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Abstract

We consider a network of interacting individuals, whose actions or transitions are determined by

the states (behaviour) of their neighbours as well as their own personal decisions. Specifically, we

develop a model according to two simple decision-making rules that can describe the growth of the

user population of a newly launched product or service. We analyse 22 sets of real-world historical

growth data of a variety of products and services, and show that they all follow the growth equation.

The numerical procedure for finding the model parameters allows the market size, and the relative

effectiveness of customer service and promotional efforts to be estimated from the available historical

growth data. We study the growth profiles of products and find that for a product or service to

reach a mature stage within a reasonably short time in its user growth profile, the user growth rate

corresponding to influenced transitions must exceed a certain threshold. Furthermore, results show

that individuals in the group of celebrities having numerous friends become users of a new product

or service at a much faster rate than those connected to ordinary individuals having fewer friends.
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1 Introduction

The study of the spreading of certain behaviour in a connected community has been conve-

niently modelled in terms of a network of individuals whose behaviour change as a result

of mutual influence. The transitional behaviour of individuals, such as spreading of an idea

or adoption of a new product or service in a networked community, partly resembles the
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process of epidemic spreading where contacts among individuals, i.e., influenced transi-

tions, remain a deciding factor for the growth in the number of infected individuals. Thus,

the conventional SI model would capture the behaviour of the spread of certain behaviour

or the growth of the user population of a product or service, associated with influence

of an individual to its other connected individuals which is similar to “transmission” of

virus from an infected individual to a connected susceptible individual. In the world of

business and a real social network, however, personal preference and educated decision

of individuals do play an equally important role in determining how behaviour spreads or

how a product popularises in the user community.

There is a wealth of literature devoted to the study of behaviour spreading on social

networks, growth of specific business sectors, and popularisation of products and services,

including both theoretical analysis and empirical research on real data. In the theoretical

work by Campbell (2013), a model of demand, pricing and advertising with individu-

als engaging in word-of-mouth communications has been reported. Effects of incorpo-

rating heterogeneity into several broad classes of models have also been studied by Young

(2009). Moreover, empirical research on real data has been actively pursued. In the work

of Leskovec et al. (2007), a network of 4 million people making recommendations on half

a million products has been used to analyse user behaviour, propagation of opinions and

scale of cascade of opinions. Empirical research on the cascade of messages in networks

has revealed network structures of very low clustering, and showed several features not

observed in other social dynamic processes (Iribarren and Moro, 2011). Furthermore, the

predictive performance of new models based on function regression has been compared

with several other models (Sood et al., 2009).

In this paper, we analyse the growth of the user population of a product or services in

terms of a connected community or a network of users (active agents) and prospective users

(susceptible agents), similar to a network comprising nodes and edges (Strogatz, 2001;

Albert and Barabási, 2002; Barabási and Albert, 1999), representing a set of relationships

across the edges through which individuals exert their influence on others. A prospective

user (P) does not use the product or service at the present time, but may transit into a user

(U) of the product or service at a later time. We consider two transition rules here. The first

rule is a peer-influenced transition, and the second one is a self (independent) transition.

These two rules represent two basic types of human decision behaviour, namely, by word

of mouth and personal choice (Geroski, 2000; Goldenberg et al., 2001; Campbell, 2013).

Individuals’ decisions are often influenced by the decision of their neighbours, which is

common in social networks. The peer-influence rule corresponds to a prospective user who,

after interacting with other users and being informed about the benefits of using the product

or service, becomes a user. The transition driven by personal choice is a spontaneous

decision of the particular prospective user and has nothing to do with other users whom

the prospective user connects with. A prospective user may be positively informed about

the product or service via the media, advertisements, or other means unrelated to the users

of the product or service whom the prospective user knows. Then, the growth of users

in the network can be studied in terms of stochastic processes. This model has the basic

structure of the SIS model of epidemiology (Pastor-Satorras and Vespignani, 2001; Lopez,

2008; Hethcote, 2000; Jackson and Rogers, 2007), however, the transitions of the states

of individuals are dependent upon factors not limited to influence represented by the set
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of relationships across the edges. Moreover, our goal in this paper is to derive from first

principle an ordinary differential equation (ODE) model that describes the user growth

profile in continuous time. Two cases are considered. First, if the social network is a general

uncorrelated network, the user growth profile can be described by a set of ODEs. It can be

shown theoretically that nodes with high degrees, namely, prospective users having many

connections, transit to users at a faster rate. Second, if the social network is a homogeneous

uncorrelated network, the user growth model can be represented by a nonlinear first-order

ODE, which has a simple closed-form solution.

