
On the accuracy of the OPC approximation for a symmetric

overflow loss model∗

Eric W. M. Wong, Bill Moran, Andrew Zalesky, Zvi Rosberg, Moshe Zukerman

Abstract

The overflow priority classification approximation (OPCA) and Erlang’s fixed-point ap-

proximation (EFPA) are distinct methods for estimating blocking probabilities in overflow

loss networks. Mounting numerical evidence has indicated that OPCA provides superior ac-

curacy than EFPA in many circumstances. Furthermore, it has been proven that PEFPA ≤

POPCA for a symmetric overflow loss network called the distributed server model, where

Px is the blocking probability estimate yielded by approximation x ∈ {EFPA,OPCA}.

The distributed server model is an ideal “proving ground” because the exact blocking prob-

ability, Pexact, can be calculated with the Erlang B formula, yet the state dependencies

caused by mutual overflow are retained. The present paper proves the OPC Conjecture,

POPCA ≤ Pexact. This new result establishes that OPCA is always equally or more accurate

relative to EFPA for the distributed server model and suggests OPCA has utility in more

general overflow loss networks. The proof of POPCA ≤ Pexact turned out to be challenging,

since OPCA is remarkably close to the exact solution, requiring delicate inequality argu-

ments on the Maclaurin series of both solutions. Another contribution is the derivation of

new tight bounds and limiting regimes for the blocking probabilities yielded by OPCA and

EFPA in the case of critical loading. The simple and tight lower bound derived for OPCA

can serve as a tight lower bound for the Erlang B blocking probability in the case of critical

loading.

∗The work described in this paper was supported by a grant from City University of Hong Kong [Project No.
7002116] and by the Australian Research Council [DP0986320 to A.Z.].

1

Authors Information

Eric W. M. Wong, Zvi Rosberg and Moshe Zukerman are with the Department of Electronic

Engineering, City University of Hong Kong, Hong Kong SAR, China.

Bill Moran is the Research Director of Melbourne Systems Laboratory (MSL), Department of

Electrical and Electronic Engineering, The University of Melbourne, Australia.

Andrew Zalesky is with the University of Melbourne, Australia.

2

1 Introduction

Loss networks [12, 14] are ubiquitous in telecommunications. Of particular utility to the model-

ing of alternate routing [2, 4, 18, 19, 31, 33] are overflow loss networks, where calls can overflow

to an alternative server group, if the primary server group is fully engaged with other calls. In

fact, calls may be permitted to successively overflow to many alternative server groups, until

an idle server is found or all permissible server groups are attempted. Given that calls arrive

randomly and the number of server groups is finite, some calls may overflow to all permissible

server groups without finding an idle server. This results in call blocking, where the blocked call

is cleared from the network without ever receiving service.

The probability of call blocking, referred to as the blocking probability, is one of the most

fundamental performance measures for loss networks. Estimating this probability has been a

cornerstone of teletraffic modeling and theory. Moment matching approximations [3, 5, 7, 11, 15,

16, 17, 20, 21, 22, 27] are known to be quite accurate if server groups are arranged hierarchically

into tiers. With such hierarchically organized networks, the state of a given tier of the hierarchy

is independent of all lower tiers, and thus state dependencies between server groups always move

from top to bottom of the hierarchy, but not vice versa. The most basic approximation is to

treat each tier independently, where the input call arrival process of a given tier has its moments

matched to the overflow process of the immediately preceding tier.

Accurate estimation of blocking probabilities in non-hierarchical networks is more challeng-

ing, due to complex state dependencies caused by mutual overflow [8]. Congestion within a given

server group can cause overflow to other servers, where this overflow congests the other server

groups, which in turn results in new calls overflowing to the original server. The stronger depen-

dencies between server groups caused by mutual overflow is known to increase the approximation

error associated with treating each server group independently. Despite this, the Erlang’s fixed-

point approximation (EFPA) proposed in 1964 [5] – a decoupling approximation treating each

server group as an independent M/M/N/N queue – remains the analytical approximation of

choice for estimating blocking probabilities in overflow loss networks. With EFPA, the total call

arrival process offered to each server group (overflow calls + new calls) is pooled together and

is assumed to follow a Poisson process with rate equal to the sum of the rates of all individual

3

input streams. In this way, the overflow probability perceived by the traffic offered to a server

group is approximated by the Erlang B formula. Let EN (A) denote the blocking probability of

an M/M/N/N system with N servers and offered traffic A, defined by A = λ/µ where λ is the

arrival rate and µ is the service rate per server. Let λi be the original rate of the i-th stream.

The overflow events of the i-th stream may form an overflow stream of rate λiEN (
∑

i λi/µ)

to a subsequent server group. This approach inherently gives rise to non-linear equations that

entail a fixed-point solution of the overflow probability at each server group. This fixed-point

can usually be found by successive substitution. However, it is known that convergence and

uniqueness of solutions of these fixed-point techniques are not always guaranteed [26, 33].

