We see that for the locally connected graph, βmin decreases as n 
increases, regardless of c1.

� For the fully connected graph, for fixed c1, βmin will decrease as n 
decreases, but for large c1, βmin will remain bounded from below. 
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Small number of control sites
� Similar conclusions as for m=1.
� If the number of control sites m grows slower than n, then α or ci

need to grow to maintain synchronization.
� Example: fully connected graph, with  nmci === ,1α
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Small number of control sites

� For a bounded parameter α and a locally connected network, 
control is not possible if m grows slower than n.

� Example: cycle graph with  nmnci === ,1,100 α
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Where to apply control?

� So far we look at the number of forced systems and the amount of
control to apply to each such system.

� The choice of the set of forced system is also important and 
depends on the underlying network.

� Where should control be applied to maximize effectiveness?
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Localization to maximize control effectiveness

� Give a control budget                 , how and where should the

control signal be applied in order to maximize control 
effectiveness, i.e. maximize βmin?

� Recall that 

� Answer is simple if we are allowed to apply control to every 
system (m = n).

� By applying control ci = γ/n to every system, we get C = γ/n I and 
βmin = γ/n.  Thus βmin is maximized subject to the control budget. 

� What happens if m < n?
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Example: 2D grid graph

� Consider a 2D grid graph where 
every node is connected to its 4 
nearest neighbours on a 
rectangular grid.

� Employ the following heuristic to 
maximize βmin 

1. Randomly assign m locations to 
be the control locations

2. Randomly move one of these 
locations if such a move increases 
βmin

3. Repeat step 2 
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Maximize βmin

� Apply heuristic for the following parameters: n = 100, m = 20, c = 100, α = 1. 
� The resulting control locations are:

� We note that the control locations are spread out.
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Minimize βmin

� Repeat same heuristic, but move control locations only if it decreases βmin 
� Result for n = 100, m = 20, c = 100, α = 1. 

� We note that the control locations are clustered.
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Control locations

� It seems intuitive that control should be applied to locations such that any 
node is reachable by some control signal via a short path.

� Two characterizations to quantify this idea.
� Let P be the set of control locations

1.

2.

� DP describes the maximal distance between vertices in P and any other 
vertex, where DP

a describes the average distance from P to vertices outside 
of P.

� DP provides a lower bound to βmin 
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Minimizing Dp does not maximize βmin

� Example: single control site (m=1), c = 10.
� Applying control at vertices 4 or 5 minimizes DP whereas applying control at 

vertices 1 or 2 maximizes βmin.
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How about Dp
a?

� For a fixed number of control sites m, is ββββmin maximized by a  
configuration that minimize Dp

a?
� Experiment 1: 20000 random sets of 20 control locations on the grid graph.

� Upper and lower envelope appears to be convex.
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Experiment 2

� A random graph with 100 vertices and 500 edges, c = 100. Single control 
site.
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Experiment 3

� Path graph with 100 vertices and 5 control sites, c = 100.
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Experiment 4

� Undirected graphs of n vertices are enumerated
� For each graph, a single control is applied with c = 10.
� Check whether the location where βmin is maximized corresponds to a minimal DP

a

� Experiments show that this is true for all graphs of 6 vertices or less, single control site 
(m=1), c = 10.

� Counterexamples exist for n=7

� DP
a is minimized at vertex 1, whereas βmin is maximized by applying control at vertex 6. 

� βmin is second largest at vertex 1.
� Similar results for the question whether the location where βmin is minimized corresponds to 

a maximal DP
a (true for n ≤ 6, false for n = 7)
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Some provable results

� Theorem: for the cycle graph and large enough forcing, the optimal 
placement of P minimizes DP, i.e. the forcing systems are spread out on the 
cycle.

� A similar result can be shown for path graphs.
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Summary

� To achieve synchronizing control, it is necessary to apply control to roots of a 
spanning directed forest.

� For vertex-balanced networks and a small number of control sites, it is necessary to 
increase ci as n increases. 

� This is sufficent for graphs with a strong connectivity such as fully connected graphs 
and random graphs.

� However, for locally connected networks, control is not achievable for fixed α as n
increases, i.e. the intersystem coupling α also need to increase.

� There appears to be an inverse relationship between DP
a and βmin .

� Applying control to location that minimizes the average distance to non-control 
vertices will (almost?) maximize control effectiveness.
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Thank you very much.
Any questions?