Next, using appropriate parameter estimation tools, we show that this model permits

analysis of the growth profile of user populations of real-world products and services

Here, we analyse a total of 22 historical user-growth (sales) datasets, including online

social network services, instant messaging services, online payment services, video game

console sales, automobile sales, mobile apps, microblogging subscribers, and so on. In

particular, we show that our user growth equation fits these historical growth data, and in

each case, the key parameters of the model, namely, market size and growth rates, can

be estimated from the given historical growth data. Thus, a very useful application of the

model can be conceived. We find that the average magnitude of micro-level word-of-mouth

component of the growth rate of 21 different products or services is of order about 10−3

(i.e., 1 out of 1000 transits to become user of the product per day), while the personal-

choice component is about 10−5. Here, we borrow the concept of settling time from control

theory (Phillips and Habor, 1995), and show that if a product or service succeeds to acquire

a steady (mature) user population within a few years (5 to 10 years), the word-of-mouth

component of growth rate should range from 10−3.6 to 10−2.8, which is consistent with

the estimation from the real data. This result clearly suggests that a successful product or

service with a growth span (the time taken to reach a mature user population) between

5 to 10 years must have a word-of-mouth component of the growth rate larger than a

certain threshold (here, numerically 10−4), and its significance begins to saturate when

it increases beyond 10−2.8. Furthermore, for a heterogeneous network, individuals can be

roughly divided into two groups: one contains the majority who have relatively few friends,

and the other includes celebrities and very popular people who have numerous friends. In

this case, the dynamic growth can be model by a second-order growth model. We apply the

second-order growth model in two specific cases, namely, the historical data of the number

of registered users of Facebook and the donation collected by ALS Association during

the Ice Bucket Challenge in July-August 2014. We find that individuals in the group of

celebrities have about 7.14 times more friends (connections) than those in the ordinary

group, and the group of celebrities becomes Facebook users at a much faster rate than the

ordinary group, which is in agreement with the historical growth data of Facebook and the

analytical results.

2 User Growth Model

Consider a network G = (V,E) of users and prospective users of a launched product

or service, where V and E denote the sets of nodes and edges, respectively. A social

network can be modelled as a dynamic network in which each node assumes one or more

possible states and may transit from one state to another as time elapses (Pastor-Satorras
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Fig. 1. Transition network model. A prospective user may become user under peer influence. A

prospective user may also make his own independent decision to become user.

and Vespignani, 2001; Buldyrev et al., 2010; González-Bailón et al., 2011). Here, each

node represents an individual who may assume one of two possible states: U and P. A

node in state U corresponds to a user of the product or service, whereas a node in state

P represents a prospective user who may become a user at a future time. Here, a link

between two nodes indicates that the two individuals know each other, e.g., being friends,

colleagues, relatives, etc. In our model, a prospective user transits into a user according to

two rules, as illustrated in Figure 1. A detailed description of the two rules is as follows:

• Influenced Transition (Word of Mouth): A prospective user may be positively in-

formed about a product or service by other users whom the prospective user knows.

The result of peer influence may lead to transition of the prospective user into a user

(Goldenberg et al., 2001). In the network context, the effect of a connection between

a node in state P and a node in state U is that the node in state P may transit to state

U with a probability c1. The upper part of Figure 1 illustrates this transition, which

can be represented by the following transition channel:

T1 : (P—U)
c1−→(U—U), (1)

where T1 denotes a transition channel, and “−” denotes a connection between two

nodes. Here, P—U represents a node in state P being connected with a node in state

U . The arrow indicates a transition direction, c1 being the stochastic rate of transition
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for channel T1. Also, (P—U) denotes the set of prospective transition links and (U—

U) is the set of resulting links after transition.

• Self Transition (Personal Choice): In reality, prospective users are often informed

about a product or service through advertisements, sale promotions or personal re-

search (Nelson, 1974), and the decision to use a product or service is a pure personal

choice. The transition of a node from state P to U is thus a self transition, which is

independent of the nodes in state U that are connected to it. Suppose the transition

probability is c2. The right side of Figure 1 illustrates this self transition, and the

transition channel can be written as

T2 : (P)
c2−→(U). (2)

where T2 denotes this self transition channel, (P) is the set of prospective transition

links (in this case just the set of nodes in state P) and (U) is the set of resulting links

after transition.

Here, we assume that transition channels Tµ (µ = 1, 2) are independent and all transition

links of transition channels Tµ is homogeneous and exclusive. Then, each prospective

transition link of transition channel Tµ has the same transition rate cµ . Therefore, cµ∆t

is the probability that a prospective transition link of channel Tµ at time t will make a

transition in the next infinitesimal time interval (t, t +∆t). For simplicity, we assume that

cµ is constant, but it can be made time-varying with no significant effect on the result of

the analysis.

Applying the mean-field approach, in a social network G = (V,E) of users and prospec-

tive users of a product or service, we first assume the following:

• There are N nodes in this network;

• Each node has a degree vi ∈ {k1,k2, · · · ,kI}, where k1 < k2 < · · · < kI and I ≤ N.

Here, ki represents the number of connections from an individual to others;

• The number of nodes with degree ki is Ni.

Hence, N = ∑I
i=1 Ni and the average node degree 〈k〉= ∑I

i=1 kiNi

/
N. Suppose at time t, the

number of users with degree ki is ni. An individual i ∈ N can only exist in two states: U

and P.