The overflow priority classification approximation (OPCA) [29] is an alternative to EFPA.

OPCA is based on evaluation of the blocking probability of a certain surrogate model which is

hierarchical, so mutual dependency between server groups is avoided. Therefore, for the surro-

gate, treating each server group independently gives a more accurate approximation. Although

the surrogate generally does not have the same blocking probability as the original problem, ap-

proximating the blocking probability of the surrogate often leads to an accurate approximation

for the original problem.

The OPCA surrogate is based on a preemptive priority regime, even though no preemption

is present in reality. Calls that have overflowed zero times are given first priority, while calls that

have overflowed n times are given nth priority. An n-call can preempt a k-call, n < k, resulting

in the n-call immediately engaging the server previously occupied by the k-call and causing the

k-call to overflow to another server group, where it becomes a (k + 1)-call. In OPCA, blocking

probabilities of the surrogate are approximated using precisely the same principles as EFPA;

namely, each server group is treated independently and the total call arrival process offered to

each server group at each priority level is treated as a Poisson process.

In loss systems where calls that do not find a free server in a server group are never allowed

to overflow to other server groups, OPCA reduces to EFPA. This applies to the important

case of circuit switching networks with fixed routing which EFPA provides exact and unique

solutions under asymptotic conditions of large capacity links [13] and high diversity routing [34].

The use of EFPA for large circuit switching network with many circuit per trunks and fixed

routing has been demonstrated in [1]. This implies that for these known fixed routing instances

4

where the EFPA results are known to be exact, also OPCA gives exact solution. In other

cases, comprehensive numerical evaluation involving a diverse range of overflow loss networks

attests to improved accuracy yielded by OPCA [23, 28, 32]. Moreover, OPCA is usually more

computationally efficient than EFPA.

While mounting numerical evidence points to the superiority of OPCA, this has not been

rigorously established, and examples can be found for which EFPA remains the most accurate

approximation. The purpose of this paper is to prove the superiority of OPCA, compared to

EFPA, in a symmetric overflow loss network for which the exact blocking probability can be

calculated using the Erlang B formula.

The overflow loss network on which this entire paper is based comprises N identical single

servers, where new calls arrive at each server according to a Poisson process with arrival rate

λ. The holding times of all calls are assumed to be exponentially distributed with parameter µ.

Let a = λ/µ be offered load (a.k.a offered traffic) of new calls to each server. Then, the offered

load of new calls to the entire system is aN . Calls are permitted to overflow to a randomly

chosen server until an idle server is found or all servers are attempted. A call is blocked if

all servers are attempted and found to be engaged. A call immediately engages an idle server

for its service duration and then leaves. We consider here a symmetric distributed overflow

loss service system where the arrival processes and service statistics are identical for all servers.

This system is henceforth referred to as the distributed server model. It is easy to see that the

blocking probability of the distributed server model is obtained by the Erlang B formula as

Pexact = EN (aN).

It has been proven [32] that PEFPA ≤ POPCA for all N ≥ 1 and for all call offered loads,

where Px is the call blocking probability estimate in the distributed server model yielded by

approximation x. Moreover, comprehensive numerical evaluation [32] suggests POPCA ≤ Pexact.

This inequality has been referred to as the OPC Conjecture. The main contribution of this

paper is to prove the OPC Conjecture. Proof of this conjecture verifies that OPCA is at least

as accurate as EFPA for the distributed server model.

OPCA and EFPA apply to many overflow systems and networks. In almost all cases, only

simulations or experiments can be used to evaluate the accuracy of the approximations and to

obtain evidence to which of the approximations is more accurate. Our distributed server model

5

is a rare instance of an overflow system with mutual overflow for which the exact blocking

probability is available. Therefore, we consider it an ideal “proving ground” where the accuracy

of OPCA and EFPA can be examined analytically.

In addition to proving the OPC Conjecture, this paper makes two further contributions:

• Tight bounds and limiting regimes are derived for the blocking probabilities yielded by

OPCA and EFPA in the case of critical loading (Section 5). The simple and tight lower

bound derived for OPCA can serve as a tight lower bound for the Erlang B blocking

probability in the case of critical loading.

• It is shown that in the case of critical loading, the ratio between the Erlang B and OPCA

blocking probabilities is bounded by
√
2 for all N ≥ 1, while the ratio between Erlang B

and EFPA approaches infinity as N → ∞.

