
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023 1015

Heterogeneity Shifts the Storage-Computation
Tradeoff in Secure Multi-Cloud Systems

Jiajun Chen , Chi Wan Sung , and Terence H. Chan

Abstract— This paper considers the design of heterogeneous
multi-cloud systems for big data storage and computing in the
presence of cloud collusion and failures. A fundamental concept
of such a system is the secrecy capacity, which represents the
maximum amount of information that can be stored for each unit
of storage space under the requirements of secure distributed
computing. A capacity-achieving code is designed for matrix
multiplication, a computing subroutine widely used in machine
learning applications. The code allows fast parallel decoding and
unequal data allocation in the clouds. Such a flexibility leads
naturally to the idea of optimizing data allocation to minimize the
computing time. Given any feasible storage budget, the optimal
solution is derived, characterizing explicitly the fundamental
tradeoff between storage and computing. Furthermore, it is
shown via majorization theory that the whole tradeoff curve
improves if the cloud computing rates are more even. Exper-
iments on Amazon EC2 clusters are conducted, corroborating
our theoretical observations and the negligibility of decoding
overhead.

Index Terms— Coded distributed computing, heterogeneous
systems, multi-cloud computing, secrecy capacity, storage-
computation tradeoff.

I. INTRODUCTION

THE availability of massive and inexpensive commod-
ity servers (e.g., Amazon EC2) has made it possible

to perform large-scale computing in parallel over a cloud,
such as machine learning, graph processing, and big data
analytics. Compared with the high cost of establishing and
maintaining a datacenter infrastructure, hourly renting these
“virtualized” servers to enjoy powerful storage and computing
resources is much more effective and economical. There are,
however, some major performance bottlenecks in distributed
computing scenarios, such as straggler effects [1] and limited
bandwidth. Stragglers are distributed nodes which complete
their tasks much slower than the average. They lead to serious

Manuscript received 8 October 2021; revised 3 June 2022; accepted
3 September 2022. Date of publication 15 September 2022; date of current
version 20 January 2023. This work was supported in part by a Grant
from the Research Grants Council of the Hong Kong Special Administrative
Region, China, under Project CityU 11205318. An earlier version of this
paper was presented in part at the 2020 IEEE International Conference on
Communications [DOI: 10.1109/ICC40277.2020.9149183]. (Corresponding
author: Chi Wan Sung.)

Jiajun Chen and Chi Wan Sung are with the Department of Electrical Engi-
neering, City University of Hong Kong, Hong Kong (e-mail: jiajuchen8-c@
my.cityu.edu.hk; albert.sung@cityu.edu.hk).

Terence H. Chan is with the Institute for Telecommunications Research,
University of South Australia, Adelaide, SA 5095, Australia (e-mail:
terence.chan@unisa.edu.au).

Communicated by M. Tao, Associate Editor for Communications.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3206868.
Digital Object Identifier 10.1109/TIT.2022.3206868

unpredictable delay due to the individual uncertainty nature
of distributed servers. Modern state-of-the-art technologies use
coding techniques to add redundant computations to alleviate
straggling effects, which have been studied in both homoge-
neous [2], [3], [4], [5], [6], [7], [8], [9], [10] and heteroge-
neous [11], [12], [13], [14], [15] computing environments.
The idea of such a coding concept is referred to as mini-
mum latency codes [16]. By increasing the computation load,
another coding concept called minimum bandwidth codes [16]
is introduced to reduce the communication load, thereby
tackling the problem of limited bandwidth. Related works
include [2], [17], [18], [19], [20], which utilize codes to deal
with the communication bottleneck. Coding techniques have
also been used to address security issues in [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], and [32], ensuring
no server can steal any information about the confidential data
in the information-theoretic sense.

Previous works in distributed computing focus only on a
single cloud with a master-worker setup, in which a single
master manages a cluster of distributed computational servers.
To perform computing tasks, a user needs to send data
to the cloud, which incurs substantial delay for large-scale
computing. Storing data in the cloud in advance may solve the
problem, but it brings risks in terms of security concerns [33].
If one single cloud is used, storing encrypted data involves
complicated key management problems. Moreover, cloud out-
age, a critical system failure causing cloud services unavailable
for a long time, is a primary concern for cloud computing [34].
It may result from a range of unavoidable causes (e.g., power
outage, maintenance and upgrades, etc.), and the sheer scale
of a modern cloud datacenter and the pressing internal and
external threats make it impossible to completely eliminate
the rare occurrence of cloud outages. It should be noted that
the nature of cloud outages is very different from stragglers
in the classical setting for a cluster of servers: the former are
unavailable clouds which cannot provide any service, while the
latter are available but slow servers. To address the security
and outage issues of a single cloud, it is a plausible solution
to employ a multi-cloud strategy.

In this work, we consider joint distributed storage and com-
putation over multiple clouds. Those clouds are heterogeneous
with different configurations and computing rates, and some
clouds may collude to steal users’ data and some may be
in outage. A heterogeneous (V,K, J) system is constructed,
in which distributed storage and computation can be performed
reliably and securely over V heterogeneous clouds in the pres-
ence of up to V −K cloud outages and J colluding clouds. Our

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5618-3932
https://orcid.org/0000-0001-7468-9793
https://orcid.org/0000-0002-6550-7203

1016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

model follows the same master-worker architecture, in which
a centralized master communicating with multiple distributed
workers in a star topology. Our system setup, however, differs
from the classical one in the following two major ways:

1) Deterministic Runtime of a Worker: For the classical
setup, a worker often refers to a computational server,
whose runtime is random due to stragglers and is
commonly assumed to be a shifted-exponential random
variable [2] and is generalized to the shifted-Weibull
distribution in [12]. In our model, a worker refers to a
cloud, which consists of multiple servers.When codes are
used over these servers, the resultant runtime distribu-
tion of a cloud falls within a narrow region with high
probability as shown by the empirical measurement on
Amazon EC2 clusters [2]. It demonstrates that coded
computing is effective in mitigating straggling effects,
making the runtime of a single cloud almost deterministic.
Therefore, when considering a multi-cloud system with
each worker being a cloud, the computing rate of each
cloud can reasonably be modeled as a constant parameter
related to the cloud configuration (e.g., adopted codes,
number of servers, etc.). To the best of our knowledge,
there are no results assuming a general worker runtime
distribution. Existing works all assume a specific runtime
distribution (shifted-exponential or shifted-Weibull). Our
work assumes deterministic runtime based on measure-
ment results.

2) Pre-stored Data on Workers: In the multi-cloud setting,
data can be pre-stored into various clouds, which brings
new concerns (not considered in the classical setting)
on storage cost and data availability. To address these
concerns, our setup has additional constraints includ-
ing total storage budget and reconstruction requirement
for data availability. As a result, the computation-time
minimization problem in our system is totally different
from the traditional formulation. Specifically, we need to
consider storage allocation with budget constraint as well
as load allocation, since the computing load that can be
allocated to a cloud is limited by the amount of data
already stored in it. This doubles the dimension of the
underlying resource allocation problem from V to 2V .

Compared with the contributions of previous works on
heterogeneous distributed computing, the distinctions of this
paper are listed as follows:

• (Linear Decoding Time) Our main goal of code design
is low decoding complexity. The generator matrix of our
proposed code has a special upper trapezoidal (UT) struc-
ture, which facilitates linear decoding time in ordinary
cases where all clouds are available. Such an extremely
low decoding complexity is achievable because the code
is designed in a way which exploits the computing
power of the distributed clouds with parallel processing.
Moreover, expensive multiplications in decoding are all
left at the powerful clouds, while only simple addition
and subtraction are required at the user side. This is an
especially desirable feature, as clouds have much more
powerful computing capability than end users.

• (Tradeoff between Code Rate and Computation Time)
Existing works on heterogeneous systems [12], [14] focus
on load allocation for minimizing the expected compu-
tation time, without limiting the total amount of load
determined by the code rate. In our multi-cloud system,
code rate is limited by the storage budget. A lower code
rate is more effective in exploiting the computing power
of faster clouds but incurs a higher storage cost. Because
of this phenomenon, we characterize the fundamental
tradeoff between code rate (storage budget) and com-
putation time in heterogeneous systems, rather than just
finding the optimal code rate as in [12] and [14]. The
result shows that the fundamental tradeoff curve between
storage budget and computation time is piecewise linear
and convex.

• (Effects of Heterogeneity) In heterogeneous multi-cloud
systems with different computing service rates, we ask
a novel question: how does heterogeneity impact system
performance? We adopt the concept of majorization [45],
which precisely characterizes the degree of “unevenness”
of cloud computing rates. Our study reveals that given the
total computing rates of all clouds, the more “uneven”
the computing rates of individual clouds, the longer
the computation time of the system. In other words,
heterogeneity negatively impacts the tradeoff between
storage and computation: the tradeoff curves of systems
with more uneven computing rates (in the sense of
majorization) are further away from the origin.

A. Related Works

The problem of storing data securely and reliably in mul-
tiple clouds has been investigated in [35], and the proposed
storage allocation and coding scheme achieves perfect secrecy
with minimum storage cost, but without involving comput-
ing issues. Our preliminary study [36] extends the work on
distributed storage [35] to incorporate computing. Multi-cloud
computing scenarios with high security levels (J > V −K)
are considered in [36], in which perfect secrecy is achieved
and cloud outages is tackled by using the nested MDS code.
Storage allocation and computational workload are also opti-
mized to reach the minimum computation time. This work
generalizes the results to cases of any security level, and
designs a new class of nested MDS codes, called the upper
trapezoidal (UT) code. Its generator matrix satisfies all the
properties of that of a nested MDS code, but has an upper
trapezoidal structure for fast decoding. UT code can achieve
the secrecy capacity or the minimum computation time in the
information-theoretic sense.

There are two works on secure distributed computing that
are closely related to our work. In [25], the authors consider
secure matrix multiplication across N distributed servers,
among which l of them may collude to steal data. Two models
are considered: (a) one-sided secure matrix multiplication,
in which one matrix is confidential while the other matrix
is public to all servers; (b) two-sided secure matrix multi-
plication, in which both matrices are private. For one-sided
secure matrix multiplication, the capacity of secure matrix
multiplication, defined as the maximum possible ratio of the

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1017

desired information and the total information over distributed
servers, is proved to be (N − l)/N . Our work extends this
result to cases with V −K unavailable distributed nodes. In our
(V,K, J) system, the secrecy capacity, which represents the
maximum amount of information that can be stored for each
unit of storage space for secure distributed computing, in the
presence of up to V −K cloud outages and J colluding clouds,
is shown to be (K − J)/V . The result of one-sided secure
matrix multiplication in [25] corresponds to our special case
with V = K . Another related work [24] proposes Lagrange
Coded Computing (LCC), a distributed computing framework
on a cluster of distributed servers, which can simultaneously
provide resiliency, security, and privacy. LCC generalizes
prior works from linear computations to arbitrary multivariate
polynomial computations. One of the main differences of our
model from the one in [24] is that we consider a heterogeneous
framework composed of multiple clouds, in which the encoded
data can be unequally allocated to the clouds. Furthermore,
we characterize the tradeoff between storage and computation
time in the information-theoretical sense.

In some sense, our (V,K, J) system can be regarded as a
generalization of the erasure-erasure wiretap channel-II [37].
In the erasure-erasure wiretap channel of parameters (n,m, v),
the transmitter sends n symbols to the legitimate receiver
who can only receive m symbols after experiencing random
erasures. The eavesdropper can observe arbitrary v symbols
out of the transmitted n symbols. The secrecy capacity in the
wiretap channel, which is defined as the maximum amount
of secret information that can be conveyed, is proved to be
m−v assuming m ≥ v [37], [38]. If we normalize the wiretap
channel secrecy capacity by n, then the secrecy capacities
of the two systems are the same. Adding the computing
requirement in our multi-cloud system does not change the
secrecy capacity because the computing task on the data stored
in our system is assumed to be public. Allowing unequal
storage allocation in different clouds does not change it either
because the secrecy capacity is shown to be reached when the
allocation is equal.

Decoding complexity for coded distributed computing is
an important issue because its overhead may outweigh the
benefit of coded computing. The idea of exploiting codes to
speed up large-scale computing was initially proposed in [2],
which apply an (n, k) MDS code to mitigate n− k stragglers
in a homogeneous cloud, resulting short computation time,
but requiring long decoding time when k becomes large.
To reduce the decoding time, some existing works divide
workers into multiple groups and then employ an individual
MDS code for each group [4], [15], while another work [39]
removes expensive multiplications and divisions from both
the encoding and decoding phases by combining shift-and-
addition and zigzag decoding. In [5] and [12], peeling decoder
is used, which reduces the decoding complexity to nearly
linear at the cost of slightly higher recovery threshold. Taking
data security into consideration, the decoding process becomes
more elaborate. The authors in [27] use cross subspace align-
ment (CSA) based coding scheme to achieve the secrecy
capacity for distributed batch matrix multiplication, which
requires a cubic decoding complexity if the inverse of the
decoding matrix is obtained simply by Gaussian elimination.

In [24], Lagrange Coded Computing (LCC) is proposed in
a single cloud, which requires a decoding complexity of
O(R log2 R log logR) for linear computations, where R is the
minimum number of servers required to restore the computa-
tional result (i.e., recovery threshold). If LCC is applied to
our (V,K, J) system, only the computation results from K
clouds are used for decoding even if there are more than
K available clouds, resulting in the decoding complexity
of O(K log2K log logK). Similar codes, constructed using
polynomials for secure matrix multiplication in [25] and [26],
have the same decoding complexity of O(η log2 η log log η),
where η is the recovery threshold. In multi-cloud scenarios, the
cases where all clouds are available are ordinary, since cloud
outages rarely happen. Our proposed UT code can achieve
an overall decoding complexity of O(JK), which can be
implemented in linear time, O(K), by allowing expensive mul-
tiplications to be calculated in parallel by the clouds. Users just
need to do addition and subtraction to decode the computing
result. This is a particularly desirable feature, as clouds are
considered to have much more powerful computing capability
than users. Therefore, UT code is more suitable for multi-cloud
linear computations in terms of decoding time.

B. Organization

The remainder of this paper is organized as follows.
Section II presents the system model for distributed stor-
age and computation. Section III shows our main results.
In Section IV, two necessary conditions for storage alloca-
tion are derived. Our designed coding scheme is proved to
achieve the secrecy capacity with linear decoding time in
Section V. In Section VI, an optimization problem of com-
putation time under a given storage budget is formulated and
solved, and the majorization property is described. Numerical
studies and experiment results are provided in Section VII and
Section VIII offers some concluding remarks.

Notation: Define V � {1, 2, . . . , V } for V ∈ N. Let
J ⊂J V represent that J is a subset of V with cardinality J ,
0n be the all-zero vector of length n, and 1n be the all-one
vector of length n. For any real number x, define (x)+ �
max(x, 0). For two vectors x and y, define x ≤ y if xi ≤ yi
for all i, and x < y if xi < yi for all i.