Assume that this network is uncorrelated, namely, the probability that a link points to

a node with s connections is equal to sp(s)
/
〈k〉 (Pastor-Satorras and Vespignani, 2001),

where p(s) is the probability of a node having degree s. Then, applying the mean-field ap-

proach, we can readily derive the following Ith-order growth equation (details provided

in the Supplementary Material):

∂xi

∂ t
=

c1ki

N 〈k〉

(

Ni

I

∑
j=1

k jx j − xi

I

∑
j=1

k jx j(1+ δi j)

)

+ c2(Ni − xi), (i = 1,2, · · · , I), (3)

where xi
∆
= E[ni] and δi j =

cov[ni,n j ]

E[ni,n j ]
. For a very large network, δi j ≪ 1 generally holds,

leading to

∂xi

∂ t
=

c1ki

N 〈k〉
(Ni − xi)∑

I

j=1
k jx j + c2(Ni − xi). (4)
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If the network is homogenous, namely, k1 ≈ k2 ≈ ·· · ≈ kI ≈ 〈k〉, we can treat I = 1, and

we get the corresponding first-order growth model as:

ẋ(t) =
c1 〈k〉

N

(
Nx− (1+ δ (t))x2

)

︸ ︷︷ ︸

Word of mouth

+ c2(N − x)
︸ ︷︷ ︸

Personal choice

, (5)

where δ (t) = var[X(t)]/E[X(t)]2 with X(t) = ∑I
j=1 ni. With δ (t)≪ 1, we have the follow-

ing simplified version of the first-order growth model:

ẋ(t) =







c1 〈k〉

N
x

︸ ︷︷ ︸

Word of mouth

+ c2
︸︷︷︸

Personal choice







× (N − x)
︸ ︷︷ ︸

Market size

(6)

The first-order growth model allows convenient interpretations of the physical meanings

of the involving parameters, i.e.,

• 〈k〉: average number of links connecting people in the entire community;

• N: network size or total number of prospective users;

• c1: stochastic rate that determines how likely a prospective user transits into a user

under the influence of other users connected to him (i.e., word of mouth);

• c2: stochastic rate that determines how likely a prospective user transits into a user

on his own accord (i.e., personal choice).

Note that the term c1 〈k〉/N can be treated as the macro-level rate that describes the

speed of prospective users transiting into users through peer influence, whereas c1 is the

micro-level stochastic rate. It is readily shown that the influenced transition is dependent

on the network parameters, namely, the network size N and the average node degree 〈k〉.

If the user network has a large average node degree 〈k〉, i.e., individuals have more friends

on average, the term
c1〈k〉

N
will be larger and the user growth will be more dependent on

peer influence. However, the larger the network size, the smaller the macro-level word-of-

mouth component of the transition rate
c1〈k〉

N
. Furthermore, the results based on real data

listed in Table 2 support this finding. To avoid confusion, we use the term c1 〈k〉 to reflect

the effect of peer influence at the micro-level.

For algebraic convenience, we may rewrite the above first-order growth equation as

ẋ(t) = k0+k1x−k2x2 by putting k0 = c2N, k1 = c1 〈k〉−c2 and k2 =
c1〈k〉

N
(1+δ ). A closed-

form solution can also be found for this equation, i.e.,

x(t) = a+
b

c+ de−bt
, (7)

where a
∆
= k1−b

2k2
, b

∆
=
√

k2
1 + 4k0k2, c

∆
= k2 and d = b

x0−a
− c and x0 is the number of initial

users.

3 Analysis of Datasets

A total of 22 sets of user growth data for a range of products and services, including

online social networking services, instant messaging services, online payment services,

microblogging websites, video game consoles, automobile, and mobile apps, are analysed
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against the growth equation. These data are publicly available and include Facebook,

LinkedIn, Sina Weibo (a popular microblogging website in China), Tencent Weibo (a

popular microblogging website in China), XBOX, Playstation 2, Nintendo GameCube,

Game Boy Advance SP, Tencent QQ (online messaging service), Line (a popular instant

messaging app in Japan), WeChat (a popular instant messaging app in China), Kakao Talk

(a popular instant messaging app in Korea), App store, Google Play, electric vehicles, US

passenger automobile sales in China, Alipay, Evernote (a software for note taking and

archiving), US hospital accounts on YouTube and global internet users.

3.1 Relationship Between the Measured Data and User Growth Process

These datasets provide the number of registered accounts (subscribers) for online services,

or the sales volume of particular products. Strictly speaking, these data are not exactly the

number of users xi(t) defined earlier, but are highly indicative of xi(t) for the products or

services being analysed. We can modify the model to enhance its practicality. For example,

a user of Playstation 2 may own more than one unit of the game console. Suppose the

cumulative number of units already sold to an individual until time t is M(t). Then, the

probability that one user owns m units of the game console when the total number of users

with degree ki is xi(t) = ni is given by P(M(t) =m |xi(t) = ni). Thus, the total sales volume

at time t is

∞

∑
m=1

mP(M(t) = m |xi(t) = ni )× ni = ni

(
∞

∑
m=1

mP(M(t) = m |x(t) = ni )

)

. (8)

Then, on average, one player will buy M̄ni
(t) = ∑∞

m=1 mP(M(t) = m |x(t) = ni ) units. Note

that in reality, the number of users ni is very large, such as in millions. So, it is reasonable

to assume that P(M(t) = m |x(t) = ni )≈ limni→∞ P(M(t) = m |x(t) = ni )=Pm is constant.