Our proof strategy of showing that all coefficients of a suitable polynomial are nonnegative

has also been used to prove conjectures related to the Erlang formula [25], but as will become

apparent to the reader, the tightness of the inequality, POPCA ≤ Pexact makes the challenge here

far more formidable. In fact, OPCA is exact for the cases N = 1, 2 and approaches the exact

blocking probability as N → ∞. The proof of POPCA ≤ Pexact given here involves dividing

the problem into many cases, and some computer checking for some small integer cases. We

emphasize that the computer checking involves only finitely many calculations, and is only

there to eliminate many tedious, though entirely feasible, hand calculations. At no stage have

we relied on the computer to do simulations or calculations that would require assumptions

about the validity of the software or about the representativeness of the simulations. In places

where we have used a computer, it is merely as an arbitrary (or at least sufficiently high)

precision calculator. In other words, modulo the relatively small number of hand calculations,

the descriptions of which are relegated to the appendices in [30], and for which we have used

the package Maxima, (http://maxima.sourceforge.net/index.shtml) permitting arbitrary

precision in arithmetical operations, this proof is mathematically rigorous.

The remainder of the paper is organized as follows. Section 2 defines the distributed server

model (Section 2.1) and describes the application of EFPA (Section 2.2) and OPCA (Section

2.3) to this model. Section 3 is devoted to the proof of the OPC Conjecture, while Section 4

6

shows that OPCA and EFPA approach Pexact as N → ∞. Section 5 derives bounds for the case

of critical loading.

2 Problem formulation

We begin by defining the distributed server model [32]. We then show how EFPA and OPCA

can be applied to evaluate the blocking probability for this model and demonstrate that the

Erlang B formula yields the exact blocking probability. This in turn leads to the formulation of

the OPC Conjecture.

2.1 The distributed server model

Consider the following model of an overflow loss network [6]. The network comprises N iden-

tical servers. Calls are offered to servers according to mutually independent time-homogeneous

Poisson processes each with offered load a > 0. A call arriving at a busy server overflows to

one of the other N − 1 servers with equal probability and without delay. A call continues to

overflow until it either encounters an idle server, in which case it engages that server until its

service period is complete, or has sought to engage all N servers exactly once but found them

all busy, in which case it is blocked and never returns. The search for an idle server is assumed

to be conducted instantaneously. Service periods are independent and exponentially distributed

with normalized unit mean.

An n-call (for 1 ≤ n ≤ N − 1) is defined as a call that overflows (is denied service) n times

before engaging the (n + 1)th server in its search for an idle server. An N -call is a call that is

blocked and cleared and a 0-call is defined as a call initiated by a user (exogenous call).

This distributed-server model can be viewed as an M/M/N/N queue with offered load aN .

This allows for exact calculation of blocking probability using the Erlang B formula as

Pexact = EN (aN).

Therefore, EN (aN) provides a benchmark for comparison of blocking probability evaluation.

7

2.2 Erlang’s Fixed-Point Approximation

Here we briefly provide background on application of EFPA to the distributed-server model.

For more details please refer to [32]. In fact, equations (1) – (4) are equations (4) – (7) in [32].

We make the following simplifying assumptions:

1. Independence — states of servers are mutually independent;

2. Poisson — arrivals of n-calls to any server follow a Poisson process,

and write b for the probability that a server is busy. As mentioned above, we assume that a is

the offered load of new calls at a server. Also let an be the offered load of n-calls at a server.

Then, from the independence assumption,

an = abn, n = 0, 1, 2 . . . , N − 1, (1)

and from the Poisson assumption, the probability of a server being busy gives rise to an M/M/1/1

model for which the probability is

b =

∑N−1
n=0 an

1 +
∑N−1

n=0 an
. (2)

Substituting (1) into (2), we obtain

b = a(1− bN), (3)

which forms a fixed-point equation that can be solved for b, giving an EFPA blocking probability

approximation

PEFPA = bN . (4)

2.3 OPCA

As in the EFPA case, we assume that events related to the N different servers are mutually

independent and that the servers are statistically equivalent. Also as in the EFPA case, we let

a > 0 be the offered load of new calls at a server and an the offered load of n-calls at a server.

Thus, a0 = a. The stream formed by n-calls, N − 1 ≥ n ≥ 0, arriving at a server, is assumed

to follow a Poisson stream with rate µan (so that the offered load is an). The preemptive

8

priority regime defined by OPCA gives priority to “junior” nh-calls over “senior” nl-calls for

any 0 ≤ nh < nl ≤ N − 1. Accordingly, the an values can be obtained recursively by

an+1 = E1

(
n∑

i=0

ai

)
n∑

i=0

ai −
n∑

i=1

ai, (5)

for all n = 0, . . . , N − 1, where aN is defined as the offered load of the stream formed by calls

that are blocked and cleared. Note that
∑n

i=0 ai is the total offered load per server for 0-call up

to n-call, and E1(
∑n

i=0 ai) is the blocking probability of those arriving calls. Their product is

the overflow traffic per server for 1-call up to n + 1-call, which is in turn the total offered load

per server for 1-call up to n + 1-call, i.e.
∑n+1

i=1 ai. Subtracting
∑n

i=1 ai, we obtain an+1. See

[32] for further details. Also note that Eq. (5) is equivalent to Eq. (11) in [32].

