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Abstract—We consider a bufferless optical burst switching
optical cross connect modeled as a continuous-time Markov chain
based on a generalized Engset model. We focus specifically on
critical load and other given levels of high utilization conditions
and evaluate the required number of wavelength channels per
cable to keep the blocking probability below a given level. We
observe that although a large number of wavelength channels
per cable are required to achieve low blocking probability under
critical load condition, the required number of such channels
decreases significantly if the utilization is allowed to drop to 90%
or 80%. We also propose a new blocking probability approxima-
tion that is more accurate than previous approximations under
critical load condition.

Index Terms—Blocking probability, optical burst switching
(OBS), generalized Engset formula, critical load, high utilization.

I. INTRODUCTION

OPTICAL fibers with wavelength division multiplexing
(WDM) technology provide large bandwidth for today’s

Internet. Optical burst switching (OBS) [1] is one potential
switching technology for WDM networks. In OBS, traffic is
carried by bursts, each of which consists of packets that have
the same destination.

It has been argued that since OBS allows for burst collisions,
link utilization may have to be sacrificed to meet the required
quality of service (QoS) [2]. If the number of wavelength
channels per cable is small, blocking probability is usually
high under critical load condition where offered load equals
to transmission capacity. However, it can be reduced as the
number of wavelength channels increases [3]. The general-
ized Engset model can be applied to evaluate the blocking
probability at an OXC in bufferless OBS systems [4–10].

We aim to investigate the number of wavelength channels
per cable required to keep the blocking probability at an OXC
below a given level under critical load and other given levels
of high utilization conditions. However, it is computationally
prohibitive to obtain the exact solutions for cases where the
number of channels is too large. Therefore, we propose a
new blocking probability approximation. This approximation
is more accurate than the others under critical load condition.

We demonstrate that OBS can achieve high utilization
under a reasonable number of wavelength channels per cable.
However, a large number of channels are required to achieve
low blocking probability under critical load condition.
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II. OXC MODELING

Assume for simplicity that each cable has F optical fibers,
each of which carries W wavelengths. Consider an output
cable of an OXC with total FW wavelength channels, out
of which K wavelength channels, referred to as servers, are
available to transmit an arriving burst on a given wavelength,
where K =αFW . With full wavelength conversion, α= 1; with
no wavelength conversion, α = 1/W ; with partial wavelength
conversion, 1/W < α < 1. Collision occurs when a burst on a
given wavelength requires one of the servers, but all the servers
are busy transmitting other bursts, in which case the burst is
dumped. Relevant input wavelength channels that may carry
bursts directed to the servers are referred to as M sources. The
value of K (or equivalently, since α is known, the total number
of wavelength channels in a cable – FW ) is key to efficiency,
and therefore the focus of this paper.

Each input wavelength channel of the OXC transmits bursts
as an on/off process. On-time refers to burst transmission time
and off-time refers to idle time between bursts. Mean on-
and off-times are 1/µ and 1/λ, respectively. For tractability,
we assume that both on- and off-times follow exponential
distribution, which does not introduce significant errors [11].
Based on the generalized Engset model, the system can be
modeled as a two-dimensional Markov chain [4–7]. The first
dimension stands for the number of busy sources (bursts being
transmitted, and occupying both input and output wavelength
channels). The second dimension stands for the number of
frozen sources (bursts being dumped, and occupying the input
wavelength channels). Free sources refer to input channels
during their periods of the off-time. Although computation
time can be reduced [7], for large values of M and K, an
exact solution is intractable because of the large state space.

III. A NEW APPROXIMATION

Consider a free or frozen source in the generalized Engset
model, with probability pb, it is frozen and the expected
time duration until the next burst arrival is 1/µ + 1/λ.
With probability 1 − pb, it is free and the expected time
duration until the next burst arrival is 1/λ. Mean time duration
until the next burst arrival for a free or frozen source equals to:

1
λ∗ =

1
λ
+

pb

µ
. (1)

By lengthening the off-time of the Engset model, where
free sources refer to free or frozen sources in the generalized
Engset model, we obtain a blocking probability approximation.
In [8], the off-time is lengthened to (1); the offered load of



this modified Engset model equals to that of the generalized
Engset model. The blocking probability is given by the Engset
formula, which is computationally stable and efficient:

pb = Eng(M,K,λ∗,µ) =
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Although [8] accurately considers the offered load, a lack of
accurate matching of other traffic statistics renders it not very
accurate especially under critical loading. Next, we introduce
the following lengthened off-time.