Hence, M̄ni
(t)≈ limni→∞ M̄ni

(t) = β and we have the conclusion

x̄i(t)≈ M̄∞(t) ·ni ⇒ x̄i(t)≈ β x(t), (9)

where x̄(t) is the cumulative number of units already sold to a group of individuals with

degree ki and β ≥ 1 is a constant. Combining (9) with the user-growth model (4), we have

∂ x̄i

∂ t
=

c1ki

β N 〈k〉

(

β Ni

I

∑
j=1

k j x̄ j −Xi

I

∑
j=1

k j x̄ j(1+ δi j)

)

+ c2(β Ni − x̄i). (10)

This growth equation has exactly the same form as Eq. (4) with a market size β N. We

therefore conclude that the user growth equation presented in the paper is valid for cases

where a user may own multiple units of the product.

3.2 Application Examples of First/Second-Order Growth Models

The user growth equation (6) is used to fit real datasets. The model has a set of intrinsic

parameters which can be estimated via constrained nonlinear programming (NLP), with the

objective of finding an estimated trajectory of growth that fits the measured data (Moles

et al., 2003; Mendes and Kell, 1998). The inverse method is used to find a feasible set of
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Fig. 2. Model generated growth trajectories by the first-order model (blue solid curves), the second-

order model (black solid line) and historical data (squares) for registered users of Facebook (left

panel) and donations to ALS Association during the Ice Bucket Challenge in July–August 2014

(right panel); MAPE of the prediction data generated by the first-order model and the second-order

model (inset).

parameters (Zhan and Yeung, 2011). Finally, we generate the estimated trajectory with the

identified parameter.

First, we compare the fitting ability of Second and First order growth model to test

how the fitness of the data depends on the order of the growth model used. We use Mean

Absolute Percentage Error (MAPE) as another criterion for evaluating the performance.

The MAPE is defined as

MAPE(ti) =
|x̃(ti)− x(ti)|

x(ti)
× 100%, (11)

where x̃(ti) is the estimated number of users at time ti. Here, we use Facebook as an

example. Figure 2 shows that the MAPE of the first-order growth model gives a good

fitting of the measured data after 2008. However, in the earlier period (before 2008), the

first-order user growth model cannot capture the user growth dynamics accurately. For

instance, in January 2007, the MAPE is almost 130%. Now, let us use the second-order

user growth model (I = 2) to fit the data, i.e.,
{

ẋ1(t) =
c1k1
N〈k〉 (N1 − x1)(k1x1 + k2x2)+ c2 (N1 − x1) ,

ẋ2(t) =
c1k2
N〈k〉 (N2 − x2)(k1x1 + k2x2)+ c2 (N2 − x2) .

(12)

In the second-order user growth model, all the Facebook users can be roughly divided into

two groups: one group is the majority (ordinary) group of people who have relatively few

friends, i.e., k1 is small; the other group includes celebrities and very popular people who

have numerous friends, i.e., k2 is large. Also, N1 and N2 are the number of people in the

first and second groups, respectively. The estimated growth trajectory of Facebook users

using (12) and the corresponding MAPE are given in Figure 2. From these results, we see

that the second-order user growth model can capture the real data more accurately for the

entire timeframe. Furthermore, the results of parameter identification reveal that
k2
k1
≈ 7.14,

N1 = 1.39×109 and N2 = 7.05×108, i.e., the size of the ordinary group is about 109 while

the size of celebrities and popular people is 7×108. However, one popular person may have
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Table 1. Estimated model parameters from fitting of historical datasets

Data Market size

(N1)

Market size

(N2)

Micro-level

growth rate by

word of mouth

(c1 〈k1〉)

Micro-level

growth rate by

word of mouth

(c1 〈k2〉)

Growth rate

by personal

choice (c2)

k2/k1

Facebook 1.39×109 7.09×108 1.42×10−3 1.02×10−2 1.32×10−6 7.14

Donations

(Ice Bucket

Challenge)

9.43×104 1.09×108 1.799×10−1 3.988×10−1 4.52×10−21 2.21

7.14 times more friends than an average ordinary person. The estimated parameter seems

reasonable. As another example, the growth of donations to ALS (Amyotrophic Lateral

Sclerosis) Association during the Ice Bucket Challenge, which went viral on social media

during July to August 2014, also supports our findings. The estimated parameters of the

second-order user growth model are given in Table 1.

Consider the Ith-order growth equation (10) and let z j be the number of remaining

prospective users of degree k j. Thus, z j = N j − x j ( j = 1,2, · · · I). At the initial time, the

number of prospective users of degree ki is zi,0. Then, we may state that if the growth of the

user population of a product or service is described by the Ith-order model (4), the dynamic

profile of remaining prospective users of degree ki is given by

zi(t) = zi,0 (g(t))
c1ki e−c2t , (13)

where g(t) = e
Ψ(t)
N〈k〉

−t
and Ψ(t) =

∫ t
0 ∑I

j=1 k jz j(s)ds. The derivation of (13) is given in the

Appendix.