II. SYSTEM MODEL

Consider a setting where a user wants to store an m×s con-
fidential matrix A in a (V,K, J) system and perform distrib-
uted matrix-vector computations securely. Each of its rows can
be regarded as a data record while the width s can be regarded
as the number of features associated with each data record. The
entries of A are independent and identically distributed (i.i.d.)
random variables, each of which is drawn uniformly from a
sufficiently large finite field1 of size q, denoted by Fq . The
entropy of A, H(A), is equal to ms log2 q bits.

A. Storage Model

In the (V,K, J) system, it is required that distributed storage
and computing can be done over V clouds in the presence of

1This assumption of uniform i.i.d. entries of A is needed for proving the
converse, but not for the achievability of our proposed code.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

up to V −K cloud outages and J colluding clouds. To ensure
security and reliability, the confidential matrix A ∈ Fm×s

q is
encoded into Ã ∈ Fn×sq and then allocated to V clouds for
distributed storage and computing. The code is said to be an
(n,m) code and its rate R is given by m/n, where n ≥ m.
Let S be the storage budget for each row of A, i.e., n ≤ mS.
In other words, the system is required to operate with code
rate above 1/S.

The encoded matrix Ã, of n rows, can be partitioned into
V submatrices as follows:

Ã �

⎡
⎢⎢⎢⎣

Ã1

Ã2

...
ÃV

⎤
⎥⎥⎥⎦ , (1)

where Ãi ∈ Fli×sq and n =
∑V
i=1 li. There is a cloud manager,

which distributes Ãi to Cloud i, for i = 1, 2, . . . , V . We call
l � (l1, l2, . . . , lV) the storage vector, where li represents the
number of encoded rows allocated to Cloud i.

The criterion for data security is the same as that in the
secret sharing problem. We call it secrecy requirement I,
which ensures no information would be disclosed to any J
colluding clouds (J < V) in the information-theoretic sense.
For a set S, define ÃS as the submatrix of Ã obtained
by preserving Ãi for all i ∈ S. Then the perfect secrecy
requirement can be written as

I(A; ÃJ) = 0, ∀J ⊂J V . (2)

To ensure data reliability, it is also required that the cloud
manager can retrieve the original matrix A from any K avail-
able clouds (J < K ≤ V). This reconstruction requirement
for distributed storage can be expressed as

H(A|ÃK) = 0, ∀K ⊂K V . (3)

We refer it as a (V,K, J) system, where K and J represent
the desired reliability and security levels, respectively. Fig. 1
shows an example of a (5, 4, 3) system.

B. Computation Model

In our model, each cloud consists of multiple servers.
By applying coded computing, its runtime is of little random-
ness [2]. Therefore, in our V -cloud system, the service rate of
Cloud i, i ∈ V , is modeled as a constant parameter μi only
related to the cloud configuration. Denote the computing rates
of V clouds by a vector μ � (μ1, . . . , μV) ∈ RV . To study
the effect of heterogeneous computing rates on computation
time, we use the notion of majorization [45] to characterize
the uneveness of computing rates of the clouds.

Definition 1 (Majorization [45]): : Let μ(1),μ(2) ∈ RV be
two vectors whose components are sorted in descending order.
We say that μ(1) majorizes μ(2), written as μ(1) � μ(2), if

V∑
i=1

μ
(1)
i =

V∑
i=1

μ
(2)
i , and

V∑
i=p

μ
(1)
i ≤

V∑
i=p

μ
(2)
i

for p = 2, 3, . . . , V.

Fig. 1. In this (5, 4, 3) system, a cloud outage occurs in Cloud 2 and its
service is unavailable. However, the user can still retrieve the original data
from the other four clouds. Clouds 3, 4 and 5 collude to steal the confidential
data, but no information is leaked to the eavesdropper.

Fig. 2. Cloud i stores Ãi with li rows. The master (M) calculates the
product of the B̃i, consisting of ri (0 ≤ ri ≤ li) rows from Ãi, and the
input vector x over distributed workers (W). Once the cloud manager receives
enough calculated rows, it can restore the original product y.

Consider the common computation task of matrix-vector
multiplication y = Ax, where the input vector x ∈ Fs×1

q \{0}
is deterministic and publicly known, thus not requiring to be
secure. Since the entries of A are independently and uniformly
distributed in Fq, so are the entries of y for any non-zero x.
Different from distributed storage, the computing task does not
have to be completed only in K clouds. Instead, we can utilize
all available clouds to compute, speeding up the computation.
While Cloud i stores Ãi with li rows, in general, it may only
use ri rows (0 ≤ ri ≤ li) for computing, and its runtime
is ri/μi. If Cloud i is in outage, then ri = 0. Denote the
load vector by r � (r1, r2, . . . , rV). Let B̃i be a submatrix
of Ãi with ri rows. After computation, B̃ix is sent to the
cloud manager. The computation model is illustrated in Fig. 2.
After collecting the computing results B̃1x, B̃2x, . . . , B̃V x,
the cloud manager stacks them up to form ỹ = B̃Vx, where
B̃V is the matrix obtained by collecting B̃i for all i ∈ V .
The vector ỹ is a subvector of Ãx, and its length is �r�1 =∑V
i=1 ri, where � · �1 is the �1 norm.
The desired y needs to be decodable from ỹ in the presence

of at most V −K cloud outages. Since which clouds will be
in outage is not known in advance, we need to ensure that the
result can be computed from the stored data of any K clouds.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1019

This computing requirement is expressed as

H(y|ỹ) = 0, ∀x ∈ Fs×1
q \ {0}, ∀r s.t. �r�1 = min

K⊂KV

∑
i∈K

li,

(4)

where the constraint on �r�1 ensures that the computing task
can be completed in the presence of at most V − K cloud
outages. In addition, the computing result is required to be
perfectly secure by avoiding J colluding clouds, i.e.,

I(Ax; B̃J x) = 0, ∀J ⊂J V , ∀x ∈ Fs×1
q \ {0}. (5)

We call it secrecy requirement II. It should be noted that
secrecy requirement II is implied by secrecy requirement I, and
reconstruction requirement by computing requirement. (The
proof is in Lemma 14.) For this reason, we may just consider
two stronger system requirements (2) and (4) in the following
definitions.

Definition 2 (Achievable Rate): A rate R is said to be
achievable if there exists, for sufficiently large n, an (n,Rn)
code such that the system requirements in (2) and (4) are both
satisfied.

Definition 3 (Secrecy Capacity): The secrecy capacity of the
(V,K, J) system, denoted by C, is defined as the supremum
of all achievable rates.

The secrecy capacity specifies how much information can be
stored in the (V,K, J) system for secure distributed computing
such that all the system requirements are fulfilled. However,
it does not concern the computation time, which, in practice,
is an important performance measure. We define computation
time as the runtime for computing:

Definition 4 (Computation Time): Given a load vector r in
the (V,K, J) system, the (normalized) computation time is
defined as T � max

i∈V
ri

mμi
.

Definition 5: A storage-computation pair (S, T) ∈ R2 is
said to be feasible if for any ζ > 0 and sufficiently
large n, there exists an (n,Rn) code with code rate R ≥
1/S, allocation vector l with �l�1 = n, and load vector
r ≤ l that achieve a storage-computation pair (S′, T ′) such
that |S − S′| ≤ ζ, |T − T ′| ≤ ζ, and the system requirements
in (2) and (4) are both satisfied.

Definition 6 (Optimal Tradeoff): Given a storage budget S,
the minimum computation time T ∗(S) of a (V,K, J) system
is defined as

T ∗(S) � inf{T : (S, T) is feasible}. (6)

T ∗(S) characterizes the optimal tradeoff between storage
budget and computation time in a multi-cloud scenario. Since
the storage budget S constrains the code rate to be above the
threshold of 1/S, for the range of S such that the threshold is
smaller than the secrecy capacity, the tradeoff is well defined
and answers the question of how much the computation time
can be reduced at the cost of a lower code rate than secrecy
capacity.

Remark 1: It should be noted that (S, T) may be feasible
at load vector r that has zero components, meaning the
corresponding clouds are not used for computing. On the other
hand, to achieve the minimum computation time T ∗(S), all the

components of the load vector r must be non-zero, meaning
all the clouds are exploited for computation. We will explain
that in detail in Section VI.

III. MAIN RESULTS

This section presents three fundamental results obtained
in this study. First, the secrecy capacity shown in The-
orem 1 can be achieved by the upper trapezoidal (UT)
code, which can be implemented in linear time by paral-
lel decoding. Second, the optimal tradeoff between storage
and computation is characterized in Theorem 2. Finally, the
impact of heterogeneity on the tradeoff curve is stated in
Theorem 3.

Theorem 1: The proposed UT code achieves the secrecy
capacity of the (V,K, J) system,

C =
K − J

V
, (7)

with a decoding complexity of O(JK) in the ordinary
no-outage case. With parallel decoding by multiple clouds,
the decoding complexity can be reduced to O(K).

The proof of Theorem 1 consists of two parts, an upper
bound on secrecy capacity in Corollary 6 in Section IV and
the achievability of that bound with its decoding complexity
analysis in Section V. Although the capacity can be easily
achieved by many simple codes, like the nested MDS code
and random codes, they require long decoding time as the
system becomes large. To reduce the decoding time, UT code
is designed with a decoding complexity of O(JK) in the
ordinary case where cloud outages do not occur. It is called
“UT” code because its generator matrix has a permuted upper
trapezoidal structure, which allows the expensive multiplica-
tions of the decoding process to be computed in parallel by
the clouds in linear time, O(K). For end users, they only need
to do addition and subtraction to decode the computing result.
This is an especially desirable feature, as clouds have much
more powerful computing capability than end users. TABLE I
compares the decoding complexity of proposed coding scheme
to prior works on secure matrix multiplication. Our code
outperforms existing codes due to the novel idea of using
distributed clouds to decode in parallel. Notice that decoding is
itself a computing task. It is appealing to exploit the computing
power of the distributed clouds to perform decoding as well
as matrix multiplication.

To achieve the secrecy capacity in (7), the encoded data
should be equally allocated to multiple clouds. This is the
most space-efficient way to satisfy all system requirements.
In heterogeneous multi-cloud systems, however, equal storage
allocation is not optimal because when the fastest cloud
finishes computing with all its local data, other slower clouds
still need to compute as their tasks are not finished yet. If we
can transfer some data from the slower clouds to the fastest
cloud without violating the security requirement, the overall
computation time can be reduced. But such an unequal storage
allocation inevitably reduces the code rate. In other words, it is
possible to reduce the computation time at the expense of more
storage space. The exact relationship between computation
time, T , and storage budget, S, is shown below:

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1020 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

TABLE I

COMPARISONS OF DECODING COMPLEXITY IN A DISTRIBUTED COMPUTING SYSTEM WITH V NODES, WHERE THE RECOVER THRESHOLD REPRESENTS
THE MINIMUM NUMBER OF NODES REQUIRED TO RESTORE THE COMPUTATIONAL RESULT

Theorem 2: The fundamental tradeoff between storage bud-
get and computation time, i.e., T ∗(S), is a piecewise-linear,
convex, decreasing function of S and becomes flat when S
exceeds a threshold. The explicit form for T ∗(S) is shown in
Proposition 18.

To prove Theorem 2, we first derive a lower bound on T ∗(S)
in the information-theoretic sense in Section VI, and then show
that the UT code can achieve that bound when the load vector
has no zero elements, i.e., when there is no cloud outage and
the system computing resource can be totally exploited. The
explicit form for that lower bound is derived by solving an
optimization problem, as shown in Section VI-C. Our result
reveals that as the storage budget increases, the graph for the
optimal computation time decreases in a piecewise-linear man-
ner and eventually becomes flat. The decreasing rate also drops
with the growth of storage budget, so T ∗(S) is convex. Note
that there is a reciprocal relationship between storage budget
and code rate: (a) the storage budget constrains the code rate to
be above a certain level; (b) the minimum storage budget that
makes the optimization problem feasible corresponds to the
maximum achievable code rate (i.e., secrecy capacity). Hence,
the derived tradeoff also reveals the relationship between code
rate and computation time. In other words, given a feasible
storage budget, the minimum computation time is usually
reached with unequal allocations by UT code, at the cost of a
lower code rate than secrecy capacity.

Theorem 3: For any two systems with computing rate
vectors μ(1) and μ(2) such that μ(1) � μ(2), we must have
T ∗

1 ≥ T ∗
2 under the same storage budget, where T ∗

1 and
T ∗

2 are the optimal computation times of the two systems,
respectively.

Theorem 3 is a direct consequence of Proposition 20 in
Section VI. This result inspires us on what an efficient
multi-cloud system looks like. If the total computing power
is fixed, homogeneous multi-cloud systems provide faster
computing service than heterogeneous systems. In general, the
more even the computing rates are, the shorter the computing
time a system can achieve. The reason is that it is harder to
fully utilize the fast clouds if the computing rates are more
uneven.

IV. NECESSARY CONDITIONS FOR STORAGE ALLOCATION

In this section, we first show that secrecy requirement II is
a weaker condition than secrecy requirement I and comput-
ing requirement implies reconstruction requirement. Then a
necessary condition that satisfy the two stronger requirements

2The authors of [27] prove the decodability of the CSA coding scheme
by showing the decoding matrix invertible. Here we assume the inverse is
obtained by Gaussian elimination.

can be obtained, which is useful to derive the lower bound
on the minimum computation time in Section VI. Another
weaker necessary condition meeting security requirement I
and reconstruction requirement gives an upper bound on the
secrecy capacity, which has been demonstrated in previous
works [25], [26], [27].

In the (V,K, J) system, the confidential matrix is encoded
with code rate m/n, where m is the number of rows of the
original matrix and n is the number of rows of the encoded
matrix. The encoded matrix is partitioned and assigned to V
clouds according to storage allocation vector l (with �l�1 = n)
such that all the system requirements are fulfilled. The follow-
ing lemma shows the relationships between various system
requirements:

Lemma 4: (i) Secrecy requirement II is implied by secrecy
requirement I.

(ii) Reconstruction requirement is implied by computing
requirement.

Proof: (i) We find that Ax → A → ÃJ forms a Markov
chain, because

I(Ax; ÃJ |A) = H(ÃJ |A) −H(ÃJ |A,Ax)
(a)
= 0,

where (a) holds because Ax is a function of A. Similarly,
it can be shown that (Ax,A) → ÃJ → B̃Jx also forms a
Markov chain, since B̃J x is a function of ÃJ . Hence, Ax →
A → ÃJ → B̃Jx forms a Markov chain.

Then, we have

0 ≤ I(Ax; B̃J x)
(b)

≤ I(A; ÃJ)
(c)
= 0,

where (b) follows from the Data Processing Inequality [41,
p.31], and (c) follows from the secrecy requirement I. There-
fore, secrecy requirement I implies secrecy requirement II.