1
λ∗ =

1
λ
+

pb

(1− pb)µ
. (3)

It considers the sum of frozen times of a geometric sequence
of failed transmissions. In critical load and lighter load condi-
tions, it is generally more accurate to evaluate the time interval
between two consecutive successful transmissions compared
with (1), which assumes that at most one frozen period and
one idle period may exist between two consecutive successful
transmissions. Note that [9], which adds the off-times consid-
ering consecutive failures, leads to far worse approximations,
because [9] leads to much lower offered load evaluations.
The new approximation (3) provides a balance between the
evaluations of offered load and time duration between two
consecutive successful transmissions. In underload conditions
(U = Mλ/[K(λ+µ)]< 1), the new approximation (3) slightly
overestimates the blocking probability. We use the multiplier
2/(1+U2) to further lengthen the off-time to achieve higher
accuracy. Moreover, it is more accurate than the state depen-
dent approximation [10] in critical load condition (U = 1),
because the servers are occupied for nearly all the time, leading
to a situation that only a small number of neighboring states
(including the congestion states) have high probability and that
the benefit of the state dependent approximation is small.

In overload conditions, the carried loads estimated by these
approximations and the carried load in the exact system are all
close to K. In such cases, (3) and [9] underestimate the offered
load and thus underestimate the blocking probability; [8] and
[10] match the offered load and thus are more accurate. To
narrow the gap between the offered loads in the exact system
and the approximation (3), the multiplier [(1− pb)Ua+ pb]/Ua

is introduced to shorten the off-time. We find that a = 5
gives the most accurate results through empirical tests. As
U increases, the modified off-time approaches (1), which
improves the evaluations of the offered load.

1
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2
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, U =
Mλ

K(λ+µ)
. (4)

Extensive tests have shown that the approximation (4) is
generally more accurate than the approximations of [8–10]
under critical load condition and under somewhat lower traffic
loads as long as the utilization is above 70% and K ≥ 50.

The blocking probability can be obtained by solving
equations (2) and (4). Next, we demonstrate that there exists
one unique solution. Substituting 1/λ∗ by x in (4), and
deducting x from both sides of (4), we obtain:

TABLE I
COMPARISON OF RELATIVE ERRORS OF APPROXIMATIONS UNDER

CRITICAL LOADING, 1.2 ≤ M/K ≤ 10, 50 ≤ K ≤ 150.

Relative error [8] [9] [10] New
Average 0.014401 -0.290330 0.011004 0.003383

Standard deviation 0.009964 0.048215 0.007405 0.003885

TABLE II
COMPARISON OF APPROXIMATIONS WITH RELATIVE ERRORS IN

BRACKETS UNDER CRITICAL LOADING, µ = 1.

[8] [9] [10] New
(λ, M, K) Exact

(%error) (%error) (%error) (%error)
0.0932 0.0707 0.0922 0.0905(1, 100, 50) 0.0903
(3.2%) (-21.7%) (2.1%) (0.2%)
0.0675 0.0512 0.0670 0.0661(1, 200, 100) 0.0656
(2.9%) (-22.0%) (2.1%) (0.8%)
0.0557 0.0422 0.0554 0.0547(1, 300, 150) 0.0542
(2.8%) (-22.1%) (2.2%) (0.9%)
0.1032 0.0693 0.1031 0.1027(0.1, 550, 50) 0.1027
(0.5%) (-32.5%) (0.4%) (0.0%)
0.0746 0.0497 0.0745 0.0743(0.1, 1100, 100) 0.0742
(0.5%) (-33.0%) (0.4%) (0.1%)
0.0615 0.0408 0.0615 0.0613(0.1, 1650, 150) 0.0612
(0.5%) (-33.3%) (0.5%) (0.2%)

f (x) =

{
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.

Regard pb as a function of x. As x increases, pb(x) and 1/[1−
pb(x)] decreases. Therefore, f (x) is a monotonic decreasing
function of x. Besides, f (x)> 0 when x approaches 0; f (x)<
0 when x increases and pb(x) approaches 0. There exists a
unique solution for f (x)= 0. We apply binary search algorithm
to obtain x, and then use (2) to obtain the blocking probability.

IV. NUMERICAL RESULTS

In this section we numerically verify the accuracy of the new
approximation and then evaluate the number of wavelength
channels per cable to maintain the blocking probability below
a given level at an OBS OXC.