Now, applying (13), the number of prospective users of Facebook follows:
{

z̃1(t)≈ (g(t))c1k1e−c2t ,

z̃2(t)≈ (g(t))c1k2e−c2t
(14)

where 0< g(t)< 1 and 0 ≤ z̃i(t) = zi(t)
/

Ni ≤ 1. Hence, we have log(z̃2(t)/z̃1(t))≈ 7, i.e.,

the group of celebrities becomes Facebook users at a much faster rate than the ordinary

group. This result reveals some key features of Facebook growth:

• At the beginning, only ordinary users with small k1 signed up. The growth was slow

before 2008.

• As time elapses, the group of celebrities and popular people signed up. As this group

has more friends (a large k2), the word-of-mouth transition became significant and

the number of sign-ups increased drastically from 2008 to 2014.

• From 2014, as most people in the popular group and their friends have signed up

as Facebook users, the word-of-mouth influence began to subside, and the growth

slowed down.

This phenomenon is in perfect agreement with our analytical results.
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Equation (14) shows that the group of prospective users with more links will transit into

users at a faster rate. A similar phenomenon has been observed in the long-run behaviour

of the model by Paster-Satorras and Vespignani (2001). In the real world, a new product

or activity exhibits very rapid growth if it is promoted by celebrities having a lot of con-

nections. Our analytical result coincides with the spreading phenomenon observed in the

growth of users of a product or participants of an activity, such as the Ice Bucket Challenge

in 2014.

Theoretically, a higher-order growth model can capture the real data more accurately.

However, for a higher order growth model, the parameter estimation problem has to be for-

mulated into a constraint nonlinear programming problem (NLP) with differential-algebraic

constraints, which is often multimodal (non-convex) and has many local minima. In a noisy

environment, the problem becomes more difficult to tackle. Moreover, there is no closed

form solution for a higher order growth model. Hence, an ODE solver has to be used during

the process of identification and has to be executed thousands, even millions of times.

The computational time spent on finding a reliable optimisation solution is quite excessive

(typically days or weeks using ordinary computers). However, for parameter estimation of

the first-order growth model, we are privileged by the existence of a closed form solution.

The cost function has only algebraic equation constraints and does not require an ODE

solver. Our test shows that the computational time for identifying a second-order model is

more than 100 times more than the computational time for identifying the first-order model.

Hence, in order to strike a balance between computational time and model accuracy, we

use the first-order growth model for fitting the data and analysis.

3.3 Fitting 21 Real Data by First-Order Growth Model

Here, we use the Normalised Relative Mean Square Error (NRMSE) (Shcherbakov et

al., 2013) as a criterion to evaluate the first-order growth model. The NRMSEs of the

21 products are given in Table 2, which shows that the first-order growth model can

capture the measured data accurately. We The trajectories generated by the user growth

equation are also shown in Figures 3 and 4. Historical user growth data are plotted in

squares, and growth trajectories generated by our model are plotted with solid curves.

Note that the 21 products or services were launched by different enterprises in different

countries, belonging to different markets and attracting users from different communities.

Some datasets contain over a decade of user growth information, such as Tencent QQ,

Facebook and etc. In the past decade, many factors have contributed to the business growth

of online products and services. However, their user growth profiles are all governed by a

growth equation.

The estimated parameters of the 21 products or services are given in Table 2. Let us take

a look at c1 〈k〉 and c2, which are the micro-level growth rate corresponding to influenced

transition (word of mouth) and personal choice rate, respectively. For example, the c1 〈k〉

of Tencent QQ is 1.51×10−3. Here, we assume 〈k〉 = 10, which means that, on average,

one QQ (prospective) user connects with 10 other (prospective) users. Then, c1 =
c1〈k〉

10
=

1.51× 10−4/day, which shows that, on average, 1.51 out of 10 thousand prospective QQ

users will transit into a user each day by word of mouth.
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Table 2. Estimated model parameters from fitting of historical datasets. Value is fractional

number of transitions to users per day, e.g., c1 = 2.25× 10−3 means that 2.25 out of 1000

prospective users become users per day.

Data Market size

(N)
Macro growth

rate by word of

mouth (
c1〈k〉

N
)

Micro growth

rate by word of

mouth (c1 〈k〉)

Growth rate by

personal choice

(c2)

NRMSE

(%)