(ii) By the computing requirement, we have

0 = H(Ax|B̃Vx) ≥ H(Ax|B̃Vx, B̃V)
(d)
= H(Ax|B̃V) ≥ 0,

where (d) comes form B̃Vx being a function of B̃V . Therefore,
we have H(Ax|B̃V) = 0 for any load vector �r� =
min

K⊂KV
∑

i∈K li, implying H(Ax|ÃK) = 0, ∀x ∈ Fs×1
q \ {0}.

If x = [1, 0, . . . , 0]T , then Ax is the first column of
A, denoted by a1. Thus, we have H(a1|ÃK) = 0. Sim-
ilarly, if x is the i-th standard basis of the s-dimensional
vector space, Ax becomes the i-th column of A (i.e.,
ai), resulting in H(ai|ÃK) = 0. Therefore, H(A|ÃK) =
H(a1, . . . ,as|ÃK) = 0.

To meet the two stronger requirements (i.e., secrecy require-
ment I and computing requirement), a necessary condition is
obtained in Theorem 5, which can be used to obtain the lower
bound on the computation time.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1021

Theorem 5 (Necessary Condition): The system require-
ments (2), (3), (4) and (5) can be met only if the storage
allocation vector l satisfies

min
K⊂KV

∑
i∈K

li − max
J⊂JV

∑
i∈J

li ≥ m > 0. (8)

Proof: According to Lemma 14, we can ignore security
requirement II and reconstruction requirement, since they
cannot tighten the necessary condition in (8).

By the computing requirement, for any arbitrary J ⊂J V ,
we have

H(y) = I(y; ỹ)

= I(Ax; B̃Vx)

= I(Ax; B̃J x, B̃V\Jx)

= I(Ax; B̃J x) + I(Ax; B̃V\J x|B̃J x)
(a)
= I(Ax; B̃V\J x|B̃J x)

≤ H(B̃V\Jx), (9)

where (a) comes from Lemma 14. Since H(y) = m log2 q, (9)
implies that

m log2 q ≤ H(B̃V\Jx) ≤
∑
i∈V\J

H(B̃ix) ≤
∑
i∈V\J

ri log2 q,

(10)

which holds for any load vector r such that �r�1 =
min

K⊂KV
∑

i∈K li. In other words, for any load vector r with

required length, we have

m ≤
∑
i∈V

ri − max
J⊂JV

∑
i∈J

ri = min
K⊂KV

∑
i∈K

li − max
J⊂JV

∑
i∈J

ri.

If
min

K⊂KV

∑
i∈K

li ≤ max
J⊂JV

∑
i∈J

li, (11)

then the minimum upper bound becomes zero, since r can be
chosen such that ri = 0 for all i ∈ V \ J . Otherwise, the
minimum upper bound is obtained when r is chosen such that
ri = li for all i ∈ J . Combining the two cases, we have

m ≤ (
min

K⊂KV

∑
i∈K

li − max
J⊂JV

∑
i∈J

li
)+
, (12)

which completes the proof.
Corollary 6 (Converse of Theorem 1): The secrecy capacity

of the (V,K, J) system is bounded by

C ≤ K − J

V
, (13)

where the equality holds only if the storage allocation is equal.
Proof: By Theorem 5, we have the following weaker

necessary condition:

m ≤ min
J⊂JK⊂KV

(
∑
i∈K

li −
∑
i∈J

li), (14)

which is equivalent to

m ≤
∑
i∈I

li, ∀I ⊂K−J V . (15)

Since there are
(

V
K−J

)
possible subsets I of size V − J ,

we sum up the inequalities and have(
V − 1

K − J − 1

) ∑
i∈V

li ≥
(

V

K − J

)
m,

i.e., m/n ≤ (K − J)/V . Hence, the supremum of all
achievable rates, i.e., secrecy capacity C, is bounded above by
(K − J)/V . To achieve the capacity bound, (15) must hold
with equality for all I ⊂K−J V , i.e., the storage allocation
must be equal for each cloud.

Remark 2: The capacity bound in (13) is implied by the
weaker necessary condition in (14), which has been proved to
follow from security requirement I and reconstruction require-
ment in [35]. It should be noted that Corollary 6 has been
observed by previous works [25], [26], [27]. The necessary
condition to achieve that bound is all li’s being equal, in which
case the problem is similar to secret sharing.

V. CODE CONSTRUCTION

In the (V,K, J) system, the user is accessible to at least K
submatrices of Ã from V clouds while the eavesdropper to at
most J submatrices. In this section, we design a code called
upper trapezoidal (UT) code, which encodes a confidential
matrix A ∈ Fm×s

q into Ãi ∈ Fli×sq for Cloud i, where
i = 1, 2, . . . , V and �l�1 = n. For sufficiently large n,
UT code can satisfy all the system requirements stated in
Section II and achieve the secrecy capacity.

A. Coding Scheme: UT Code

Our proposed coding scheme has a block-by-block structure.
By dividing A into m̂ submatrices of equal size3,i.e.,

A =

⎡
⎢⎣

A1

...
Am̂

⎤
⎥⎦ ,

we call each submatrix Ai with b rows a block, where b � m
m̂

is the block size. The m̂ input blocks are encoded into n̂ � n/b
blocks according to a preset parameter pair (̂l, r̂) ∈ NV ×NV ,
where �l̂�1 = n̂, r̂ ≤ l̂ and �r̂�1 = min

K⊂KV
∑

i∈K l̂i.

The vector l̂ is the encoding parameter related to storage
allocation, i.e., the encoded data are allocated to V clouds
according to the allocation vector l = b̂l. The vector r̂ is the
encoding parameter related to computing load. Specifically,
if there are no cloud outages, let the computing load vector
be r = br̂. Otherwise, clouds in outage cannot compute and
their computing load becomes zero. A feasible computing
load vector r such that r ≤ l, �r�1 = min

K⊂KV
∑
i∈K li, and

whose support does not involve any cloud in outage will be
used. Cloud i, storing li/b blocks, then uses ri/b blocks for
computing.

We design an (n̂, ω) linear code with parameters (̂l, r̂, m̂).
Define

(code length) n̂ � �l̂�1, (16)

(user amount) ϕ � �r̂�1 = min
K⊂KV

∑
i∈K

l̂i, (17)

3This can be always achieved if we append zero rows to A to make the
number of rows a multiple of m̂.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1022 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

(hacker amount) θ � max
J⊂JV

∑
i∈J

l̂i, (18)

(code dimension) ω � θ + m̂. (19)

Note that n̂ is the total number of storage blocks, ϕ is the
minimum number of encoded blocks accessible by the user,
which, according to the computing requirement, equals the
total amount of computing blocks, θ is the maximum number
of encoded blocks accessible by the hacker, m̂ is the number
of original data blocks, and ω is the dimension of the code.

We denote the encoding functions as f = (f1, . . . , fV),
where fi : Fm̂b×sq → Fl̂ib×sq . The encoding function for Cloud
i, which encodes the m̂ input blocks A1, . . . ,Am̂ into Ãi

(with l̂i blocks), is defined as follows:

Ãi = fi(A1, . . . ,Am̂) � (PiGT
0 ⊗ Ib)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1

...
Rθ

A1

...
Am̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where ⊗ is the Kronecker product and Ib is the b× b identity
matrix. Ri, i = 1, . . . , θ, is a b × s random matrix (block)
whose elements are independently distributed in Fq. G0 is an
ω× n̂ upper trapezoidal matrix which can be partitioned into
six submatrices as shown below:

G0 �
[
Iθ U12 U13

0 Im̂ U23

]
�

[
β
η

]
, (21)

where β is of size θ × n̂ and η is of size m̂× n̂, and Uij ’s
are some matrices of compatible sizes such that G0 has the
following two properties4:
(1) Any ω × ω submatrix of G0 is of full rank;
(2) Any θ × θ submatrix of β is of full rank.
Pi is a binary matrix of size l̂i × n̂ which has a single “1” in
each row and at most one “1” in each column. It is used to
choose l̂i distinct rows from the n̂ rows of GT

0 , and can be
partitioned into two submatrices as follows:

Pi �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(
∑i−1

k=0 r̂k + 1)
e(

∑i−1
k=0 r̂k + 2)

...
e(

∑i
k=0 r̂k)

e(ϕ+
∑i−1

k=0(l̂k − r̂k) + 1)
e(ϕ+

∑i−1
k=0(l̂k − r̂k) + 2)

...
e(ϕ+

∑i
k=0(l̂k − r̂k))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
[
PU
i

PL
i

]
,

where e(j) is the row vector corresponding to the j-th standard
basis of the n̂-dimensional vector space. PU

i is the upper
submatrix with r̂i rows and PL

i is the lower submatrix with
l̂i − r̂i rows. For example, in a (3, 2, 1) system, let l̂ =
(4, 2, 3), r̂ = (2, 2, 1), and then we have

P1 =

⎡
⎢⎢⎣
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎦ ,

4Details of how to construct G0 are in Subsection V-D.

P2 =
[
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

]
,

P3 =

⎡
⎣0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎦ ,

where Cloud 1 chooses rows 1, 2, 6, 7, Cloud 2 chooses rows
3, 4, and Cloud 3 chooses rows 5, 8, 9.

Due to the structure of G0, we call our code upper
trapezoidal (UT) code. It is specially designed to facilitate fast
decoding of the computation result y, which will be discussed
later. From the definition of encoding function in (20), the
encoding process can also be represented in the following way:

Ã = (GT ⊗ Ib)
[
R
A

]
=

⎡
⎢⎣

Ã1

...
ÃV

⎤
⎥⎦ , (22)

where R is the θb × s random matrix formed by stacking up
the Ri’s, G is the ω × n̂ generator matrix in the form of
GT � PGT

0 , and P is a permutation matrix of size n̂ which
is composed of P1, . . . ,PV as

P �

⎡
⎢⎣

P1

...
PV

⎤
⎥⎦ .

In other words, (̂l, r̂, m̂) UT code, defined by the generator
matrix G, encodes m̂ input blocks into n̂ blocks, and cloud
manager allocates l̂i encoded blocks for Cloud i, i = 1, . . . , V ,
according to the permutation matrix P. The encoding opera-
tion in (22) is a matrix multiplication on a block-by-block
basis. More precisely, a given element of the generator matrix
is multiplied to all the elements in a data block of b rows.
We call such an operation block scalar multiplication, which
needs to be done n̂ω times. Thus, the encoding complexity is
O(n̂ωbs).

For Cloud i, it stores Ãi with li/b = l̂i blocks and uses only
ri/b blocks to compute. The computing result ỹ obtained by
stacking the computing results of from V clouds is

ỹ =

⎡
⎢⎣

B̃1x
...

B̃V x

⎤
⎥⎦ = Gs ⊗ Ib

[
Rx
Ax

]
, (23)

where Gs is a ϕ × ω submatrix of GT corresponding to the
load vector r used. If there is no cloud outages in the system,
ri/b = r̂i for all i ∈ V . Hence, B̃i, the submatrix of Ãi

preserving the first ri rows, can be written as

B̃i = (PU
i GT

0 ⊗ Ib)
[
R
A

]
.

And in this case Gs is exactly the upper ϕ× ω submatrix of
GT

0 , which provides a good opportunity for fast decoding.

B. Code Properties

In this subsection, we will show that the proposed UT
code, if ω ≤ ϕ, satisfy the two stronger system requirements
in (2) and (4). Moreover, it achieves the secrecy capacity
if l̂ = m̂

K−J 1V .

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1023

Lemma 7: An (̂l, r̂, m̂) UT code, such that ω ≤ ϕ, fulfills
the system requirements in (2) and (4).

Proof: First, we show that the code satisfies the comput-
ing requirement (4). The calculated outcome ỹ received by the
cloud manager, with ϕ blocks in total, is given by (23). Since
ϕ ≥ ω, we can remove the bottom ϕ − ω blocks from Gs

to obtain the square matrix G∗
s , which is of full rank due to

the property of G0. From the property of Kronecker product,
we have

rank(G∗
s ⊗ Ib) = rank(G∗

s) rank(Ib) = ωb,

which implies G∗
s⊗Ib is invertible. Removing the correspond-

ing blocks from ỹ, y can be obtained by left multiplying the
inverse of G∗

s ⊗ Ib. Therefore, y is a function of ỹ, which
implies (4).

Next, we consider the secrecy requirement in (2). The
eavesdropper fetches arbitrarily x encoded blocks from J
clouds to construct ÃJ , i.e.,

ÃJ = (η′ ⊗ Ib)A + (β′ ⊗ Ib)R. (24)

where η′ is an x × m̂ submatrix of ηT and β′ is an x × θ
submatrix of βT . Since the eavesdropper has access to at most
θ encoded blocks, we only need to consider the worst case
when x = θ in (24), which can be expressed as

ÃJ = (η′ ⊗ Ib)A + U,

where U = (β′⊗Ib)R is a square matrix. Due to Property 2 of
the generator matrix, β′ is of full rank, so there is a one-to-
one correspondence between U and R. Since the entries of R
are independently and uniformly distributed in Fq, so are the
entries of U. Given any realization of A, the entries of ÃJ are
independently and uniformly distributed in Fq. In other words,
A and ÃJ are mutually independent, which implies (2).

In the following proposition, we will show that our proposed
code achieves the secrecy capacity in (7), i.e., the maximum
achievable rate of a (V,K, J) system.

Proposition 8: An (̂l, r̂, m̂) UT code, such that l̂ =
m̂

K−J 1V , achieves the secrecy capacity.
Proof: If l̂1 = · · · = l̂V = m̂

K−J , then ω = ϕ, and the
system requirements are all fulfilled according to Lemma 7.
Its achievable rate is given by m̂

n̂ = m̂

‖l̂‖1
= K−J

V , which is
the secrecy capacity stated in Theorem 1.

C. Decoding Complexities

In this subsection, we discuss the decoding scheme for
computation result y, and analyze its time complexity in terms
of scalar multiplication.

The calculated outcome ỹ received by the cloud manager,
with ϕ blocks in total, is given by (23). Since ϕ ≥ ω, we can
remove the bottom ϕ − ω blocks from Gs to obtain the
square matrix G∗

s of size ω × ω. Due to the property of
UT code, G∗

s is a full-rank submatrix of generator matrix G,
implying G∗

s ⊗ Ib being invertible by Lemma 7. Removing
the corresponding blocks from ỹ, y can be obtained by left
multiplying the inverse of G∗

s ⊗ Ib. Computing the inverse by
Gaussian elimination requires a time complexity of O(ω3).
The operation of matrix multiplication is done block by

block, requiring a time complexity of O(ω2bs). Therefore, the
complexity of this decoding process is O(ω3 + ω2bs).

However, we can do much better when there are no cloud
outages, which is the ordinary case as outages rarely occur in
the cloud. The cloud manager now has the vector ỹ, which is
exactly the upper sub-vector with ϕ blocks of Ãx, where

Ãx =

⎛
⎝

⎡
⎣ Iθ 0
UT

12 Im̂
UT

13 UT
23

⎤
⎦ ⊗ Ib

⎞
⎠ [

Rx
y

]

=

⎡
⎣ Rx

(UT
12 ⊗ Ib)Rx + y

(UT
13 ⊗ Ib)Rx + (UT

23 ⊗ y)

⎤
⎦ .