The OPCA blocking probability approximation is given by

POPCA =
aN
a

. (6)

Eq. (6) has a clear physical interpretation: the aN/a ratio is the proportion of calls that are

promoted to N -calls (blocked calls) which is the OPCA blocking probability approximation.

Graphs are shown in Fig. 1 demonstrating the tightness of POPCA and PEFPA as lower

bounds for Pexact.

We are now able to state the main theorem of this paper.

Theorem 1.

PEFPA ≤ POPCA ≤ Pexact. (7)

The first inequality, namely PEFPA ≤ POPCA, was proved in [32], where the second inequality

is stated as the the OPC Conjecture. It is a key purpose of this paper to provide a mathematical

proof of the OPC conjecture.

By the Erlang B formula, we have

Pexact =
(aN)N

N !∑N
i=0

(aN)i

i!

. (8)

Therefore, by (6) – (8), the proof of Theorem 1 will be completed when we have proved the

9

1

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

POPCA

Pexact

PEFPA

OFFERED LOAD, a

P (a)

(a) P (a), N = 20

1

10-6

10-5

10-4

10-3

10-2

10-1

100

0 2 4 6 8 10 12 14 16 18 20

POPCA

Pexact

PEFPA

NUMBER OF SERVERS, N

P (N)

(b) P (N), a = 0.5

Figure 1: Numerical Comparison of OPCA and EFPA

following inequality for all a > 0 and N = 1, 2, 3, . . .

aN
a

≤
(aN)N

N !∑N
i=0

(aN)i

i!

. (9)

Before we commence the proof we note that it is easy to see that PEFPA and POPCA approach

0 as a → 0. It is also easy to see that POPCA = Pexact for a > 0 in the trivial cases of N = 1

and N = 2.

Most of the remainder of this paper is given over to establishing this innocuous looking and

quite generic inequality between the Erlang B formula and the OPCA system.

2.4 System Interpretations and Intuitive Arguments

A discussion of systems for which the approximations we consider are exact will help in un-

derstanding the implications of the approximations. To this end consider the following four

systems.

The actual system: In the present case, the actual system is our distributed server system.

EFPA: A system for which EFPA is exact can be constructed by considering the actual system

with a small modification, where an arbitrarily large exponentially distributed delay is

10

introduced at each overflow between the moment a call is denied service and the time it

attempts a new server. This large delay will induce Poisson independent arrivals in line

with EFPA assumptions.

The surrogate system: This system is the actual system with the following modification. An

arriving junior call that finds the server busy serving a senior call will preempt the senior

call and will be served by the server. Assuming it has not visited all servers already, the

senior call then immediately attempts another server that it has not visited before.

OPCA: OPCA is constructed by introducing the independence and Poisson assumptions to

the surrogate system. This is equivalent to introducing arbitrarily long exponentially

distributed delay to any overflow before it attempts a new server in a similar way that

EFPA applies to the actual system.

As discussed in [32], the blocking probability of the surrogate system is higher than that of

the actual system because overflowed senior calls that are being preempted by junior calls will

visit only servers that they have not visited before. Such servers may be free at the time that

the preemption takes place. This leads to a slight inefficiency which somewhat increases the

blocking probability.

Then the blocking probability incurred by OPCA is less than that of the surrogate system

because it eliminates all the dependencies and traffic variability. For the same reason EFPA

underestimates the blocking probability of the actual system.

Since OPCA underestimates the blocking probability of the surrogate which incurs higher

blocking than the actual system, it in fact cancels out error introduced by the surrogate and

provides a better blocking probability approximation of the actual system than EFPA.

Another interesting fact to observe is that the OPCA system is the one most different from

the actual system. It has both the preemptive priority structure as well as arbitrarily large delay

which do not exist in the actual system. Yet it provides a very accurate approximation to the

actual system.

11

3 Proof of the OPC Conjecture

We begin the proof by recalling the definition of Appell polynomials

SN (x) =

N∑
n=0

xn

n!
, (10)

the truncated Maclaurin series of the exponential function, which will play a key role in the

proof of the conjecture. At this point, we make the convention that the symbol N is taken to

range over all positive integers unless otherwise stated, so that any statement made about N

without further constraints is assumed to hold for N = 1, 2, 3,

Let A = aN be the offered load to the entire N -server system. The following function of A

and N will be key in the proof of the OPC conjecture.