Facebook 1.29×109 1.77×10−12 2.27×10−3 2.25×10−5 5.22

LinkedIn 4.42×108 3.63×10−12 1.60×10−3 7.83×10−6 4.42

Tecent QQ 2.70×108 5.60×10−12 1.51×10−3 9.33×10−13 11.6

Evernote 1.35×108 2.40×10−11 3.23×10−3 2.31×10−6 5.09

Line 3.87×108 1.29×10−11 4.99×10−3 1.44×10−4 3.63

Kakao Talk 3.86×108 4.03×10−12 1.56×10−3 1.26×10−4 3.27

Playstation 2 1.72×108 2.67×10−12 4.60×10−4 3.19×10−4 3.80

Gameboy

Advantage SP

4.18×107 4.66×10−11 2.04×10−3 8.11×10−4 6.93

XBOX 2.98×107 4.52×10−11 1.34×10−3 4.36×10−4 8.18

Nintendo

GameCube

2.22×107 1.09×10−10 2.44×10−3 1.27×10−4 9.86

Available iOS apps 1.66×106 8.67×10−10 1.44×10−3 1.24×10−4 8.72

Downloaded iOS

apps

1.02×1011 2.32×10−14 2.36×10−3 3.48×10−5 7.33

Available Android

apps

1.36×106 2.14×10−9 2.91×10−3 1.09×10−4 5.50

Sales of US brand

cars in China

3.32×107 2.27×10−11 7.56×10−4 1.58×10−5 2.48

Sales of plug-in

vehicles in US

6.73×106 1.63×10−10 1.10×10−3 8.13×10−5 3.84

US hospital

accounts on

Youtube

1.39×102 4.30×10−5 5.93×10−3 1.38×10−4 4.62

Wechat 6.16×108 8.99×10−12 5.53×10−3 8.76×10−5 2.54

Sina Weibo 5.95×108 7.06×10−12 4.19×10−3 1.23×10−4 9.80

Tencent Weibo 3.63×108 2.36×10−11 8.57×10−3 2.37×10−25 12.4

Alipay 4.24×108 7.38×10−12 3.12×10−3 3.01×10−26 7.20

Internet users 4.93×109 8.91×10−12 4.39×10−4 2.42×10−5 6.47

Furthermore, comparison of c1 〈k〉 and c2 can provide crucial information about the

relative importance of peer influence (purchase incentivised by word of mouth) and promo-

tional efforts (purchase based purely on personal decision of buyers). The model generated

from Tencent QQ, for example, has negligible c2 compared to c1 〈k〉, which clearly suggests

the importance of word of mouth and peer influence on the prospective users. On the

other hand, the decision to buy a Playstation 2 is more a matter of personal choice, which

is likely a result of aggressive promotional efforts, as suggested by the relatively larger

c2 compared to c1 〈k〉. Here, we show how these parameters determine the shape of the

growth curve. From the closed form solution of the first-order model (7), we know that



ZU064-05-FPR user-growth˙2016˙01˙24 24 January 2016 21:36

12 C. Zhan and C.K. Tse

0

0.5

1

1.5

2

2.5

3
x 10

8

0

2

4

6

8

10

12

14

16

18
x 10

7

0

1

2

3

4

5

6

7

8

9
x 10

6

Feb/01 Oct/03 Jun/06 Feb/09 Oct/11 Jun/14
0

2

4

6

8

10

12
x 10

8

 

 
Facebook
LinkedIn
QQ
Car sales in China
Facebook (model)
LinkedIn (model)
QQ (model)
Car sales in China (model)

0

1

2

3

4

5

6
x 10

10

0

1

2

3

4

5

6

7

8

9

10
x 10

5

Sep/08 Oct/09 Nov/10 Nov/11 Dec/12 Jan/14
0

1

2

3

4

5

6

7

8

9

10
x 10

5

 

 
Available iOS apps
Download iOS apps
Available Android apps
iOS app (model)
Download iOS apps (model)
Android apps (model)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

8

0

2

4

6

8

10

12

14

16

18
x 10

5

Jan/10 Dec/10 Oct/11 Sep/12 Jul/13 Jun/14
0

1

2

3

4

5

6

7

8

9

10
x 10

7

 

 
Kakao Talk
Line
Wechat
Plug−in car sales
Kakao Talk (model)
Line  (model)
Wechat (model)
Plug−in car sales (model)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

Mar/01 Apr/03 Jun/05 Jul/07 Aug/09 Sep/11
0

2

4

6

8

10

12

14

16
x 10

7

 

 

PS2 sales
GBA sales
GameCube sales
XBOX sales
PS2 (model)
GBA (model)
GameCube (model)
XBOX (model)

Fig. 3. Model generated growth trajectories (solid curves) and historical datasets (squares) for

register users of Facebook, LinkedIn, QQ and sales of US brand cars in China (upper left panel);

available iOS apps, downloaded iOS apps and available Android apps (upper right panel); register

users of Kakao Talk, Line, WeChat and sales of plug-in vehicles in US (lower left panel); sales of

Playstation 2, Gameboy Advantage, GameCube and XBOX (lower right panel).

x′(t) is always positive and x(t) is monotonically increasing. The shape of the curve is

related to the second derivative of x(t), which is x′′(t) = b3de−bt(de−bt−c)

(c+de−bt)3 . Since b3de−bt >

0 and (c + de−bt)3 > 0, the sign of x′′(t) is decided by the term (de−bt − c), which is

monotonically decreasing. Here, we may categorise the shape of growth curves into two

general classes:

• S-shape curve: In this case, x′′(t0) ≥ 0, then, x′′(t) < 0 with t > logd−logc
b

. The final

value is x′′(+∞) = 0.