Rewrite ỹ as

ỹ =

⎡
⎣ỹ1

ỹ2

ỹ3

⎤
⎦ ,

where ỹ1 � Rx is of size θb, ỹ2 � (UT
12⊗Ib)Rx+y is of size

m̂b, and ỹ3 is of size (ϕ−ω)b. Note that the computation result
y can be decoded from ỹ1 and ỹ2, and ỹ1 has already been
computed by the first E clouds, whereE is the smallest integer
such that

∑E
i=1 r̂i ≥ θ. Therefore, it is most efficient to utilize

those E (E ≥ J) clouds to jointly compute (UT
12 ⊗ Ib)Rx in

parallel.
To do so, the cloud manager sends Di to Cloud i to compute

(Di ⊗ Ib)B̃ix, for i = 1, . . . , E − 1. The matrix Di is the
submatrix of UT

12 defined as follows:

UT
12 �

[
D1 · · · DE

]
,

where Di is of size m̂×r̂i for i = 1, . . . , E−1 and of size m̂×
(θ − ∑E−1

j=0 r̂j) for i = E. For Cloud E, it computes (DE ⊗
Ib)B̃Trun

E x, where B̃Trun
E is obtained by truncating B̃E with

the upper θ − ∑E−1
j=0 r̂j blocks preserved. Note that B̃ix has

already been computed by Cloud i in the previous computing
stage and thus needs not to be computed again. After collecting
these computational outcomes, the cloud manager adds them
as ỹE , which is equal to (UT

12 ⊗ Ib)Rx. The cloud manager
can then decode y by subtracting ỹE from ỹ2.

The computation in clouds requires block scalar multi-
plication for θm̂ times. From Lemma 7, to satisfy system
requirements, we have ϕ ≥ θ + m̂, i.e.,

θm̂ ≤ θ(ϕ − θ) = max
J⊂JV

∑
i∈J

l̂i(min
K⊂KV

∑
i∈K

l̂i − max
J⊂JV

∑
i∈J

l̂i)

≤ max
J⊂JV

∑
i∈J

l̂i(max
K⊂KV

∑
i∈K

l̂i − max
J⊂JV

∑
i∈J

l̂i).

Hence, the decoding complexity is O(J(K − J)) = O(KJ).
It should be noted that the E clouds run in parallel, thereby
speeding up the decoding computations by a factor of E,
where E ≥ J . While the cloud manager just needs to do
addition and subtraction to decode y, which requires no scalar
multiplication at all. This is an especially desirable feature,
since the clouds are supposed to have high computing power
while the cloud manager has limited computing capability.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

D. Instantiation of G0

Assigning values to the non-zero components of G0 is
called instantiation of G0. To complete the construction of
the proposed code, we need to find a qualified instantiation
of G0 such that the two properties stated in subsection A
are satisfied. Such an instantiation is said to be feasible.
By utilizing random codes, a feasible instantiation can be
easily found as long as the field size is sufficiently large. This
result is formally stated in the following proposition, whose
proof is in the Appendix.

Proposition 9: Let Uij ’s be random matrices with entries
uniformly and independently picked from finite field Fq. Such
an instantiation of G0 is feasible with probability 1 when the
field size, q, goes to infinity.

Proposition 9 tells us that a feasible instantiation exists and
can be obtained randomly when the field size is large enough.
On the other hand, it is not clear how large the field should
be. In what follows, we are going to show that a feasible
instantiation can be obtained by our proposed deterministic
algorithm. Moreover, a bound on the required field size is
derived.

Denote the i-th column of G0 by a column ω-vector f i,
which can be written as

f i �
[
f∗
i

f ′
i

]
,

where f∗
i and f ′

i are column subvectors of size θ and m̂,
respectively. Then we can rewrite G0, of size n̂× ω, as

G0 =
[
Iθ U12 U13

0 Im̂ U23

]
= [f1 · · · f n̂] =

[
f∗

1 · · · f∗
n̂

f ′
1 · · · f ′

n̂

]
.

U12 is constructed by a Cauchy matrix, whose (i, j)-th
element is given by 1/(xi − yj) with distinct elements
x1, x2, . . . , xm̂, y1, y2, . . . yθ picked from Fq . Then the subma-
trix formed by collecting f1, . . .fω satisfies the requried two
properties, because any square submatrix of a Cauchy matrix
is nonsingular over any field [42, p.323]. It remains to find
qualified fω+1, . . .f n̂ such that the two properties required
of G0 are satisfied, which yields a feasible instantiation.

Given a set of index ξ ⊂ {1, 2, . . . , n̂}, the vector space,
denoted Vξ , is spanned by the column vectors f i where
i ∈ ξ. Similarly, V ∗

ψ is defined as the vector space spanned by
subvectors f∗

i where i ∈ ψ ⊂ {1, 2, . . . , n̂}. Our construction
method is stated in Algorithm 1, which follows the same
methodology of constructing generic network codes in [40],
[41]. The correctness of Algorithm 1 and the required field
size are proved below:

Proposition 10: If the field size satisfies

q >
(
n̂−1
ω−1

)
+

(
n̂−1
θ−1

)
+ ω, (25)

then Algorithm 1 can yield a feasible instantiation of G0.
Proof: Given (25), we will first show that such a vector

x in Step 12 always exists. Since ξ is a collection of vectors
{f i : i ∈ ξ} with |ξ| = ω − 1, so dim(Vξ) ≤ ω − 1, then
we have |Vξ| ≤ qω−1. Similarly, dim(V ∗

ψ) ≤ θ − 1 implies
|V ∗
ψ | ≤ qθ−1. The vectors in Vξ and subvectors in V ∗

ψ should
not be chosen. The number of such collections ξ and ψ are
at most

(
n̂−1
ω−1

)
and

(
n̂−1
θ−1

)
, respectively. Moreover, the vectors

Algorithm 1 Assign Column Vectors for Matrix G0

Input: θ, m̂, n̂

Output: {f i =
[
f∗
i

f ′
i

]
, i = 1, . . . , n̂}

1: for i := 1, 2, . . . , θ do
2: f∗

i := the i-th natural basis of the θ-dim vector space;
3: f ′

i := 0;
4: end for
5: pick distinct x1, x2, . . . , xm̂, y1, y2, . . . yθ from Fq.
6: for i := θ + 1, θ + 2, . . . , ω do
7: f∗

i := the θ-vector whose j-th element is 1/(xi − yj);
8: f ′

i := the (i − θ)-th natural basis of the m̂-dim vector
space;

9: end for
10: I := {1, . . . , ω};
11: for i := ω + 1, ω + 2, . . . , n̂ do

12: pick any vector with non-zero elements x =
[
x∗
i

x′
i

]
∈

Fωq such that x /∈ Vξ and x∗ /∈ V ∗
ψ , for all ξ ⊂ω−1

I and ψ ⊂θ−1 I such that {fe : e ∈ ξ} are linearly
independent and {f∗

e : e ∈ ψ} are linearly independent;
13: f i := x;
14: I := I ∪ {i};
15: end for

with zero elements should also be excluded. The number of
such vectors is qω − (q − 1)ω < ωqω−1. Therefore, the total
number of vectors in Fωq that should not be picked is bounded
by

| ∪ξ Vξ| + qω−θ| ∪ψ V ∗
ψ | + qω − (q − 1)ω

<
∑
ξ

|Vξ| + qω−θ
∑
ψ

|V ∗
ψ | + ωqω−1

≤
∑
ξ

qω−1 + qω−θ
∑
ψ

qθ−1 + ωqω−1

≤(
n̂−1
ω−1

)
qω−1 +

(
n̂−1
θ−1

)
qω−1 + ωqω−1

=
[(
n̂−1
ω−1

)
+

(
n̂−1
θ−1

)
+ ω

]
qω−1

(a)
<qω = |Fωq |,

where (a) follows from (25). Therefore, such a vector x in
the proposed algorithm can always be picked. As a result,
Algorithm 1 will eventually halt.

We claim that the resultant matrix G0 is a feasible instantia-
tion. Consider the left submatrix which consists of the first m
columns of G0, where m ≥ ω. As discussed above, when
m = ω, the claim is true. Assume the claim is true for
m−1 with ω+1 ≤ m ≤ n̂. Define I � {1, . . . ,m}. Consider
two arbitrary sets ξ ⊂ω−1 I \ {m} and ψ ⊂θ−1 I \ {m}.
By induction hypothesis, both {fe : e ∈ ξ} and {f∗

e : e ∈ ψ}
are linearly independent sets. Following Step 12, assign to fm
any vector with non-zero elements x = [x′ x∗]T ∈ Fωq . As for
all ξ, x /∈ Vξ implies that {fe : e ∈ ξ ∪ {m}} are linearly
independent, so any ω vectors of {f i : i ∈ I} are linearly
independent. Likewise, any θ vectors of {f∗

i : i ∈ I} are
linearly independent due to x∗ /∈ V ∗

ψ . Hence, by mathematical
induction, the claim is proved.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1025

VI. STORAGE AND COMPUTING OPTIMIZATION

In this section, given a feasible storage budget, we first
derive a lower bound on the minimum computation time by
elementary manipulations of Shannon’s information measures,
and show that UT code can achieve that bound for sufficiently
large n. The fundamental tradeoff curve between storage
budget and computation time is characterized and is shown to
be piecewise linear. Moreover, by the notion of majorization,
it is proved that the more uneven the computing rates of
individual clouds, the longer the computation time.

A. The Optimal Tradeoff

In the (V,K, J) system, we aim to perform secure distrib-
uted matrix multiplication over V clouds in the presence of
V −K cloud outages and J colluding clouds. The confidential
matrix A ∈ Fm×s

q is encoded into Ã ∈ Fn×sq with code rate
m/n. Given storage allocation vector l, where �l�1 = n,
we allocate the encoded matrix to V clouds for storage,
and then perform distributed computing according to the
load vector r. Without loss of generality, we assume the
computing service rates of clouds are in descending order:
μ1 ≥ μ2 ≥ · · · ≥ μV . The budget of normalized storage cost
on multiple clouds is S, i.e.,

n =
∑
i∈V

li ≤ mS. (26)

Since l and r naturally grow with the number of data records,
m, we normalize both of them by m. With slight abuse of
notation, we use the same symbols but interpret them as
the storage amount and computing amount per data record.
We are particularly interested in the asymptotic case where
m is large, which is relevant to big data applications. While
those variables are rational numbers by nature, it is justifiable
to make a relaxation, treating them as real numbers.

We can then obtain a lower bound on the minimum com-
putation time by solving the following problem:

TLB � min
l,r∈RV

{max
i∈V

ri
μi

} (27)

subject to ∑
i∈V

li ≤ S (28)

min
K⊂KV

∑
i∈K

li − max
J⊂JV

∑
i∈J

li ≥ 1 (29)

0 ≤ ri ≤ li, ∀i ∈ V (30)∑
i∈V

ri = min
K⊂KV

∑
i∈K

li, (31)

where (29) comes from the necessary condition (8) for the
system requirements. Since (28), (30) and (31) are also neces-
sary conditions to be met, if we minimize the computation time
subject to these constraints, the result so obtained becomes a
lower bound for the computation time.

Note the lower bound TLB is well defined if and only if the
optimization problem (27) is feasible. The feasibility condition
is shown in the following lemma, with proof in the Appendix.
We can see S0 = 1/C, implying that the optimization problem

is feasible if and only if the code rate applied by the system
does not exceed the secrecy capacity. That is, secrecy capacity
is equivalent to the feasibility condition for the optimization
problem.

Lemma 11: The optimization problem (27) is feasible if and
only if S ≥ S0 � V

K−J . In particular, if S = S0, the storage
allocation must be equal, i.e., l1 = · · · = lV = 1

K−J � l0.
Lemma 12: Given a feasible problem instance, there

always exists an optimal allocation vector l∗ at which
l∗1 ≥ l∗2 ≥ · · · ≥ l∗V and equality holds in (29).

The proof is in the Appendix. Note that a feasible prob-
lem instance may not have a unique solution. For example,
the slowest clouds can exchange the values of their storage
allocations li’s without increasing the minimum computation
time as long as the constraints ri ≤ li are fulfilled.

Lemma 13: T ∗(S) = TLB for any feasible storage
budget S.

Proof: We claim that TLB can be achieved by an
(̂l

∗
, r̂∗, m̂) UT code. Let (l∗, r∗) be an optimal solution to

the optimization problem (27), and l∗ satisfies the conditions
in Lemma 12. For i ∈ K0 � {V − K + 1, . . . , V }, let
l̂∗i = �m̂l∗i and r̂∗i = �m̂r∗i . For i ∈ V \ K0, let l̂∗i = �m̂l∗i �
and r̂∗i = �m̂r∗i �. This setting of l̂

∗
ensures that ω ≥ ϕ,

which is required for the code to fulfill all system requirements
as shown in Lemma 7. The normalized storage amount after
encoding is Ŝ = ‖l̂

∗‖1
m̂ = n̂

m̂ . It can be seen that Ŝ → S as

n→ ∞, since l̂∗i
m̂ → l∗i as n→ ∞.

Next, we may need to adjust r̂∗ such that the following
two conditions hold: (a) r̂∗ ≤ l̂

∗
and (b) the condition

in (17). It is easy to check that condition (a) holds under
the current setting. If �r̂∗�1 >

∑
i∈K0

l̂∗i , we can reduce
one or more non-zero components of r̂∗ such that equality
holds. Otherwise, if �r̂∗�1 <

∑
i∈K0

l̂∗i , we can increase
ri by 1 for one or more i ∈ K0 such that equality holds.
After the adjustment of r̂∗, for both cases, we must have
r̂∗i ≤ �m̂r∗i � for all i ∈ V . Moreover, both (a) and (b) hold.
Given any ζ > 0, when m̂→ ∞, we have r̂i

m̂ ≤ r∗i +
, where

 � ζmini∈V μi. Hence, the computation time T achieved by
the UT code satisfies

TLB ≤ T = max
i∈V

r̂∗i
m̂μi

≤ max
i∈V

r∗i +

μi
≤ TLB + ζ.

Hence, (S, TLB) is feasible, implying T ∗(S) = TLB.
Lemma 13 implies that the minimum computation time can

be obtained by solving the optimization problem in (27), which
can be be simplified as follows by Lemma 12:

min
l,r∈RV

T (32)

subject to ∑
i∈V

li ≤ S (33)

l1 ≥ l2 ≥ · · · ≥ lV (34)
V∑

i=V−K+1

li −
J∑
i=1

li = 1 (35)

0 ≤ ri ≤ li, ∀i ∈ V (36)

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1026 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

T ≥ ri
μi
, ∀i ∈ V (37)

∑
i∈V

ri =
V∑

i=V−K+1

li (38)

B. Bottleneck Clouds

In this subsection, we introduce a useful concept called
bottleneck clouds, which denote the clouds that are the last
ones to finish computing. The number of non-bottleneck
clouds at minimum storage budget S0, which we are going
to denote by Q, turns out to be an important value that affects
the overall system performance.