TN (A) ≡
(
A

N
− 2

)(
N

N + 1

)N

SN (A)SN

(
A

(
1 +

1

N

))
+ SN (A)2 − AN+1

NN !
SN (A)

+

(
1− A

N

)(
N

N + 1

)N AN

N !
SN

(
A

(
1 +

1

N

))
+

A2N+1

N(N !)2
. (11)

To prove the OPC conjecture, we begin by defining a sufficient condition, described by

(13) below, for the OPC condition to hold (Lemma 1). Then we show that (13) is equivalent

to TN (A) ≥ 0, so the latter becomes a sufficient condition for the OPC condition to hold

(Proposition 1). In Appendix B, we prove that TN (A) ≥ 0. This completes the proof of the

OPC conjecture.

Proposition 1. If TN (A) ≥ 0 for all A ≥ 0 and all integer N , then the OPC conjecture holds.

By (5) we have

an =
(
∑n−1

i=0 ai)
2

1 +
∑n−1

i=0 ai
−

n−1∑
i=1

ai =

∑n−1
i=0 ai + (

∑n−1
i=0 ai)

2

1 +
∑n−1

i=0 ai
−

∑n−1
i=0 ai

1 +
∑n−1

i=0 ai
−

n−1∑
i=1

ai

=
n−1∑
i=0

ai −
1 +

∑n−1
i=0 ai

1 +
∑n−1

i=0 ai
+

1

1 +
∑n−1

i=0 ai
−

n−1∑
i=1

ai = a− 1 +
1

1 +
∑n−1

i=0 ai
. (12)

12

For the purposes of this section, we write down the following inequality

1

aPexact(N) + 1− a
+ aPexact(N) ≥ 1

aPexact(N + 1) + 1− a
. (13)

Lemma 1. If (13) holds, then the OPC conjecture is true.

Proof. We define

νn =

 1, n = −1,

1 +
∑n

i=0 ai, n > −1,
(14)

and note

an = νn − νn−1 n = 0, 1, 2, (15)

As a result,

an = a− 1 +
1

1 +
∑n−1

i=0 ai
= a− 1 +

1

νn−1
. (16)

It then follows from equations (16), (9), and (8) that the OPC conjecture is equivalent to

1

νN−1
≤ aPexact(N) + 1− a. (17)

It is easy to show that both sides of (17) are positive. Therefore,

νN−1 ≥
1

aPexact(N) + 1− a
≥ 1. (18)

We now begin an inductive proof by induction on N and use equation (18) as the statement

to be proved by induction. For the case N = 1, ν0 = 1 + a and

aPexact(N) + 1− a =
a2

1 + a
+ 1− a =

1

1 + a
=

1

ν0
, (19)

so the inequality is in fact an equality for this case.

Assume that (18) is true for N . Using the fact that the function x+ (1/x) is increasing for

x ≥ 1, we have

νN−1 +
1

νN−1
≥ 1

aPexact(N) + 1− a
+ aPexact(N) + 1− a. (20)

13

Adding a− 1 to both sides and combining with (16) we obtain

νN ≥ 1

aPexact(N) + 1− a
+ aPexact(N). (21)

From (18) we see that to complete the proof of the induction step it is enough to show (13).

This completes the proof of Lemma 1.

Proof of Proposition 1. Our strategy here is to prove that if TN (A) ≥ 0 for all A ≥ 0, then (13)

holds. We recall that

Pexact(N + 1) = Pexact =

(a(N+1))N+1

(N+1)!∑N+1
i=0

(a(N+1))i

i!

, (22)

and write

pN =
(a(N+1))N

N !∑N
i=0

(a(N+1))i

i!

. (23)

Then

Pexact(N + 1) =
a(a(N+1))N

N !
(a(N+1))N+1

(N+1)! +
∑N

i=0
(a(N+1))i

i!

=
apN

1 + apN
. (24)

We make this substitution for Pexact(N + 1) in (13) to see that it is enough to prove

1

aPexact(N) + 1− a
+ aPexact(N) ≥ 1

a apN
1+apN

+ 1− a
; (25)

in other words, we have to prove

aPexact(N)(aPexact(N) + 1− a) + 1

aPexact(N) + 1− a
≥ 1 + apN

1− a+ apN
. (26)

This reduces to

Pexact(N)2
(
1− a+ apN

)
+ Pexact(N)(a− apN − 2) + pN ≥ 0. (27)

Dividing by Pexact(N)2pN , we require

a− 2

Pexact(N)pN
+

1

Pexact(N)2
− a

Pexact(N)
+

1− a

pN
+ a ≥ 0. (28)

14

Next we convert to the Appell polynomials referred to earlier by noting that

1

Pexact(N)
= SN (aN)

N !

(aN)N
, (29)

and

1

pN
= SN (a(N + 1))

N !