• Concave curve: In this case, x′′(t0)< 0 and x′′(t)< 0 at all times. The final value is

x′′(+∞) = 0.

Hence, the shape of growth curve is determined by x′′(t0). Without loss of generality, we

can set the initial time t0 = 0. Then, we have de−bt0 − c = d− c. From the definitions of a,

b, c d, k1 and k2, we can write






x′′(t0)≥ 0 ⇔ N
c1 〈k〉− c2

2c2(1+ δ )
≥ x0, S-shape

x′′(t0)< 0 ⇔ N
c1 〈k〉− c2

2c2(1+ δ )
< x0, Concave
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Fig. 4. Model generated growth trajectories (solid curves) and historical datasets (squares) for

registered users of Evernote, Sino Weibo and Tencent Weibo (upper left panel); registered users

of Alipay and YouTube accounts of US hospitals (upper right panel); global internet users (lower

left panel); the micro-level word-of-mouth transition rate and personal-choice rate of the 21 markets

(lower right panel).

Apply this result to growth data, we have the following observations:

• When c1 〈k〉 ≫ c2 and x0 is small, we have x′′(t0) > 0. In this case, the number of

initial users is small and the product is mostly promoted through word-of-mouth

of users. For instance, Tencent QQ, which is an instant messaging software service

developed by Chinese company Tencent Holdings Limited and released in 1999,

had a market value less than 50,000 USD and about 100,000 users in 2000. Back

then, Tencent could hardly afford extensive advertisement. At the beginning, QQ

was mostly promoted by word-of-mouth in high schools and colleges. Later users of

QQ spread all over China. The growth curve is an S-shape curve. Another typical

example is Facebook, which was launched by a small company (x0 being small)

having very limited fund for promotion (c2 being small). However, this product is a

revolutionary product and gains reputation rapidly (c1 〈k〉 being large). The growth

curve is also S-shape as consistently described by the model.

• When c1 〈k〉 ≈ c2 and x0 is large, we have x′′(t0) < 0. In this case, personal choice

plays an important role. For instance, the PS2 game console, which is Sony’s second

installment in the PlayStation Series, made extensive advertisement and overwhelm-

ing news before it was launched. Sony, which is a giant companies, could afford
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very substantial promotional cost to advertise its PS2 all over the world to make PS2

the best-selling video game console in history. In this case, the growth curve is a

concave curve. Other examples are Gameboy, XBOX, etc. Hence, a product from

a financially well positioned company could attract a lot of attention before it is

launched (x0 being large). The company invests substantially to promote it (c2 being

large). The growth curve is concave.

Furthermore, let us take a look at the estimated user size N of two video game consoles,

XBOX (Microsoft) and PS2 (Sony). Our results show that the estimated PS2 potential user

population is almost 6 times larger than that for XBOX. In fact, Microsoft first set into

the video console market and developed XBOX in 2001, but at that time, the video game

console market was already monopolised by Sony. XBOX did not manage to change the

market trend, and PS2 remained one of most popular video game consoles. The estimated

potential user populations of XBOX and PS2 are in full agreement with the real market

data.

3.4 Analysis of Growth Span of Products

The results of parameter identification support our analytical findings. Specifically, the

macro-level word-of-mouth component of the growth rate is dependent on the network

structure. For a larger market size N, the macro-level word-of-mouth component of the

growth rate is smaller (see Table 2, column 3). For instance, the iOS apps have a large

market size of about N = 1.02× 1011, while their macro-level user growth rate is the

smallest (about 2.32× 10−14). However, the magnitude of the micro-level word-of-mouth

component of the growth rate c1 〈k〉 is of order 10−3 (18 products), and 10−4 (3 products).

This finding is noteworthy, as the 21 products or services belong to different markets,

such as video games, automobile, smartphones, etc. The lower right panel of Figure 4

shows the 21 values of − log10 (c1 〈k〉) and − log10 (c2). Note that the larger the value of

− log10 (c1 〈k〉) or − log10 (c2), the smaller the value of c1 〈k〉 or c2. This indicates that

the micro-level word-of-mouth component of the growth rate varies very little, while the

personal-choice component varies widely from product to product.

A question arises at this point. Why do the 21 datasets have such consistent (similar)

word-of-mouth component of the growth rate c1 〈k〉 (all being ranged from 10−2.8 to 10−4)?

Here, we borrow the concept of settling time from control theory, which is used for analysis

of the dynamic property of a system (Phillips and Habor, 1995). Specifically, we define the

growth span of a product or service as the time required for its user population to grow

from a small initial value x(t0) = αN at t = t0 to reach its final mature value, namely,

x(te) = β N at t = te, within a small tolerance range (e.g., 5%) around x(te) for the first

time. The time duration Ts = te − t0 is the growth span of a product.

Thus, the growth span is basically the settling time commonly used in control theory, and

in our case, if the user network is homogeneous and uncorrelated network, and assuming

δ ≈ 0, the growth span of a product is given by

Ts(c1 〈k〉 ,c2)≈
log(1−α)+ log(β c1 〈k〉+ c2)− log(1−β )− log(αc1 〈k〉+ c2)

c1 〈k〉+ c2

(15)
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Fig. 5. Growth span of products versus c1 〈k〉 ∈ [10−4 10−2] and c2 ∈ [10−30 10−2] (left panel).