Definition 7: Cloud i is said to be a bottleneck if r∗i = μiT
∗.

The index set of bottleneck clouds for budget S is

BΔs � {i ∈ V : r∗i = μiT
∗},

where Δs � S − S0 ≥ 0. Accordingly, others are called non-
bottleneck clouds, whose index set is the complement of BΔs,
i.e.,

B̄Δs � V \ BΔs = {i ∈ V : r∗i < μiT
∗}.

Let x(S) � |B̄Δs| be the number of non-bottleneck clouds
with storage budget S. (When there is no ambiguity, we may
simply write it as x.)

First, we consider the scenario with minimum storage
budget, i.e., Δs = 0. Denote the corresponding minimum
completion time by T0, achieved by l0 � (l01, l

0
2, . . . , l

0
V) and

r0 � (r01 , r
0
2 , . . . , r

0
V). From Lemma 11, the allocation vector

must be l0 = l01V . The total computation load in (38) then
becomes ∑

i∈V
ri = Kl0. (39)

Recall μ1 ≥ μ2 ≥ · · · ≥ μV . For notation simplicity, let
μ0 be a sufficiently large number such that l0

μ0
< T0. Then

there exists an integer Q ∈ {0, 1, . . . , V } such that

l0
μ0

≤ l0
μ1

≤ · · · ≤ l0
μQ

< T0 ≤ l0
μQ+1

≤ · · · ≤ l0
μV

. (40)

Note that Q can be uniquely determined as T0 is well defined.
The following result shows that there are Q non-bottleneck
clouds if Δs = 0.

Lemma 14: With minimum storage budget S0, the optimal
solution is given by x(S0) = Q,

T0 =
(K −Q)l0∑

i∈B0
μi

, and (41)

r0i =
{
l0 i ∈ B̄0

μiT0 i ∈ B0
, (42)

where B̄0 = {1, 2, . . . , Q} and B0 = {Q+ 1, Q+ 2, . . . , V }.
Furthermore, Q is the minimum integer such that

Q+
1

μQ+1

∑
i∈B0

μi ≥ K. (43)

Proof: Define I � {1, 2, . . . , Q}. By the definition of Q,
r0i ≤ li < μiT0, ∀i ∈ I. Then B0 ∩ I = ∅, i.e., B0 ⊆ V \ I.

Suppose B0 � V \I. Pick any j ∈ (V \ I) \ B0, and we set
r0i as r0i −η for all i ∈ B0 and r0j as r0j +|B0|η, where η > 0 is
arbitrarily small. Then the resultant computation time T ′ < T0,
which contradicts with T0 being optimal. Hence, B0 = V \ I,
B̄0 = I, and x = Q.

Suppose r0i < l0 for some i ∈ B̄0. If we set r0i as r0i +
 and
r0j as r0j − ε

|B0| ∀j ∈ B0, where
 > 0 is arbitrarily small, then
the resultant computation time T ′′ < T0, which contradicts
with T0 being optimal. Therefore, ∀i ∈ B̄0, r0i = l0. Hence,
by (39), we have

T0 =

∑
i∈B0

r0i∑
i∈B0

μi
=

∑
i∈V r

0
i −

∑
i∈B̄0

r0i∑
i∈B0

μi
=
Kl0 −Ql0∑

i∈B0
μi

,

which, together with (40), implies that Q is the minimum
integer that satisfies (43).

Next, we will discuss the case where Δs > 0. Define
Δli � li− l0 for i ∈ V , which is not necessarily non-negative.
To ensure feasibility, Δli’s have to satisfy (33), (34) (35),
and (36), which is equivalent to

0 ≤
∑
i∈V

Δli ≤ Δs, (44)

Δl1 ≥ Δl2 ≥ · · · ≥ ΔlV ≥ −l0, (45)
V∑

i=V−K+1

Δli =
J∑
i=1

Δli, (46)

where the last equality follows from the definition of l0 in
Lemma 11.

Lemma 15: Δl1 ≥ Δl2 ≥ · · · ≥ ΔlJ ≥ 0.
Proof: Assume ΔlJ < 0. According to (45) and (46),

we have
∑V

i=J+1 Δli =
∑V−K

i=1 Δli < 0. The smallest
term in the second summation, ΔlV−K , must be negative,
which by (45) again, implies

∑V
i=V−K+1 Δli < 0. Therefore,∑

i∈V Δli < 0, which contradicts with (44), so we must have
ΔlJ ≥ 0. Therefore, Δl1 ≥ Δl2 ≥ · · · ≥ ΔlJ ≥ 0.

Let the overall computing time T be achieved by l � (l0 +
Δl1, l0 + Δl2, . . . , l0 + ΔlV) and r � (r1, r2, . . . , rV). Since
μiT ≥ ri for all i ∈ V in general and all i ∈ B0 in particular,
we have

T ≥

∑
i∈B0

ri

∑
i∈B0

μi
=

∑
i∈V

ri −
∑
i∈B̄0

ri

∑
i∈B0

μi

(a)

≥

V∑
i=V−K+1

li −
∑
i∈B̄0

li

∑
i∈B0

μi

=

(K −Q)l0 +
V∑

i=V−K+1

Δli −
∑
i∈B̄0

Δli
∑
i∈B0

μi

(b)
=

(K −Q)l0 +
J∑
i=1

Δli −
Q∑
i=1

Δli∑
i∈B0

μi
, (47)

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1027

where (a) comes from (36) and (38), and (b) comes from (46).
Note that T equals the expression in (47) if and only if BΔs ⊇
B0 and r∗i = l∗i for all i ∈ B̄0.

C. Proof of Theorem 2

In this subsection, we prove Theorem 2 by solving the
optimization problem in (32) and deriving explicit forms for
the minimum computation time T ∗(S), showing that T ∗ is
a piecewise-linear and decreasing function of storage budget
S. Specifically, depending on the value of Q, the number of
non-bottleneck clouds when Δs = 0, we divide the proof
into two cases: Q ≤ J and Q > J . In the first case, T ∗

remains unchanged as the increase of S, which is proved in
Proposition 16. The second case is more involved, which can
be further divided into two sub-cases according to the system
parameters of V,K, and J , and in this case T ∗ is proved to be
piecewise-linear, decreasing function of S by Proposition 18.

1) First Case: Q ≤ J:
Proposition 16: If Q ≤ J , the optimal computation time is

T ∗ = T0 for any S ≥ S0, which can be achieved by l∗ =
l0 and r∗ = r0.

Proof: By Lemmas 14 and 15, we can re-write (47) as

T − T0 ≥

J∑
i=Q+1

Δli
∑
i∈B0

μi
≥ 0, (48)

which means the computation time cannot be less than T0 even
if there is more storage budget than S0. Therefore, the optimal
computation time is T ∗ = T0, which can be achieved by l∗ =
l0 and r∗ = r0.

2) Second Case: Q > J: Next, we consider the case where
Q > J . Let there be π distinct computing rates for the clouds
indexed by X � {J, . . . , Q}, where 1 ≤ π ≤ Q − J + 1.
We partition them into different subsets, putting those clouds
with the same rate μi into a set.

Definition 8: Let D1 � {i ∈ X : μi = μQ} = {Q −
q1 + 1, . . . , Q}, where q1 = |D1|. If J /∈ D1, define D2 �
{i ∈ X : μi = μQ−q1} = {Q − q2 + 1, . . . , Q − q1}, where
q2 = |D1| + |D2|. If J /∈ D2, continue defining D3, D4, . . .
until J ∈ Dπ, where Dπ � {i ∈ X : μi = μJ}. Furthermore,
for k = 1, 2, . . . , π, define μ(k) � μi for any i ∈ Dk.

As will be shown in Proposition 18, when the storage budget
S increases, the number of non-bottleneck clouds, x(S), will
decrease monotonically from Q to Q − q1, . . . , Q − qπ−1

and finally to J . This is illustrated in Fig. 3. The number of
descents of x is denoted by

Π �
{
π − 1 if |Dπ| = 1
π otherwise

.

Based on the lower bound on T established in Lemma 17,
we find the optimal computing time T ∗ as well as the
corresponding optimal allocation l∗ and r∗ in Proposition 18.
Their proofs are placed in the appendices.

Lemma 17: If Q > J , then

T ≥ (K −Q)l0 − (Q− J)λΔs∑
i∈B0

μi
� TQ(Δs), (49)

Fig. 3. As the storage budget S increases, the number of non-bottleneck
clouds, x, drops from Q to Q− q1, Q− q2, . . . , Q− qπ−1, and then to J .

where

λ �
{ 1

J+V−K if Q > V −K.
K

KQ+JV−JQ otherwise.
(50)

Moreover, if Q > V − K , TQ(Δs) can be achieved by a
feasible pair (l∗, r∗) if and only if it satisfies

BΔs ⊇ B0 and r∗i = l∗i = l0 + λΔs ∀i ∈ B̄0. (51)

Otherwise, TQ(Δs) can be achieved by a feasible pair (l∗, r∗)
if and only if it satisfies

BΔs ⊇ B0, r
∗
i = l∗i = l0 + λΔs ∀i ∈ B̄0, and

ΔlQ+1 = · · · = ΔlV =
J

K
λΔs. (52)

Proposition 18: Denote q0 � 0. If Q > J , for any S ≥ S0,

x(S) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q− q0 S0 ≤ S < S
(0)
1

Q− q1 S
(0)
1 ≤ S < S

(0)
2

...

Q− qπ−1 S
(0)
Π−1 ≤ S < S

(0)
Π

J S ≥ S
(0)
Π

. (53)

(i) If J ≥ V −K: for j = 1, 2, . . . ,Π,

S
(0)
j = S0 +

μyj l0(K − yj) − l0
∑V
i=yj+1 μi

λ
∑V

i=yj+1 μi + λμyj (yj − J)
, (54)

where yj � Q − qj−1. When S0 ≤ S ≤ S
(0)
Π , the optimal

computing time is

T ∗ =
(K − x)l0 − (x − J)λΔs∑V

i=x+1 μi
, (55)

which can be achieved by a feasible pair (l∗, r∗)

r∗i =
{
l0 + λΔs = l∗i i ∈ {1, 2, . . . , x}
μiT

∗ i ∈ {x+ 1, x+ 2, . . . , V } ,

(56)

l∗i = r∗i + δi, i ∈ {x+ 1, x+ 2, . . . , V }, (57)

where δi’s can be any non-negative numbers satisfying

V∑
i=x+1

δi = (V −K)(l0 + λΔs), (58)

and
l0 + λΔs ≥ r∗x+1 + δx+1 ≥ · · · ≥ r∗V + δV . (59)

When S > S
(0)
Π , T ∗, r∗i ’s and l∗i ’s are equal to the case where

S = S
(0)
Π .

(ii) If J < V − K , for j = 1, 2, . . . , jmax, where jmax is
the largest index satisfying Q− qj−1 ≥ V −K , the value of

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1028 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

S
(0)
j can be obtained by (54). For S0 ≤ S < S

(0)
jmax

, T ∗, r∗

and l∗ can be obtained by the same formulas in case (i).
For j > jmax and S > S

(0)
jmax

, S(0)
j , T ∗, r∗ and l∗ can be

obtained by Algorithm 2, where T ∗ can be expressed as

T ∗ =
x+ xI − (x− J)S

(x+ JI)
V∑

i=x+1

μi − (x− J)
∑
i∈I

μi

, (60)

where I � V−x−|I|
K , I � ∪i∈NDi, and N ⊆ {1, 2, . . . , π}

depends on S and can be determined by Algorithm 2.
Proposition 18 reveals that T ∗ is a piecewise linear function

of the storage budget S. For the first case where J ≥ V −K ,
it decreases linearly at rate k, where

k =
(x− J)λ
V∑

i=x+1

μi

, (61)

with Π turning points occurring at S = S
(0)
i for i =

1, 2, . . . ,Π. Each turning point indicates a change of the
number of non-bottleneck clouds, x(S), which is also reflected
in the definition of Di for i = 1, 2, . . . , π.

The second case where J < V − K is more involved.
As for the first case, there are Π main turning points, which
indicate the change of the value of x(S). On the other hand,
for j > jmax, there may be additional turning points within an
interval [S(0)

j , S
(0)
j+1), denoted by S(z)

j+1 for z ≥ 1. The objective
of Algorithm 2 is to find all the additional turning points as
well as the main turning points. Since those additional turning
points could possibly exist only if x(S) < V −K , the second
case is the same as case 1 when x(S) ≥ V − K . It should
be noted that in both cases, the decreasing rate of T ∗ drops
with the increase of S, implying a convexity property. When
x(S) drops to J , T ∗ becomes a constant function of S. Hence,
the storage budget of S(0)

Π is enough to achieve the minimum
computing time.

To facilitate the presentation of Algorithm 2, we define a
variable kstart, which indicates the beginning of the searching
process. If Q > V − K , then there exists i such that V −
K ∈ Di and we let kstart = i − 1. Otherwise, let kstart =
0. Furthermore, the following definition is required for the
description of Algorithm 2:

Definition 9: Given N ⊆ {1, 2, . . . , π} and x ∈
{1, 2, . . . , V }, let L(N , x) be the following set of linear
equations:

l∗i =

⎧⎨
⎩

l∗1, i ∈ {1, 2, . . . , x}
μiT

∗, i ∈ I � ∪i∈NDi
l∗V , i ∈ {x+ 1, x+ 2, . . . , V } \ I

,

r∗i =
{
l∗1 i ∈ {1, 2, . . . , x}
μiT

∗ i ∈ {x+ 1, x+ 2, . . . , V } ,

⎧⎪⎨
⎪⎩

∑V
i=1 l

∗
i = S∑V

i=V−K+1 l
∗
i −

∑J
i=1 l

∗
i = 1∑V

i=V−K+1 l
∗
i =

∑V
i=1 r

∗
i

.

Algorithm 2 requires solving S from L with an additional
linear equation E . We denote it by solve(L, E).

Algorithm 2 Optimal Solution When J < V −K

Input: S, μ1, μ2, . . . , μV , V,K, J,Q
Output: S1,S2, . . . ,SΠ, l∗, r∗, T ∗

1: Initialize N ,N (0)
0 ,S1,S2, . . . ,SΠ all to ∅;

2: S0 := {S(0)
0 }, S(0)

0 := S0;
3: for k := kstart, kstart + 1, . . . ,Π − 1 do
4: S

(0)
k+1 := solve(L(N , Q− qk), l∗1 = μ(k+1)T

∗);
5: for z := 1, 2, . . . , |N | do
6: n := min(N);
7: S

(z)
k+1 := solve(L(N , Q− qk), l∗V = μ(n)T

∗);
8: if max{∪k+1

i=0 Si} < S
(z)
k+1 < S

(0)
k+1 then

9: Sk+1 := Sk+1 ∪ {S(z)
k+1};

10: N := N \ {n};
11: N (z)

k+1 := N ;

12: S
(0)
k+1 := solve(L(N , Q − qk), l∗1 = μ(k+1)T

∗);
13: else
14: break;
15: end if
16: end for
17: N := N ∪ {k + 1};
18: N (0)

k+1 := N ;

19: Sk+1 := Sk+1 ∪ {S(0)
k+1};

20: end for
21: if S

(i′)
i < S ≤ S

(j′)
j , where {S(r′)

r ∈ ∪Π
i=0Si : S(i′)

i <

S
(r′)
r < S

(j′)
j } = ∅ then

22: l∗, r∗ and T ∗ are obtained by solving L(N (i′)
i , x(S))

with the given S;
23: else if S > S

(0)
Π then

24: l∗, r∗ and T ∗ are the same as the case where S = S
(0)
Π .