We have considered 2200 different cases under critical load
condition, where 50 ≤ K ≤ 150 and 1.2 ≤ M/K ≤ 10. In
all these cases, the new approximation achieves the most
accurate results. In Table I, we present the average and
standard deviation of the relative error of each approximation,
and observe that, on average, the new approximation reduces
the relative error by around 70%, and has lower standard
deviation of the relative error compared with the next most
accurate approximation. From these 2200 results, selected
representative cases are presented in Table II.

The approximation is fairly accurate under critical load
condition except when 1 < M/K < 1.2. As M approaches K, λ
rapidly increases (reaches infinity for M = K). In such a case,
there is an increasingly significant difference between blocking
probabilities of the generalized Engset model and the Engset
model with the same M, K, λ and µ. Our simple rule based
on (4) of increasing the off-time can not capture this effect
well. Nevertheless, in practice, an OXC has multiple input
and output ports, and each input port may provide bursts to an



output port, so it is likely that M is at least several times larger
than K, in which case, our new approximation is accurate.

The blocking probability approximation is upper bounded
by the Engset formula, because we lengthen the off-time in
the Engset formula to obtain the approximation. It is supported
by the fact that the exact blocking probability is also upper
bounded by the Engset formula. Intuitively, in the generalized
Engset system, the only difference from the Engset system is
that there is an extra delay period after a blocking event within
which the blocked source is frozen. This delay reduces burst
arrival rate and hence blocking probability.

Next we discuss how many sources and servers are re-
quired in order to keep the blocking probability below 10−6

under critical load and other given levels of high utiliza-
tion conditions. We compare different cases where M/K =
2, 10, 30, 100, depicted in Table III. Numbers followed by
(a) are obtained by approximations and the others are obtained
by exact solutions. We observe that as the utilization decreases,
the required number of servers decreases significantly.

TABLE III
MINIMUM K TO KEEP BLOCKING PROBABILITY BELOW 10−6 .

Utilization 100% 90% 80% 70% 60%
M = 2K 5.14∗1011 (a) 967 253 113 63

M = 10K 6.20∗1011 (a) 1567 (a) 393 169 90
M = 30K 6.31∗1011 (a) 1664 (a) 416 178 94
M = 100K 6.35∗1011 (a) 1697 (a) 424 (a) 181 96

Figure 1 and Table IV demonstrate that the minimum K
(Kmin) is monotonically increasing in M/K in order to keep
the blocking probability below 10−6. We use approximations
for M/K = 100 cases in the figure, and use exact solutions
for the other cases in the figure and Table IV. For a given
utilization, Kmin keeps stable when M/K > 40, and approaches
Kmin obtained in Erlang loss system, which corresponds to
the M approaching infinity case. Moreover, we observe that if
M/K is doubled, the increment in Kmin is approximately half
of the decrement in Kmin if M/K reduces to half.
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Fig. 1. Solid lines are Kmin in the generalized Engset system to keep the
blocking probability below 10−6 for different M/K. Dash lines are Kmin in
the Erlang loss system with the same blocking probability constraint.

For a given OXC and wavelength converter, α is known.
We can obtain the number of wavelength channels per cable
(FW ) based on K. Currently, a cable may contain over a
hundred optical fibers, and each WDM fiber may carry over
a hundred wavelengths. The numbers keep increasing with

TABLE IV
MINIMUM K TO KEEP THE BLOCKING PROBABILITY BELOW 10−6 VS. M/K

WHEN UTILIZATION IS 80% OR 70%.

Utilization 80% 70%
Kmin(M/K = 2) 253 113
Kmin(M/K = 4) 341 148
Kmin(M/K = 8) 384 165

Kmin(M/K = 16) 406 174

the development of manufacturing techniques of optical fibers.
Therefore, higher utilization is achievable in the future under
the same blocking probability constraint.

V. CONCLUSION

We have studied the required number of wavelength chan-
nels per cable to maintain the blocking probability at an
OBS OXC below a given level under critical load and other
given levels of high utilization conditions. For cases where
the number of required output wavelength channels is large,
we have derived and used a new blocking probability approx-
imation that is fairly accurate under critical load condition. To
maintain the blocking probability below 10−6, a large number
of channels per cable are required under critical load condi-
tion. However, the required number decreases significantly in
underload conditions where the utilization is still high. Our
choice of 10−6 blocking probability for any given OXC is
sufficiently small to maintain acceptable end-to-end QoS, and
we have demonstrated that OBS can be reasonably efficient
under this condition. Although 100% utilization for OBS is
not likely achievable in the foreseeable future, reasonable
utilization levels in the range of 70% – 80% are achievable.
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