(a(N + 1))N
. (30)

After substitution of these two into (28), it is enough to prove that

(a− 2)(N !)2

(aN)N (a(N + 1))N
SN (aN)SN (a(N + 1)) +

(N !)2

(aN)2N
SN (aN)2

− aSN (aN)N !

(aN)N
+

(1− a)N !

(a(N + 1))N
SN (a(N + 1)) + a ≥ 0. (31)

Now we multiply through by (aN)2N

(N !)2
and set A = aN to obtain that

TN (A) =

(
A

N
− 2

)(
N

N + 1

)N

SN (A)SN

(
A

(
1 +

1

N

))
+ SN (A)2 − (A)N+1

NN !
SN (A)

+

(
1− A

N

)(
N

N + 1

)N AN

N !
SN

(
A

(
1 +

1

N

))
+

A2N+1

N(N !)2
≥ 0 (32)

means that (13) holds and by Lemma 1 this means the OPC conjecture is true. This proves

Proposition 1.

We are now in position to deconstruct TN (A). We note that TN (A) is a polynomial of degree

2N + 1. We write it then as its (finite) Maclaurin series:

TN (A) = TN (0) + T ′
N (0)A+

T ′′
N (0)

2!
A2 +

T
(3)
N (0)

3!
A2 + · · ·+

T
(2N+1)
N (0)

(2N + 1)!
A2N+1. (33)

In Appendix B we show that TN (A) ≥ 0 for all A ≥ 0. Therefore, by Proposition 1, the

proof of the OPC conjecture is complete.

4 The Case: N → ∞

Now that the proof is complete, the following corollary establishes that OPCA (as well as EFPA)

approaches the exact solution for a large N .

15

Corollary

Both PEFPA and POPCA approach Pexact = EN (aN) as N tends to infinity with a fixed.

Proof. We know from page 498 of [24] that EN (aN) approaches zero for a ≤ 1 and approaches

1− 1
a for a > 1 as N tends to infinity with a fixed.

For all a > 0, PEFPA is obtained by finding the non-negative unique solution b of (3) and

then the blocking probability is bN . In all cases the result is trivially non-negative. Since the

EFPA value for the blocking probability never exceeds the exact result given by the Erlang B

formula, it follows immediately from the results of [24] and our proof of the OPC Conjecture

that both PEFPA and POPCA tend to zero when a ≤ 1. It follows that, to show that both PEFPA

and POPCA have the same limit as Pexact, we only need to consider the case a > 1 for PEFPA.

Suppose b does not tend to 1. Then, for any fixed M , b <
(
1 − M

N

)
for infinitely many N .

For these N , by (3),

b = a− abN > a

[
1−

(
1− M

N

)N]
→ a(1− e−M)

as N → ∞. Now choose M so that a(1− e−M) > 1, and this gives a contradiction. Hence b → 1

as N → ∞. Therefore, by (3), the blocking probability is

bN = 1− b

a
→ 1− 1

a
,

which coincides with the result in the exact case.

5 New Bounds and Asymptotic Results under Critical Loading

A system where the offered traffic load is equal to the number of servers, namely a = 1, is called

critically loaded [10]. It is known that for a critically loaded Erlang B system, as the number of

servers and the offered load approach infinity, the blocking probability approaches zero. These

conditions are important because they reflect the exponential increase of capacity and traffic in

telecommunications networks in recent times.

16

5.1 The bounds and asymptotic behavior of OPCA for a = 1

Let An =
∑n

i=0 ai. Then, from Eq. (5) and for a0 = a = 1, we have

An+1 = 1 +
A2

n

1 +An
. (34)

Moreover from Eq. (5), we have

an+1 =
A2

n

1 +An
−An + 1 =

1

An + 1
. (35)

Substituting into Eq. (6), we have for N ≥ 1

POPCA =
1

AN−1 + 1
. (36)

By (34), we have

An+1 = 1 +
1 + 2An +A2

n

1 +An
− 1 + 2An

1 +An
= 2 +An − 1− An

1 +An
= 1 +An − An

1 +An
.

Therefore,

A2
n+1 = 1 +A2

n +

(
An

1 +An

)2

+ 2An − 2
A2

n

1 +An
− 2

An

1 +An
= 1 +A2

n +

(
An

1 +An

)2

. (37)

Since An ≥ 1, we obtain

5

4
+A2

n ≤ A2
n+1 < 2 +A2

n, (38)

and iteration, noting that A0 = 1 provides bounds for An.