25: end if

D. Majorization Property

In this subsection, we compare the performance of two
multi-cloud systems with the same total computing power.
An interesting result is that the more uneven the computing
rates of the clouds are, the longer the optimal computation
time will be. To capture precisely the degree of “unevenness”
of cloud computing rates, we adopt a mathematical notion
from [45] called majorization in Definition 1. We can see “x �
y” describes the intuition that the components of x are “more
spread out” or “less nearly equal” than those of y. A related
concept called Schur-concavity is also defined below [45]:

Definition 10: A function f : Rn → R is said to be Schur-
concave if x � y implies f(x) ≤ f(y). It is said to be
Schur-convex if x � y implies f(x) ≥ f(y).

The following lemma is an important conclusion about
Schur-concave functions, whose proof can be found
in [45, p.92]:

Lemma 19 ([45]): If I ⊂ R is an interval and f : I → R

is concave, then

Φ(x) =
n∑
i=1

f(xi)

is Schur-concave on In. Consequently, x � y on In implies
Φ(x) ≤ Φ(y).

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1029

In a (V,K, J) system, we assume the computing rate vector
of the V clouds, denoted as μ � (μ1, . . . , μV), is indexed in
a way such that its components are sorted in decreasing order.
Consider two (V,K, J) systems with computing rate vectors
μ(1) and μ(2), where μ(1) � μ(2). We have the following
result on their optimal computing times:

Proposition 20 (Proof of Theorem 3): Let f(μ), where f :
RV → R, be defined as the optimal computation time T ∗ for
a system with computing rate vector μ. Given any S ≥ S0, f
is Schur-convex.

Proof: Define L(S) � {l : �l�1 ≤ S, l1 ≥ · · · ≥
lV ,

∑V
i=V−K+1 li −

∑J
i=1 li = 1} as the set of storage

allocation vectors which satisfy (33), (34), and (35). Given
any l ∈ L(S), the optimal computing time can be obtained by
solving:

min
r
T (62)

subject to

�r�1 =
V∑

i=V−K+1

li (63)

0 ≤ ri ≤ min{μiT, li}, ∀i ∈ V (64)

It is easy to see that at the optimal solution r∗, equality must
hold in (64), for otherwise there exist some clouds completing
computation tasks in advance (ri < μiT) without using all the
local data (ri < li), which means those clouds could compute
more to reduce the workload of bottleneck clouds so that a
lower value of T can be achieved by adjusting the values of
ri’s while keeping their sum constant as in (63). Hence, the
function f(μ) can then be represented as

f(μ) = min
l∈L(S)

ϕl(μ),

where

ϕl(μ) � min
{
T ∈ R : gl(μ, T) =

V∑
i=V−K+1

li

}
, (65)

and

gl(μ, T) �
V∑
i=1

min{μiT, li}.

First, we show that ϕl(μ) is Schur-convex for any l ∈
L(S). Consider any two systems with the same storage allo-
cation vector l and computing rate vectors μ(1) and μ(2),
respectively, such that μ(1) � μ(2). Since min{μiT, li} is
a concave function of μi, by Lemma 19, gl(μ, T) is a
Schur-concave function of μ, i.e., g(μ(1), T) ≤ g(μ(2), T).
Define T ∗

l,i � ϕl(μ(i)) for i = 1, 2. By the definition of
ϕl(μ), we have g(μ(1), T ∗

l,1) = g(μ(2), T ∗
l,2), since both of

them equal
∑V

i=V−K+1 li. Combining the two results, we have

g(μ(2), T ∗
l,2) ≤ g(μ(2), T ∗

l,1).

As g(μ, T) is an increasing function of T , we conclude

ϕl(μ(1)) � T ∗
l,1 ≥ T ∗

l,2 � ϕl(μ(2)).

Next, we show that f(μ) is Schur-convex. For i = 1, 2, let
l∗i ∈ L(S) be an optimal vector such that ϕl(μ(i)) is minimal.
We then have

f(μ(1)) = ϕl∗1 (μ
(1)) ≥ ϕl∗1 (μ

(2)) ≥ ϕl∗2 (μ
(2)) = f(μ(2)),

where the first inequality follows from the Schur-convexity of
ϕl(μ) and the second inequality follows from the optimality
of l∗2 for the system with μ(2).

Proposition 20 proves Theorem 3, which implies that het-
erogeneity negatively impacts the tradeoff between storage and
computation. If the total computing power is fixed, homoge-
neous multi-cloud systems provide faster computing service
than heterogeneous systems under the same storage budget.
In general, the more even the computing rates are, the shorter
the computing time a system can achieve.

VII. NUMERICAL ANALYSIS AND EXPERIMENTS USING

AMAZON EC2 INSTANCES

In this section, we implement matrix-vector multiplication
Ax over a finite field Fq reliably and securely in a (V,K, J)
multi-cloud system. For practical scenario where input matrix
elements are real numbers, our proposed coding scheme can
also be naturally applied. For example, a real number can
be quantized and represented by a fixed-point number, which
is essentially the same as an integer. The matrix and vector
entries, regarded as integers, can then be embedded into a
finite field of size greater than the possible range of an output
vector entry.

The UT code is proved capacity achieving, and will be used
throughout this section. We will demonstrate the performance
of our optimal resource allocation scheme numerically based
on our analytical results and test it experimentally on Amazon
EC2 clusters in the following subsections.

A. Benchmark Schemes

To evaluate the performance of our optimized storage allo-
cation, two simple allocation schemes, namely, equal alloca-
tion and proportional allocation, will be used as benchmarks
for comparison. Given a storage budget S, to apply UT codes,
both the equal allocation vector l = S

V 1V and the proportional
allocation vector l = S

‖µ‖1
μ must fulfill ω ≤ ϕ. The former is

equivalent to S ≥ S0, and the latter is equivalent to S ≥ Spro,
where

Spro � �μ�1

min
K⊂KV

∑
i∈K

μi − max
J⊂JV

∑
i∈J

μi
(66)

is positive and bounded, denoting the minimum storage budget
for proportional allocation. It should be noted that proportional
allocation may not be feasible in our system. Moreover, unlike
our optimized allocation, an increase in storage budget for
equal allocation and proportional allocation cannot reduce
the computation time. For equal allocation with l = S

V 1V ,
the corresponding optimal computing time T ∗

equal, obtained by
solving problem (27), is

T ∗
equal =

S(K −Q)
V

∑
i∈B0

μi
,

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

which linearly increases with the growth of S. The proof is
the same as Lemma 14, except for replacing l0 with S/V .
In a similar manner, we can show that the optimal computing
time of proportional allocation also linearly increases as S
increases. Therefore, equal allocation and proportional alloca-
tion do not need to fully utilize the storage budget, but should
just store S0 and Spro, respectively. The settings of the two
schemes are summarized below:
(1) Equal allocation with UT code: The confidential matrix

is encoded by UT code. With the fixed storage allocation
vector l = l0, the load vector r = r0 is optimal in
minimizing the average computing time in problem (27).

(2) Proportional allocation with UT code: The confidential
matrix is encoded by UT code. With the fixed storage
allocation vector l = Spro

‖µ‖1
μ, the load vector r is

optimized to minimize the average computing time by
solving problem (27).

B. Numerical Results

Consider a (V,K, J) = (6, 5, 2) system, which requires a
minimum storage budget S0 = 2m. The computing rate vector
of the six clouds, μ = (μ1, . . . , μ6), determines the value of
Q, which is the number of non-bottleneck clouds under the
minimum storage budget. Given a storage budget S ≥ S0 and
a data matrix of dimension m×s, the following four scenarios
of various computing rates are considered:

• Scenario 1: μ = μ(1) � (9, 7, 3, 3, 2, 1) and Q = 2.
• Scenario 2: μ = μ(2) � (8, 6, 5, 3, 2, 1) and Q = 3.
• Scenario 3: μ = μ(3) � (7, 6, 5, 4, 2, 1) and Q = 4.
• Scenario 4: μ = μ(4) � (5, 4, 4, 4, 4, 4) and Q = 0.

Note that the system in each scenario has the same total
computational rate of �μ�1 = 25. Moreover, it is easy to
check that μ(1) � μ(2) � μ(3) � μ(4). Same as section VI,
the proposed storage allocation vector l and load vector r are
normalized by m, i.e., we set m = 1 in the simulations.

We first characterize the tradeoff between the optimal com-
puting time T ∗ and storage budget S for the four different
scenarios, which is illustrated in Fig. 4. The optimal computing
time is shown to be a piecewise linear non-increasing function
of the storage budget. For Scenarios 1 and 4, in which
Q ≤ J , increase in storage budget cannot reduce com-
puting time. For Scenarios 2 and 3, in which Q > J ,
the optimal computing time decreases with the growth of
storage budget, and its decreasing rate also declines due to
the number of non-bottleneck clouds getting smaller in (61).
When the storage budget exceeds a certain threshold, the
optimal computation time levels off and cannot be reduced
by further increasing the storage budget. The results also
verify that there are Π = Q− J turning points. Furthermore,
it can be seen from Fig. 4 that T ∗

1 ≥ T ∗
2 ≥ T ∗

3 ≥ T ∗
4 for

any feasible storage budget, which verifies Theorem 3 and
demonstrates that uneven computing rates of clouds lead to
longer computing time.

Next, we compare our proposed scheme with the two bench-
marks described in the previous subsection. Since proportional
allocation is infeasible in Scenario 1, we only consider Sce-
narios 2, 3, and 4. Fig. 5 shows that our proposed allocation

Fig. 4. Tradeoff between storage budget and optimal computing time in four
scenarios.

Fig. 5. Time reduction by our proposed allocation compared with equal
allocation and proportional allocation in three scenarios.

outperforms proportional allocation, plotted in broken lines,
in all three scenarios. This is because the total computational
workload of proportional allocation is much higher, outweigh-
ing the benefit of having all clouds compute in parallel from
start to finish. It assigns more storage amount to the fastest
J clouds, but to ensure data security in these J clouds,
UT code adds a large number of random keys, requiring much
more calculations to finish the computing task. That explains
why the minimum storage budget of proportional allocation,
Spro, is larger than the minimum feasible budget, S0. Equal
allocation is the same as our proposed allocation with storage
budget fixed at S0. Its performance curves are shown by solid
lines in Fig. 5. For Scenarios 2 and 3, in which Q > J ,
our optimized allocation can take advantage of the available
storage budget to reduce the computing time until a threshold
is reached. Although equal allocation has less computational
workload compared with ours, it does not make a good use
of the cloud computing power as the faster clouds could do
more tasks to minimize the computing time. For Scenario 4,
in which Q < J , the performance of equal allocation is

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1031

Fig. 6. Performance comparison of three schemes. Decoding time is expanded
tenfold for easy visualization.

identical to ours, since the computing time cannot decline
under any storage budget. In summary, our allocation scheme
outperforms both benchmarks in most cases as it combines the
benefit of equal allocation (less computational workload) and
proportional allocation (assigning more data to faster clouds).
In Scenarios 2 and 3, as the storage budget increases, our
optimal allocation scheme can provide gains in the computing
time of up to 20% − 35% over equal allocation, and up to
70% − 150% over proportional allocation.

C. Experiments Using Amazon EC2 Instances

We use MPICH2 [46] to implement our proposed scheme
and conduct experiments on Amazon EC2 clusters. A cluster,
consisting of a master and a group of workers of instance
type t2.micro, is used to emulate a cloud. Several clusters
are used to emulate multiple clouds. Cloud i contains μi
worker instances, for i = 1, 2, . . . , V . Although μi may not
equal exactly the actual computing rate of Cloud i, it does
reflect the computing power of the cloud. In our experiments,
we consider the same (V,K, J) = (6, 5, 2) system as in the
previous subsection.

In the first experiment, we set the storage budget to S =
Spro ∗m, where m = 15840. The optimal allocation l∗ and r∗

can then be obtained according to the computing rate vector μ.
For example, given μ = (7, 6, 5, 4, 2, 1), we can obtain l∗ =
(5, 5, 5, 5, 4, 3) ∗ 1

12 and r∗ = (5, 5, 5, 4, 2, 1) ∗ 1
12 . Choosing

m̂ = m/b = 12, we apply a (̂l, r̂, m̂) UT code to encode the
confidential matrix and perform secure multi-cloud computing,
where l̂ = m̂l∗ and r̂ = m̂r∗. In a similar manner, equal
allocation with UT code and proportional allocation with UT
code can also be implemented. For performance comparison
of the three schemes, the following three cases are considered:

• Case 1: s = 5000 and μ = (5, 4, 4, 4, 4, 4).
• Case 2: s = 5000 and μ = (7, 6, 5, 4, 2, 1).
• Case 3: s = 10000 and μ = (7, 6, 5, 4, 2, 1).
Fig. 6 shows the computing time of the three schemes

for the above three cases. To better assess the performance
of each scheme, the time overhead due to decoding is also
measured. It turns out the decoding overhead is much smaller
or even negligible compared with the computing time, so for

Fig. 7. Tradeoff between storage budget and optimal computing time in three
scenarios.

easy visualization, we magnify the decoding time tenfold in
the figure. For Case 1 in which only one cloud is slightly
faster than the others, our proposed scheme performs almost
the same as equal allocation. For Cases 2 and 3 in which
the cloud computing speeds are more diverse, our scheme
achieves 32.99% and 33.52% time reduction, respectively.
For all three cases, proportional allocation does not perform
well. Our scheme can reduce its computing time by 10.14%,
72.10%, and 72.91%, respectively. These results are roughly
consistent with the simulation results in Fig. 5. We can see
increasing the value of s does not affect the performance
gain of our proposed allocation scheme compared to the two
benchmarks.

In the second experiment, we investigate the tradeoff
between between the optimal computing time and storage bud-
get for three different cloud configurations (Scenarios 1, 2 and
3 in Fig. 4). We set s = 1000 and vary the storage budget S
along the discrete points (2.0, 2.05, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8)∗
m, where m = 27720. The experimental results in Fig. 7 are
consistent with the numerical results in Fig. 4, which corrob-
orates our previous theoretical analysis. Furthermore, T ∗

1 ≥
T ∗

2 ≥ T ∗
3 for any feasible storage budget due to the majoriza-

tion property, verifying that uneven computing rates of clouds
leads to longer computing time.

