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Synchronization in nonlinear dynamical systems

= Synchronization in groups of nonlinear dynamical
systems is an active research topic in engineering,
biology and systems science.

= Applications:

—  Synchronous firing in groups of fireflies

— Mobile autonomous robots with limited range of
communications

—  Flocking behavior in animals

—  Epileptic behavior

= Coupled system is autonomous,
no outside influence to facilitate
synchronization
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Synchronization via external control

= Synchronization behavior has also been studied where the
synchronization is driven by external forcing (Wang and
Chen, 2002).

= Want all systems to synchronize to a desired trajectory x(t).

Apply x(t) to a subset of systems. What are the conditions
under which the entire systems synchronize to x(t)?
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State equations

= Unforced network with linear coupling:

‘;’E = f(x,1)— aZG D(t)X,

= Linear control applied to network:

% = f(x,t) —a(z G;D(O)x; +¢D(t)(x - U(t))J
J u(t) u(t)

= u(t) is the desired trajectory.

= Two sets of parameters describing the 0ey
coupling: a describes the coupling between all
systems, ¢, describes the control coupling.
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Virtual system

If u(t) is the trajectory of an uncoupled system, i.e. u’(t) = f(u(t),t), then by
setting X.,,(t) = u(t) we get a network of n+1 systems:

ax
d—f = f(x,t)-ay G, D(t)x
j

= With the new coupling matrix related to G as:
G+C -c
0 0

= where C =diag (c,,...,c,) and c = (c,,...,C,))" .
= Synchronizing control is then reduced to a problem in synchronization.
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Synchronization

Various synchronization theorems relate criteria for synchronization
with properties of the matrix G’.

For a Lyapunov function based approach, we will used the quantity
B..in- Under suitable conditions, control is achieved if

/Bmin 2 1
a

Precise definition of B.,, can be found in the literature. B, is
related to

mﬁin O(A(G+C))

In fact, for vertex-balanced networks:

Pain =mInLAG+C)) =Amin(%(e +G') +C)

City University of Hong Kong © 2008 IBM Corporation




IBM Thomas J. Watson Research Center

Synchronization condition

Recall the synchronization condition:

IBmin 2 1

a

= If B, >0 ,then control is achievable for large enough a.

= Theorem: .. >0 ifand only if there exists a spanning
directed forest in the graph of G such that c, > 0 whenever the
it system is a root of a tree in the forest.

= Thus control can be achieved if and only if forcing is applied to
roots of trees in a spanning directed forest of the network.
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Spanning directed forest

= By writing the matrix of the graph in Frobenius normal form, we
find m strongly connected components (SCC) which are
independent of each other.

= mis the degree of irreducibility of the graph matrix and is the
smallest number of trees in a spanning directed forest.

= All spanning forest must have roots in each of these SCCs.

residual vertices

graph of G
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Applying control at roots of spanning directed forest.

= Synchronizing control can be achieved if and only if forcing is applied
to roots of trees in a spanning directed forest of network.

= Thus at least m systems need to be controlled to achieve
synchronizing control.

U'(t) Pinning control u(t) should be applied to
nodes in each of the m strongly connected
components (SCC)

residual vertices

graph of G
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How much and where to apply control

= |t's clear that how the control is applied influences its
effectiveness.
= Let us now consider 2 questions:

1. How much control to apply?

2. Where should control be applied to maximize effectiveness?
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How much control to apply?

= Two things to consider here:
How many systems to apply control?

How much control to apply to each such system?
= Also look at asymptotically behavior as the number of systems n
grows to infinity.
= Consider the case of undirected connected graph, i.e. there is
only 1 strongly connected component.
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Upper and lower bounds on 3.

= For an undirected graph
Biin = Ain (G +C)

= Upper bounds:
Amin(G+C) SEZCI
n=

Auin(G+C) < A,,(G),Up<n, pis number of nonzero elements in C

= Lower bounds:;
A
ﬂmin 2 2 2

>0
1+ 1+ n+1
\/ Zc

. T
Biin 2 2m|n(cl)(1—co{ n +1D >0
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How many systems to apply control?

= Upper bound:

Anin(G+C) <A ,(G),Op<n ,pis number of systems where control is applied

= This implies that if k is the largest integer such that

1
Ak+1 (G) < E

then you need to apply control to at least k+1 systems
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How much control to apply?

= It's clear that making a and ¢, large enough, we obtained synchronized

control.
= The lower bound

. s
Boin 2 2m|n(c1)£1—co{ o +1D >0

provides a measure of how much is needed.
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Asymptotic behavior of 3., as function of n

u(t)
acy

Consider the upper bound

1.(G+C)< 1T ¢
n-=

Assume a single control site (¢, > 0, ¢; = 0 for j>1).
For fixed control parameter c,, B, decreases at least as fast as 1/n.

This means that for bounded control parameter ¢, and a, control cannot be
achieved for large n

In other words, for fixed a, it is necessary for c, to grow on the order of n in
order to achieve control.

Same conclusion apply to vertex-balanced networks, i.e. graphs where the
indegree of each vertex is equal to its outdegree.
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Asymptotic behavior of 3., as function of n

= For fixed a, and m=1, it is necessary for ¢, to grow on the order of n in
order to achieve synchronizing control.

= When is a growth rate of o(n) sufficient?

= Consider the lower bound u(t)

oc
/Bmin 2 /]2 >O 1

= Where A, is the second smallest eigenvalue of G, i.e. the algebraic
connectivity of the network.