5

4
n+ 1 ≤ A2

n < 2n+ 1. (39)

17

Now from (37) and (39)

A2
n+1 = 1 +A2

n +

(
1− 1

1 +An

)2

≥ 1 +A2
n +

1− 1

1 +
√

5
4n

2

. (40)

Now we sum this equation from n = 0 to N−1, replacing A0, which equals 1, by

(
1− 1

1+
√

5
4
N

)2

to obtain

A2
N ≥ N +

N∑
n=1

1− 1

1 +
√

5
4n

2

≥ 2N − 2

N∑
n=1

 1√
5
4n

 = 2N − 4√
5

N∑
n=1

1√
n
≥ 2N − 8√

5

√
N.

(41)

Similarly,

A2
N ≤ N + 1 +

N−1∑
n=0

(
1− 1

1 +
√
2n+ 1

)2

. (42)

For N ≥ 3

A2
N ≤ N + 3 +

N−1∑
n=3

(
1− 1

1 +
√
2n+ 1

)2

≤ 2N. (43)

Combining equations (41) and (43), we obtain

2N − 8√
5

√
N ≤ A2

N ≤ 2N. (44)

Note that there is an opportunity here to modify (44) to make it apply to both N = 1 and

N = 2, but this will weaken the inequality, and we refrain from doing it. It follows from (36)

that

1

1 +
√
2N − 2

≤ POPCA =
1

AN−1 + 1
≤ 1√

2(N − 1)− 4
√
2√
5

√
2(N − 1)

. (45)

We write M = 2(N − 1) and calculate as follows

0 ≤ POPCA − 1

1 +
√
M

≤ 1√
M − 4

√
2√
5

√
M

− 1

1 +
√
M

=
1

(1 +
√
M)(

√
M − 4

√
2√
5

√
M)

+

4
√
2√
5

√
M

(1 +
√
M)(

√
M − 4

√
2√
5

√
M)(

√
M +

√
M − 4

√
2√
5

√
M)

. (46)

18

Noting that
√

M − 4
√
2√
5

√
M ≥

√
M
2 provided M ≥ 26, we have

0 ≤ POPCA − 1

1 +
√
M

≤
√
2

M
+

8/
√
5

M(1 + 1√
2
)
=

√
2

(
1 +

8√
5(1 +

√
2)

)
1

M
. (47)

Thus we obtain for N ≥ 14

0 ≤ POPCA − 1

1 +
√
2N − 2

≤ B
1

N − 1
, (48)

where

B =

(
1 +

8√
5(1 +

√
2)

)
1√
2
. (49)

These result in the following bounds for POPCA:

1

1 +
√
2N − 2

≤ POPCA ≤ 1

1 +
√
2N − 2

+B
1

N − 1
, (50)

where the upper bound starts from N = 14 and lower bound starts from N = 3. An important

observation to make here is that for a large N , the blocking probability of OPCA is of the same

order as that of the Erlang B formula, namely 1/
√
N . This explains the closeness of OPCA

to the exact solution (i.e. the Erlang B formula) shown in Figure 2. As observed from (50)

and verified by Figure 2 the lower bound of OPCA is a tight bound for large N and OPCA

approaches to this lower bound as N approaches infinity.

It is interesting to note that our lower bound of OPCA can serve as a tight lower bound

of the Erlang B formula because OPCA is itself a tight lower bound of the Erlang B formula,

although it is worth noting that the bound of [9] is slightly tighter than our lower bound of

OPCA for N ≥ 5. Note also that our bound applies only for the case of critical loading while

that of [9] is not so constrained.

19

5.2 The bounds and asymptotic behavior of EFPA for a = 1

In this section we analyze the asymptotic behavior of the EFPA for a = 1 and for large N . Let

PN ≡ PEFPA for N ≥ 1. From Eqs. (3) and (4) and with a = 1, we have

1− PN − P
1
N
N = 0. (51)

Let

fN (x) ≡ 1− x− x
1
N . (52)

Note that fN (x) is a monotonically decreasing function of x in the interval [0, 1], that fN (0) = 1

and that fN (1) < 0 and so fN (x) has exactly one zero in that interval, namely PN .

We first show that PEFPA is upper bounded by logN
N for N ≥ 2. Let yN ≡ logN

N . Put yN

into (52), to obtain

h(N) = fN (
logN

N
) = 1− logN

N
−
(logN

N

)1/N
(53)

Differentiation with respect to N yields

h′(N) =
1

N2 logN

[(logN
N

)1/N((
logN

)
log
(logN

N

)
+ logN − 1

)
+
(
logN

)2 − logN

]
=

1

N2 logN

[(logN
N

)1/N(
logN log logN −

(
logN

)2
+ logN − 1

)
+
(
logN

)2 − logN

]
≥ 1

N2 logN

[
1−

(logN
N

)1/N]((
logN

)2 − logN
)

provided N ≥ 6 since in that case logN log logN > 1. It follows that h(N) is strictly increasing

for N ≥ 6 and numerical calculations show that this property extends down to N ≥ 2.