VIII. CONCLUSION

Coded distributed computing with perfect secrecy and het-
erogeneity is studied. The secrecy capacity, defined as the
maximum achievable code rate, is obtained explicitly, and
is shown to be achievable if and only if the encoded data
is equally allocated to all clouds. While a major goal of
distributed computing is to shorten the computation time,
equal allocation, though optimal in terms of storage efficiency,
may not be the best choice for a heterogeneous system. A
fundamental tradeoff between storage budget and computation
time is characterized in the information-theoretic sense, which
can be achieved with linear decoding complexity by the UT
code. The storage budget constrains the code rate to be
above a certain threshold. Given a feasible storage budget,

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1032 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

the computation time is usually minimized with unequal allo-
cation, at the cost of a lower code rate than secrecy capacity.
Moreover, the tradeoff curve shifts towards the origin if the
computing rates become more even. The implication is that
heterogeneity lengthens computing time. Such a phenomenon
was not discussed before. It is hoped that this study sheds
light on efficient design of multi-cloud systems in particular
and coded distributed computing systems in general. Future
works may consider generalizing the results to a broader
setting, e.g., two-sided secure matrix multiplication, in which
both matrices are required to be secure, and batch matrix
multiplication, in which a collection of matrix products need to
be computed.

APPENDIX A
PROOF OF PROPOSITION 9

Proof: Let G∗
0 be an arbitrary ω × ω submatrix of G0.

The proof of G∗
0 being full rank is based on the fact that

adding a scalar multiple of one column to another column
does not change the value of its determinant, and interchanging
any pair of columns or rows of the matrix multiplies its
determinant by −1.

Rewrite G0 as

G0 �
[
G01 G02 G03

]
�

[
Iθ U12 U13

0 Im̂ U23

]
.

Assume we pick p (p ≤ θ) columns from G01, q (q ≤ m̂)
columns from G02, and ω − p − q columns from G03 to
construct G∗

0, then after adding a scalar multiple of one
column to another column and interchanging some rows and
columns, the determinant of G∗

0 satisfies

| det(G∗
0)| = | det

[
Ip 0
0 Mω−p

]
| = | det(Mω−p)|,

where Ip and Mω−p are square matrices with size p and ω−p
respectively.

Mω−p =
[
U′

11 U′
12 U′

13

Iq 0 U′
23

]
=

[
U′

11 D
Iq B

]
,

where U′
ij ’s are random matrices with independently and

uniformly distributed entries, and Iq and D are square matrices
with size q and ω − p− q respectively. Note that the sizes of
the two row groups are ω − p − q and q, respectively, while
those of the three column groups are q, m̂ − q and θ − p,
respectively.

By Schur’s determinant identity [43, p.475], we have

| det(Mm̂+θ−p)| = | det(Iq)|| det(D − U′
11I

−1
q B)|

= q ∗ | det(D − U′
11B)|,

where D − U′
11B is a random matrix, whose entries are

all independent and uniformly distributed in Fq. When
the field size q goes to infinity, the probability of
D − U′

11B being of full rank (i.e., det(G∗
0) �= 0)

approaches 1, which implies that G0 has property (1) with
probability 1.

In a similar way, we can prove that G0 also has property
(2) with probability 1.

APPENDIX B
PROOF OF LEMMA 11

Proof: The reverse direction is obvious. If S ≥ V
K−J , it is

easy to check that l = 1
K−J 1V and r = K

V (K−J)1V satisfy
all the constraints and together form a feasible solution.

Next, assume the problem is feasible. Let the allocation
vector l � (l1, l2, . . . , lV) and load vector r � (r1, r2, . . . , rV)
be a feasible solution. We sort l1, l2, . . . , lV in decreasing order
and denote them by l(1), l(2), . . . , l(V) such that

l(1) ≥ l(2) ≥ · · · ≥ l(V) ≥ 0. (67)

Rewrite (29) as

1 ≤
V∑

i=V−K+1

l(i) −
J∑
i=1

l(i)

=
V∑

i=J+1

l(i) −
V−K∑
i=1

l(i)

=
V∑

i=V−K+J+1

l(i) −
V−K∑
i=1

[l(i) − l(J+i)]

≤
V∑

i=V−K+J+1

l(i), (68)

with equality if and only if l(1) = l(2) = · · · = l(J+V−K).
Since the sequence is in decreasing order, (68) implies

l(V−K+J+1) ≥ 1
K − J

, (69)

and that the equality holds if and only if l(V−K+J+1) =
l(V−K+J+2) = · · · = l(V) = 1

K−J . From (28),

S ≥
V−K+J∑
i=1

l(i) +
V∑

i=V−K+J+1

l(i)

(a)

≥ V −K + J

K − J
+ 1

=
V

K − J
, (70)

where (a) follows from (68) and (69). The condition in (70) is
thus necessary, which proves the forward direction. In partic-
ular, if S = V

K−J , (a) must hold with equality, which implies
l(1) = l(2) = · · · = l(V) = 1

K−J .

APPENDIX C
PROOF OF LEMMA 12

Proof: Given a feasible instance, it is easy to see that the
feasible region is closed and bounded. Since maxi∈V ri/μi is
a continuous function of r, by Weierstrass Theorem [44, p.90],
an optimal solution exists. Let l′ be an optimal allocation
vector, and r′ be the corresponding load vector. The resultant
computation time is denoted by T ∗ � maxi∈V

r′i
μi

.
Suppose l′i < l′j , where i < j. We distinguish between two

cases. In the first case, r′i ≥ r′j . We then swap the values
of l′i and l′j , which would still be feasible without affecting
the value of T ∗. In the second case, r′i < r′j . We swap the
values of (l′i, r

′
i) and (l′j , r

′
j), which would still be feasible. The

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1033

computation time would not be increased, since μi ≥ μj . (This
could not reduce the computation time, since T ∗ is assumed
to be optimal.) By repeating the above procedure, we obtain
optimal vectors r∗ and l∗, where l∗1 ≥ l∗2 ≥ · · · ≥ l∗V .

If (29) is active at l∗, we are done. Otherwise, we rewrite
(29) and (31), respectively, as

V∑
i=V−K+1

l∗i −
J∑
i=1

l∗i =
V∑

i=J+1

l∗i −
V−K∑
i=1

l∗i ≥ 1, (71)

∑
i∈V

r∗i =
V∑

i=V−K+1

l∗i . (72)

We are going to adjust l∗ and r∗ to produce another optimal
solution at which equality in (71) holds. Define I � {Z +
1, Z + 2, . . . , V }, where Z � max{J, V − K}. First, notice
that there must exist δi ≥ 0 for all i ∈ I, such that reducing l∗i
by δi for all i ∈ I could meet the lower bound in (71). Next,
to ensure that (30) still holds, we can reduce r∗i to (r∗i − δi)+

for all i ∈ I. If r∗i < δi for some i ∈ I, the left hand side
of (72) will be strictly greater than the right hand side. If that
is the case, we reduce the values of those r∗i ’s that are positive
such that equality holds. This can always be done, since ri’s
are free to decrease to any non-negative values. The above
change clearly will not increase the value of T ∗.

APPENDIX D
PROOF OF LEMMA 17

Proof: To establish TQ(Δs) as a lower bound on T ,

following (47), we want to find an upper bound on
Q∑

i=J+1

Δli,

which depends only on Δs.
First, consider the case where Q > max{J, V −K} with λ

defined as the first expression in (50). From (44) and (46) we
have ∑

i∈V
Δli =

V−K∑
i=1

Δli +
J∑
i=1

Δli ≤ Δs. (73)

Define σ �
V−K∑
i=1

Δli +
J∑
i=1

Δli. Then λσ is the mean of the

1/λ terms in the two summations.
If Q > J ≥ V −K , by (45), ΔlJ is the smallest term in

the two summations of (73). Therefore, ΔlJ ≤ λσ ≤ λΔs,
implying

Q∑
i=J+1

Δli ≤ (Q− J)ΔlJ ≤ (Q− J)λΔs.

If Q > V − K > J . By the same argument, ΔlV−K is
the smallest term in the two summations of (73). Therefore,
ΔlV−K ≤ λΔs, implying

Q∑
i=J+1

Δli =
V−K∑
i=J+1

Δli +
Q∑

i=V−K+1

Δli

≤
V−K∑
i=J+1

Δli + (Q− V +K)λΔs

= σ − 2
J∑
i=1

Δli + (Q− V +K)λΔs

(a)

≤ σ − 2Jλσ + (Q− V +K)λΔs
= (V −K − J)λσ + (Q− V +K)λΔs
(b)

≤ (Q− J)λΔs. (74)

where (a) follows from the fact that the sum of the greatest J
terms in the two summations of (73) must be no less than J
times the mean of all 1/λ terms, and (b) comes from σ ≤ Δs.

Hence, for Q > max{J, V −K}, we obtain

Q∑
i=J+1

Δli ≤ (Q− J)λΔs, (75)

which implies TQ(Δs) is a lower bound on T . Recall that
equality holds in (47) if and only if

BΔs ⊇ B0 and r∗i = l∗i ∀i ∈ B̄0. (76)

It is straightforward to check that TQ(Δs) can be achieved by
a feasible pair (l∗, r∗) if and only if it satisfies Δl1 = · · · =
ΔlQ = λΔs and (76).

Next, consider the case where V − K ≥ Q > J with λ
defined as the second expression in (50). Define

δ′ �
Q∑
i=1

Δli =
J∑
i=1

Δli +
Q∑

i=J+1

Δli. (77)

Because the sum of the greatest J terms in the two summations
of (77) must be no less than J times the mean of all Q terms,
we have

J∑
i=1

Δli ≥ J

Q
δ′. (78)

Then,
Q∑

i=J+1

Δli = δ′ −
J∑
i=1

Δli ≤ (Q− J)
Q

δ′. (79)

From (44), (45) and (46), we have

Δs ≥ δ′ +
V−K∑
i=Q+1

Δli +
V∑

i=V−K+1

Δli

≥ δ′ + (V −K −Q)ΔlV−K+1 +
V∑

i=V−K+1

Δli

(c)

≥ δ′ + (V −K −Q)
∑V
i=V−K+1 Δli

K
+

V∑
i=V−K+1

Δli

= δ′ +
V −Q

K

J∑
i=1

Δli

(d)

≥ KQ+ J(V −Q)
KQ

δ′, (80)

where (c) follows from the fact that the largest term
of a summation must be no less than its mean and
(d) comes from (78).

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1034 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

Combining (79) and (80), we finally obtain

Q∑
i=J+1

≤ (Q− J)λΔs. (81)

Therefore, TQ(Δs) is a lower bound on T according to (47).
It is straightforward to check that TQ(Δs) can be achieved by
a feasible pair (l∗, r∗) if and only if it satisfies Δl1 = · · · =
ΔlQ = λΔs, ΔlQ+1 = · · · = ΔlV = J

KλΔs and (76).

APPENDIX E
PROOF OF PROPOSITION 18

Proof: Following the statement of the proposition,
we divide the proof into two cases. Furthermore, the second
case is further divided into two sub-cases.

Case 1: Q > J ≥ V −K .

Lemma 17 shows that TQ(Δs) can be achieved if and only
if there exists a feasible pair (l∗, r∗) such that r∗i = μiTQ(Δs)
∀i ∈ B0 and r∗i = l∗i = l0 +λΔs ∀i ∈ B̄0, which is equivalent
to

r∗1
μ1

=
l∗1
μ1

=
l0 + λΔs

μ1
≤ · · · ≤ r∗Q

μQ
=

l∗Q
μQ

=
l0 + λΔs
μQ

≤

TQ(Δs) =
r∗Q+1

μQ+1
= · · · =

r∗V
μV

. (82)

When Δs = 0, Lemma 14 shows that the above condition
is true and TQ(0) can be achieved. As Δs grows from 0,
r∗i = l∗i = l0 + λΔs strictly increases from l0 and grows
without bound for all i ∈ B̄0, while TQ(Δs) strictly decreases
and r∗i

μi
is always equal to TQ(Δs) for all i ∈ B0. Therefore,

there must exist Δs1 � S
(0)
1 − S0 > 0 such that

r∗i
μi

=
l0 + λΔs1

μi
= TQ(Δs1), ∀i ∈ D1 ⊂ B̄0, (83)

i.e., some non-bottleneck clouds become bottleneck when S
increases to S(0)

1 . Since Cloud Q must satisfy (83) when Δs =
Δs1, considering (83) with i = Q in particular, we have

S
(0)
1 = S0 + Δs1 = S0 +

μQl0(K −Q) − l0
∑

i∈B0
μi

λ
∑

i∈B0
μi + λμQ(Q− J)

.

It can be shown that S(0)
1 satisfies (54). As long as S < S

(0)
1 ,

we have BΔs = B0 and x = Q, and T ∗ = TQ(Δs), which
can be achieved by a feasible pair (l∗, r∗) if and only if it
satisfies (82), or equivalently, (18).

Now it remains to show that (l∗, r∗) satisfying (18)
and (57), with x = Q, is in the feasible region. It is straight-
forward to check that given such (l∗, r∗), the constraints in
the minimization problem (32) can be satisfied, provided that
there exists non-negative δi’s satisfying (58) and (59) for all
i ∈ B0. Note that they must exist due to the following two
reasons. First, we have

r∗i = μiT
∗ ≤ μQ+1T0 ≤ l0, ∀i ∈ B0,

where the first inequality follows from the fact that μi ≤ μQ+1

for all i ∈ B0 and T ∗ ≤ T0, and the second inequality follows
from (40). It implies that there must exist non-negative δi such

that l∗i = r∗i +δi ≤ l0+λΔs for all i ∈ B0. Second, when (58)
is fulfilled, we can show by (55) and (18) that∑

i∈B0

δi ≤
∑
i∈B0

(l0 + λΔs− r∗i).

Combining the above two facts, there exists non-negative δi’s
that satisfy (58) and (59). This proves the existence of a
feasible pair satisfying (18) and (57) for S < S

(0)
1 .

Next, we consider the setting when S = S
(0)
1 , at which

Cloud i (∀i ∈ D1) becomes a bottleneck cloud. This implies
x = Q− q1 and BΔs1 = B0 ∪ D1 = {x+ 1, . . . , V }. On the
other hand, it is easy to see that the optimal computing time
is the same as the case where Δs = Δs1 −
, where
→ 0+.
When Δs > Δs1, r∗i

μi
> TQ(Δs) for all i ∈ D1, so TQ(Δs)

is not achievable and we need to find another lower bound.
Consider the setting with S(0)

1 ≤ S < S
(0)
2 . We have BΔs =

BΔs1 and x = Q − q1 > J , where S(0)
2 is obtained by (54)

like S(0)
1 . Similar to (47), we have

T ≥

∑
i∈BΔs1

ri

∑
i∈BΔs1

μi
≥ (K − x)l0 − (x− J)λΔs∑V

i=x+1 μi
� Tx(Δs).