= For fully connected graphs, or random graphs, A, grows on the order
of n and thus (3, will not vanish for large n and thus control is
achievable for large enough c,
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Locally connected graphs

= Theorem: IBmin S/]Z(G)

= Theorem: for locally connected graphs, A,(G) - 0 as N - ©

= Recall the synchronization condition:

:Bmin 2 1
a

= This means that for locally connected networks, control is not
achievable for fixedaas N - oo u(t)
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—_— Fullf connected g'raph
- - 1D nearest neighbor graph

= We see that for the locally connected graph, 3., decreases as n
increases, regardless of c;.

= For the fully connected graph, for fixed c,, 3, will decrease as n
decreases, but for large c,, 3., will remain bounded from below.
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Small number of control sites

= Similar conclusions as for m=1.

= If the number of control sites m grows slower than n, then a or c,
need to grow to maintain synchronization.

= Example: fully connected graph, with C =a =1 m= | \/ﬁ ‘
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Small number of control sites

= For a bounded parameter a and a locally connected network,
control is not possible if m grows slower than n.
= Example: cycle graph with ¢ =100n,a =1 m= | Jn

0
10 O

ﬁmjn
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Where to apply control?

= So far we look at the number of forced systems and the amount of
control to apply to each such system.

= The choice of the set of forced system is also important and
depends on the underlying network.

= Where should control be applied to maximize effectiveness?
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| ocalization to maximize control effectiveness

Give a control budgetZC, < ), how and where should the
i

control signal be applied in order to maximize control
effectiveness, i.e. maximize 3

Recall that B < ZC' /n

Answer is simple if we are allowed to apply control to every
system (m = n).

By applying control c; = y/n to every system, we get C = y/n | and
B.in=Y/MN. Thus B, is maximized subject to the control budget.
What happens if m < n?

D
min *
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Example: 2D grid graph

= Consider a 2D grid graph where

every node is connected to its 4 *—9o 9 o

nearest neighbours on a o ¢ o o
rectangular grid.

= Employ the following heuristic to

maximize 3 ) G S SR

min

1. Randomly assign m locations to — o o o
be the control locations

2. Randomly move one of these

locations if such a move increases IR
Bmin * o o @
3. Repeat step 2 ) S S
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Maximize (3.,

Apply heuristic for the following parameters: n = 100, m = 20, ¢ = 100, a = 1.
The resulting control locations are:

We note that the control locations are spread out.
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Minimize B,

Repeat same heuristic, but move control locations only if it decreases [,

Result for n =100, m =20, ¢c = 100, a = 1.

*r—o—» *—9o—9o o ® ®
¢ & & o & * o o
L » L 2 ® L L ] L 2 *
[ L L L » L | L »
*—o o * —9o 9o o ® ®
*—o o * —o—o oo ®
¢ & & o & * e o
¢« o & o & & & 0 »
e—0 0000000
—0 0 0 00 0 0 ©

We note that the control locations are clustered.

City University of Hong Kong

© 2008 IBM Corporation



IBM Thomas J. Watson Research Center

Control locations

= |t seems intuitive that control should be applied to locations such that any
node is reachable by some control signal via a short path.

= Two characterizations to quantify this idea.

= Let P be the set of control locations

1. D, =max,, d(v,P)

> d(v,P)

2. D& = vV\P

" |V\P]

= Dp describes the maximal distance between vertices in P and any other
vertex, where Dp2 describes the average distance from P to vertices outside
of P.

= Dp provides a lower bound to 3,

B 2%(2{r +%(2r)'DP D_ >0
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Minimizing D, does not maximize 3.,

1 2

3 4 5 6

= Example: single control site (m=1), ¢ = 10.
= Applying control at vertices 4 or 5 minimizes Dy whereas applying control at
vertices 1 or 2 maximizes 3,
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How about Dpa’?

= For afixed number of control sites m, is B,,;, maximized by a

configuration that minimize D,3?

= Experiment 1: 20000 random sets of 20 control locations on the grid graph.

2.8
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;Bmin
= Upper and lower envelope appears to be convex.
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Experiment 2

= A random graph with 100 vertices and 500 edges, ¢ = 100. Single control

site
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Experiment 3

35

Path graph with 100 vertices and 5 control sites, ¢ = 100.
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Experiment 4

Undirected graphs of n vertices are enumerated

For each graph, a single control is applied with ¢ = 10.

Check whether the location where 3,,,;, IS maximized corresponds to a minimal Dp2
Experiments show that this is true for all graphs of 6 vertices or less, single control site
(m=1), c = 10.

Counterexamples exist for n=7

1 2

3 4 5 6 7

Dp2is minimized at vertex 1, whereas [3,,,;, IS maximized by applying control at vertex 6.

Biin IS second largest at vertex 1.

Similar results for the question whether the location where (3, 1S minimized corresponds to
a maximal Dp2 (true for n < 6, false for n = 7)
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Some provable results

= Theorem: for the cycle graph and large enough forcing, the optimal
placement of P minimizes Dy, i.e. the forcing systems are spread out on the
cycle.

= A similar result can be shown for path graphs.
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Summary

= To achieve synchronizing control, it is necessary to apply control to roots of a
spanning directed forest.

= For vertex-balanced networks and a small number of control sites, it is necessary to
increase c; as n increases.

= This is sufficent for graphs with a strong connectivity such as fully connected graphs
and random graphs.

= However, for locally connected networks, control is not achievable for fixed a as n
Increases, i.e. the intersystem coupling a also need to increase.

= There appears to be an inverse relationship between D2 and (3, -

= Applying control to location that minimizes the average distance to non-control
vertices will (almost?) maximize control effectiveness.

u(t) u(t)
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Thank you very much.
Any questions?
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