Lifespan of products for 10−4 ≤ c1 〈k〉 ≤ 10−2 and 10−4c1 〈k〉 ≤ c2 ≤ c1 〈k〉. Green area is the

desirable region for a product with growth span of 5 to 10 years (right panel).

The derivation of the above result is given in the Appendix. In this paper, we set α = 0.05

and β = 0.95.

Figure 5 shows the growth span versus c1 〈k〉 and c2. Here, we analyze a class of products

or services, of which the growth span is about 5 to 10 years (i.e., 5≤Ts ≤ 10). The personal-

choice component of the growth rate is given as c2 = λ c1 〈k〉, where λ is the ratio of the

personal-choice component compared to the word-of-mouth component of the growth rate.

Here, we set 10−4 ≤ λ ≤ 1. In particular, λ = 1 means that personal choice is as important

as word of mouth, while λ = 10−4 means that the impact of personal choice is negligible.

Figure 5 shows that with a constant λ , the smaller the value of c2, the longer the lifespan of

a product. The green area in the left panel of Figure 5 is the desirable region with lifespan

Ts ranging from 5 to 10 years (black segment in the y-axis). Note that under this condition,

the suitable range of c1 〈k〉 is about 10−3.8 to 10−2.8 (black segment in the x-axis), which

agrees with the result shown in column 4 of Table 2 and the lower right panel of Figure 4.

Thus, we clearly see that c1 〈k〉 for a successful product or service must exceed 10−4, but

its significance saturates which it reaches 10−2.8.

4 Conclusion

A growth equation for any product, service or participation in an activity is derived rigor-

ously from a network model and consideration of the physical processes of the transitions

involved. The final form of this model is simple and appears as a product of several factors

which have very clear physical meanings. Specifically, given a set of historical data of the

user growth profile, this model allows the prospective market size to be predicted, and at the

same time identifies the relative importance of customer service and promotional efforts.

These estimated parameters, namely N, c1 〈k〉, and c2, generated from historical data, can

thus provide very useful information for making decisions in business. From the business

perspective, parameter N is effectively the market size, whereas parameters c1 〈k〉 and c2

are measures of the importance of word of mouth and personal choice, respectively, which

translate to effectiveness of customer service and promotional efforts. Furthermore, (N−x)

gives the remaining market size which is an important indicator of the growth potential of
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the user population of a product or service. We should stress that we present here a basic

model, which fits historical growth data and generates parameters of practical importance.

There is still plenty of room for further study. For instance, we may improve the model by

extending the model to accommodate competing products, over-supply quantities, etc. In

terms of parameter estimations, more efficient and reliable optimisation methods will need

to be developed for finding the parameters which have important business implications.

Using this model, together with sufficient historical data and efficient parameter estimation

methods, effective marketing and timing strategies can thus be developed to ensure the

success of the products or services in question or the timely initiation and launching of

new products or services.

Appendix

Proof of Equation (13)

Let z j be the number of prospective users of degree k j, and z j
∆
= N j − x j ( j = 1,2, · · · I).

Hence, (4) can be simplified as

∂ zi

∂ t
=−zi

(
c1ki

N 〈k〉 ∑
I

j=1
k jN j + c2

)

+
c1ki

N 〈k〉
zi ∑

I

j=1
k jz j . (16)

Define

βi =
c1ki

N〈k〉 ,

γi =
c1ki

N〈k〉 ∑I
j=1 k jN j + c2 = c1ki + c2,

Then, (16) can be simplified as

∂ zi

∂ t
=−γizi +βizi ∑

I

j=1
k jz j. (17)

Let φ = ∑I
j=1 k jz j, Ψ(t) =

∫ t
0 φ(s)ds and Xi(t) = zie

−βiΨ(t). Then, from (17), we have

∂Xi(t)

∂ t
=−γizie

−βiΨ =−γiXi(t). (18)

Note that since Ψ(0) = 0, Xi(0) = zi,0, where zi,0 is the initial number of prospective users

of degree ki. Hence, (18) has an analytical solution given by

∂Xi(t)

∂ t
=−γiXi(t)⇒ Xi(t) = zi,0e−(c1ki+c2)t . (19)

Finally, from (19), we obtain the prospective user profile as

zi(t) = zi,0 (g(t))
c1ki e−c2t (20)

where g(t) = e
Ψ(t)
N〈k〉

−t
. Q.E.D.

Derivation of Growth Span of Products

Without loss of generality, we assume that t0 = 0, then, there exist x(0) = αN and x(Ts) =

β N. From (7),

αN = x(0) = a+
b

c+ d
, and β N = x(Ts) = a+

b

c+ de−bTs
. (21)
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As δ ≈ 0, from the previous equation, we can derived that

T s(c1 〈k〉 ,c2) =
log(1−α)+ log(β c1 〈k〉+ c2)− log(1−β )− log(αc1 〈k〉+ c2)

c1 〈k〉+ c2

(22)

Q.E.D.
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