The equality holds iff r∗i = μiTx(Δs) ∀i ∈ BΔs1 and
r∗i = l∗i = l0 + λΔs ∀i ∈ B̄Δs1 . For all i ∈ BΔs1 , let
l∗i = r∗i + δi, where δi > 0 can be any number satisfying (58)
and l0 + λΔs ≥ l∗x+1 ≥ l∗x+2 ≥ · · · ≥ l∗V . Then such l∗i and
r∗i achieve T ∗ = Tx(Δs) while satisfying all the constraints
in problem (32). Note that T ∗ is continuous at S(0)

1 .
The same argument can be applied to cases where S(0)

i ≤
S < S

(0)
i+1, for i = 1, 2, . . . ,Π − 1. When S ≥ S

(0)
Π , x = J .

Same as in the proof of Proposition 16, T ∗ cannot be further
reduced when S increases, which completes the proof for this
case.

Case 2(a): V −K > Q > J .

When x = Q, Lemma 17 shows that TQ(Δs) is achieved
by a feasible pair (l∗, r∗) if and only if it satisfies

l∗i =

⎧⎨
⎩

l∗1 , i ∈ {1, 2, . . . , x}
μiT

∗, i ∈ I � ∪i∈NDi
l∗V , i ∈ {x+ 1, x+ 2, . . . , V } \ I

, (84)

r∗i =
{
l∗1 i ∈ {1, 2, . . . , x}
μiT

∗ i ∈ {x+ 1, x+ 2, . . . , V } , (85)

where N = ∅. Now we will show that with x = Q, a pair
(l∗, r∗) satisfying (84), (85) and⎧⎪⎨

⎪⎩
∑V
i=1 l

∗
i = S∑V

i=V−K+1 l
∗
i −

∑J
i=1 l

∗
i = 1∑V

i=V−K+1 l
∗
i =

∑V
i=1 r

∗
i

, (86)

is in the feasible region. By solving the linear equations,
we obtain l∗1 = l0 + λΔs, l∗V = l0 + J

KλΔs and T ∗ =
TQ(Δs). It is straightforward to check that such (l∗, r∗) is
in the feasible region when x = Q. Similar as in Case 1,
when S increases to S(0)

1 , some non-bottleneck clouds become
bottleneck, i.e., x drops to Q− q1 and r∗i = l∗1 = μiT

∗, ∀i ∈
D1. Combining this condition with (84), (85) and (86), the

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: HETEROGENEITY SHIFTS THE STORAGE-COMPUTATION TRADEOFF IN SECURE MULTI-CLOUD SYSTEMS 1035

value of S(0)
1 can be determined. When S0 ≤ S < S

(0)
1 the

optimal computing time T ∗ = TQ(Δs) and x = Q. When
S > S

(0)
1 , x = Q− q1 and TQ(Δs) is not achievable because

l∗i > l∗V for i ∈ D1 ⊂ {x + 1, x + 2, . . . , V }, so we need to
find another lower bound.

Consider the setting with S > S
(0)
1 and x = Q− q1. Since

μiT ≥ ri for all i ∈ V , we have

T
(a)

≥

∑
i∈B0

ri

∑
i∈B0

μi
=

∑
i∈V

ri −
∑
i∈B̄0

ri

∑
i∈B0

μi

(b)

≥

V∑
i=V−K+1

li −
x∑
i=1

li −
∑
i∈D1

ri

∑
i∈B0

μi

=
(K − x)l0 −

x∑
i=J+1

Δli −
∑
i∈D1

ri

∑
i∈B0

μi
, (87)

where (a) is tight if and only if r∗i = μiT, i ∈ B0, and (b) is
tight if and only if l∗i = r∗i , i ∈ {1, 2, . . . , x}. Define

δ′ �
x∑
i=1

Δli =
J∑
i=1

Δli +
x∑

i=J+1

Δli

like (77). Similar as the proof in Lemma 17, we can derive

Δs
(c)

≥ δ′ +
∑
i∈D1

Δli +
V−K∑
i=Q+1

Δli +
V∑

i=V−K+1

Δli

(d)

≥ δ′ +
∑
i∈D1

Δli +
J(V −Q)

Kx
δ′

(e)

≥ (1 +
J(V −Q)

Kx
)δ′ +

∑
i∈D1

(ri − l0), (88)

where (c) is tight if and only if
∑

i∈V l
∗
i = S, (d) is tight if

and only if l∗i = l∗V ∀i ∈ B0 and l∗i = l∗1 ∀i ∈ {1, 2, . . . , x},
and (e) is tight if and only if r∗i = l∗i ∀i ∈ D1. Furthermore,∑

i∈D1

ri ≤
∑
i∈D1

μiT (89)

is tight if and only if r∗i = μiT , ∀i ∈ D1. Combining
the inequalities (87), (88), (89) and constraints in (35), (38),
we can derive a new lower bound for T , which is achieved by
a feasible pair (l∗, r∗) if and only if it satisfies (84) and (85)
hold with N = {1}.

Now we will show that with x = Q − q1, a pair (l∗, r∗)
satisfying (84), (85) and (86) may not be in the feasible region
when storage budget S becomes larger. As S increases, ∀i ∈
D1, l∗i = r∗i = μiT

∗ will decrease due to the dropping T ∗

and l∗V will increase due to the growing S, so l∗i has a chance
to be smaller than l∗V . If we combine (84), (85), (86) and

l∗i = r∗i = μiT
∗ = l∗V , ∀i ∈ D1, (90)

S
(1)
2 can be determined. Once S > S

(1)
2 , (l∗, r∗) is no longer

in the feasible region. Meanwhile, when S increases to S(0)
2 ,

which is determined similar as S(0)
1 , Cloud i (i ∈ D2) will

become bottleneck, i.e., x drops to Q − q2 and r∗i = l∗1 =
μiT

∗, ∀i ∈ D2. If S(1)
2 < S

(0)
1 or S(1)

2 > S
(0)
2 , then for S(0)

1 <

S < S
(0)
2 a pair (l∗, r∗) satisfying (84), (85) and (86) is in

the feasible region, as no constraints are violated. If S(0)
1 ≤

S
(1)
2 ≤ S

(0)
2 , the pair (l∗, r∗) is in the feasible region when

S
(0)
1 < S ≤ S

(1)
2 . For S(1)

2 < S ≤ S
(0)
2 , the lower bound for

T becomes TQ(Δs), which can be achieved by a feasible pair
(l∗, r∗) satisfying (84) and (85) hold with N = ∅. It should
be noted that there is an additional turning point at S = S

(1)
2 ,

since the optimal condition changes.
The same argument can be applied to cases where S(0)

i ≤
S < S

(0)
i+1, for i = 2, . . . ,Π − 1, which is concluded by

Algorithm 2. Note that there can be at most one additional
turning point within the interval [S(0)

1 , S
(0)
2), but there can

be multiple additional turning points in later intervals. When
S0 ≤ S < S

(0)
Π , (60) can be determined by solving (84), (85)

and (86). When S ≥ S
(0)
Π , x = J . Same as in the proof

of Proposition 16, T ∗ cannot be further reduced when S
increases, which completes the proof for this case.

Case 2(b): Q ≥ V −K > J .

This case combines Case 1 and Case 2(a). If x ≥ V −K ,
the optimal computing time and allocation scheme are just
the same as Case 1, which can be proved in a similar manner.
If x < V − K , the optimal computing time and allocation
scheme can be obtained by Algorithm 2, whose proof is similar
as Case 2(a).

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[2] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and
K. Ramchandran, “Speeding up distributed machine learning using
codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529,
Mar. 2018.

[3] A. Severinson, A. G. I. Amat, and E. Rosnes, “Block-diagonal and LT
codes for distributed computing with straggling servers,” IEEE Trans.
Commun., vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[4] H. Park, K. Lee, J.-Y. Sohn, C. Suh, and J. Moon, “Hierarchical coding
for distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 1630–1634.

[5] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 2418–2422.

[6] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 4403–4413.

[7] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920–1933,
Mar. 2020.

[8] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers
in coded computation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2018, pp. 1988–1992.

[9] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using Reed–Solomon codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2027–2031.

[10] S. Li, S. M. M. Kalan, A. S. Avestimehr, and M. Soltanolkotabi,
“Near-optimal straggler mitigation for distributed gradient methods,” in
Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW),
May 2018, pp. 857–866.

[11] B. Hasircioglu, J. Gómez-Vilardebó, and D. Gunduz, “Bivariate polyno-
mial coding for straggler exploitation with heterogeneous workers,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 251–256.

[12] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Trans. Inf. Theory,
vol. 65, no. 7, pp. 4227–4242, Jul. 2019.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 2, FEBRUARY 2023

[13] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous
coded distributed computing,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2017, pp. 1–7.

[14] D. Kim, H. Park, and J. K. Choi, “Optimal load allocation for coded dis-
tributed computation in heterogeneous clusters,” IEEE Trans. Commun.,
vol. 69, no. 1, pp. 44–58, Jan. 2021.

[15] M. Kim, J. Sohn, and J. Moon, “Coded matrix multiplication on a group-
based model,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2019,
pp. 722–726.

[16] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed
fog computing,” IEEE Commun. Mag., vol. 55, no. 4, pp. 34–40,
Apr. 2017.

[17] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018.

[18] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in Proc. IEEE
Inf. Theory Workshop (ITW), Nov. 2017, pp. 279–283.

[19] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1333–1353,
Mar. 2020.

[20] M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2016, pp. 1–6.

[21] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 2900–2904.

[22] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4609–4619, Aug. 2020.

[23] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Trans. Inf. Forensics Security,
vol. 14, no. 1, pp. 141–150, Jan. 2019.

[24] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
A. S. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in Proc. NIPS Syst. ML Workshop,
2018, pp. 1215–1225.

[25] W.-T. Chang and R. Tandon, “On the capacity of secure distributed
matrix multiplication,” in Proc. IEEE Global Commun. Conf. (GLOBE-
COM), Dec. 2018, pp. 1–6.

[26] J. Kakar, S. Ebadifar, and A. Sezgin, “On the capacity and straggler-
robustness of distributed secure matrix multiplication,” IEEE Access,
vol. 7, pp. 45783–45799, 2019.

[27] Z. Jia and S. A. Jafar, “On the capacity of secure distributed batch matrix
multiplication,” IEEE Trans. Inf. Theory, vol. 67, no. 11, pp. 7420–7437,
Nov. 2021.

[28] R. G. L. D’Oliveira, S. E. Rouayheb, and D. Karpuk, “GASP codes
for secure distributed matrix multiplication,” IEEE Trans. Inf. Theory,
vol. 66, no. 7, pp. 4038–4050, Jul. 2020.

[29] G. L. R. D’Oliveira, S. E. Rouayheb, D. Heinlein, and D. Karpuk,
“Degree tables for secure distributed matrix multiplication,” in Proc.
IEEE Inf. Theory Workshop (ITW), Aug. 2019, pp. 1–5.

[30] J. Kakar, A. Khristoforov, S. Ebadifar, and A. Sezgin, “Uplink cost
adjustable schemes in secure distributed matrix multiplication,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 1124–1129.

[31] Z. Chen, Z. Jia, Z. Wang, and S. A. Jafar, “GCSA codes with noise
alignment for secure coded multi-party batch matrix multiplication,”
IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 1, pp. 306–316, Mar. 2021.

[32] H. Akbari-Nodehi and M. A. Maddah-Ali, “Secure coded multi-party
computation for massive matrix operations,” IEEE Trans. Inf. Theory,
vol. 67, no. 4, pp. 2379–2398, Apr. 2021.

[33] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud com-
puting: Opportunities and challenges,” Inf. Sci., vol. 305, pp. 357–383,
Jun. 2015.

[34] Z. Li, M. Liang, L. O’Brien, and H. Zhang, “The cloud’s cloudy
moment: A systematic survey of public cloud service outage,” Int. J.
Cloud Comput. Services Sci., vol. 2, no. 5, pp. 321–331, Dec. 2013.

[35] P. Hu, C. W. Sung, S.-W. Ho, and T. H. Chan, “Optimal coding and
allocation for perfect secrecy in multiple clouds,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 2, pp. 388–399, Feb. 2016.

[36] J. Chen, C. W. Sung, and T. H. Chan, “Storage and computation: A
tradeoff in secure distributed computing,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2020, pp. 1–6.

[37] A. Subramanian and S. W. McLaughlin, “MDS codes on the erasure-
erasure wiretap channel,” 2009, arXiv:0902.3286.

[38] S. Pawar, S. E. Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734–6753, Oct. 2011.

[39] M. Dai, Z. Zheng, S. Zhang, H. Wang, and X. Lin, “SAZD: A
low computational load coded distributed computing framework for
IoT systems,” IEEE Internet Things J., vol. 7, no. 4, pp. 3640–3649,
Apr. 2020.

[40] C. W. Sung, K. W. Shum, Q. Yu, and G. Xu, “Maximally recoverable
codes: Connections to generic network coding and maximal matching,”
in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2017, pp. 36–40.

[41] R. W. Yeung, Information Theory and Network Coding. New York, NY,
USA: Springer-Verlag, 2008.

[42] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1977.

[43] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Philadelphia,
PA, USA: SIAM, 2000.

[44] R. K. Sundaram, A First Course in Optimization Theory. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[45] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of
Majorization and Its Applications. Academic, 1979.

[46] MPICH: High-Performance Portable MPI. Accessed: Oct. 6, 2020.
[Online]. Available: https://www.mpich.org

Jiajun Chen received the B.S. degree from Sichuan University, Chengdu,
China, in 2018. She is currently pursuing the Ph.D. degree with the Depart-
ment of Electrical Engineering, City University of Hong Kong, Hong Kong.
Her research interests include coded distributed computing, information the-
ory, and resource allocation.

Chi Wan Sung received the B.Eng., M.Phil., and Ph.D. degrees in information
engineering from The Chinese University of Hong Kong in 1993, 1995,
and 1998, respectively. He worked as an Assistant Professor at The Chinese
University of Hong Kong in 1999, and then joined the Faculty at the City
University of Hong Kong in 2000. He is currently an Associate Professor and
the Associate Head (Undergraduate Programs) of the Department of Electrical
Engineering. His current research interests include interplay between coding,
communications, and computing, with emphasis on algorithm design and
complexity analysis. He was an Associate Editor of the Transactions on
Emerging Telecommunications Technologies (ETT) from 2013 to 2016. He is
on the Editorial Boards of ETRI Journal and Electronics Letters.

Terence H. Chan received the Ph.D. degree in February 2001. He was
an Assistant Professor with The Chinese University of Hong Kong in
2001. From February 2002 to June 2004, he was a Post-Doctoral Fellow
with the Department of Electrical and Computer Engineering, University of
Toronto. In 2004, he became an Assistant Professor with the Department
of Computer Science, University of Regina, Canada. He joined the Institute
for Telecommunications Research (ITR), University of South Australia, as a
Senior Research Fellow, in 2006. He is currently an Associate Professor with
the ITR.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on January 23,2023 at 03:23:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