Now consider

lim
N→∞

h(N) = lim
N→∞

1− logN

N
−
(logN

N

) 1
N

= 1− lim
N→∞

(logN
N

)1/N
= 0

If follows that h(N) < 0 for N ≥ 2 and hence that PEFPA < (logN)/N for all N ≥ 2.

20

Now, we try to find an asymptotic lower bound for PEFPA. Let zN = d log(N)
N for some choice

of 1 > d > 0 to be made later and put it into (52), to obtain

fN (zN) = 1− d log(N)

N
−
(d log(N)

N

) 1
N
. (54)

Observe that by the Mean Value Theorem, for 0 < β < 1

ex ≤ 1 + βx for log β < x ≤ 0, (55)

so that, if we apply this inequality to

x =
log
(
d logN

N

)
N

for sufficiently large N to achieve log β < x < 0, we obtain

(d logN
N

) 1
N

< 1 +
β log

(
d logN

N

)
N

. (56)

Putting it into (54), we have

fN (zN) > −d logN

N
−

β log
(
d logN

N

)
N

. (57)

In order that zN be a lower bound, we need f(zN) > 0 which by (57) follows from:

−d logN

N
−

β log
(
d logN

N

)
N

> 0. (58)

This is equivalent to

N
(1− d

β
)
> d logN. (59)

For any d < β the above inequality holds for arbitrarily large N .

Therefore, for all N ≥ 2, we have

PEFPA <
logN

N
(60)

21

and for any d < β < 1, there is an N(d) such that inequality (59) holds for N > N(d), so

d logN

N
< PEFPA. (61)

Since, for arbitrarily large N , we can choose d to be very close to β such that d < β, and we

can also choose β very close to 1 that satisfies β < 1, as N approaches infinity, we have

logN

N
> PEFPA ≍ logN

N
. (62)

Recall that the upper bound of PEFPA starts from N = 2.

Note that these results are different from those obtained in [10] where a different limit regime

has been considered. The authors of [10] considered a limited availability case where the traffic

can overflow only a limited number of times, and this limit stays fixed although the total number

of servers approaches infinity. In the present case there is no such limit.

These bounds signify the improvement achieved by OPCA over EFPA under critical loading.

We demonstrate numerically in Figure 2 that these bounds are quite tight and we also observe

from the numerical results that the significant difference between the upper bound of EFPA and

the lower bound of OPCA starts from N = 3.

We capture the results of this section in Table 1 and recall that for N = 1 and N = 2, OPCA

gives the same results as the Erlang B formula. It shows that the ratio of the upper bound of

Erlang B formula [9] to the lower bound of OPCA is bounded by
√
2 for any N ≥ 1, while the

ratio of the lower bound of the Erlang B formula [9] to the upper bound of EFPA approaches

infinity as N → ∞. This OPCA error bound provides further evidence for the accuracy of

OPCA in the present case and helps in understanding why the OPC Conjecture is difficult to

prove.

6 Conclusions

By completing the proof of the OPC Conjecture, we have established that for the symmetric

distributed server system under consideration, OPCA is always at least as accurate as EFPA.

Furthermore, POPCA = Pexact for the cases N = 1 and N = 2, and we have now established that

22

0 2000 4000 6000 8000 10000 12000
10

−4

10
−3

10
−2

10
−1

10
0

Number of servers (N)

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Erlang B
OPCA
OPCA − lower bound
EPFA − upper bound
EFPA

Figure 2: Blocking probability versus number of servers for Erlang B, OPCA and EFPA.

Table 1: Summaries of bounds for Erlang B, OPCA and EFPA for N ≥ 3.

Erlang B Upper Bound [9] 1
1+

√
N

Erlang B Lower Bound [9] 1
1+
√

π
2
N

OPCA Lower Bound 1
1+

√
2N−2

EFPA Upper Bound logN
N

this is also true at the limit of large N . (Note that the latter applies also to EFPA.)

Furthermore, we have provided new results of tight bounds and asymptotic behavior for both

OPCA and EFPA under the important case of critical loading that show the closeness of OPCA

to the exact solution and the significant improvement achieved by OPCA over EFPA. We have

also shown that the ratio of the Erlang B formula to OPCA is bounded by
√
2 for any N ≥ 1,

while the ratio of the Erlang B formula to EFPA approaches infinity as N → ∞.

The results of this work establish a close relationship between two seemingly unrelated mod-

els: the Erlang B and the priority queue model OPCA and demonstrate a potential of improving

23

accuracy by surrogate-based approaches for many other overflow loss model applications.

Appendix

A Existence and Uniqueness of the Solutions for EFPA and

OPCA

A1 Existence and Uniqueness of the Fixed Point Solution for EFPA

Eq. (3), namely b = a(1 − bN), is the fixed-point equation for EFPA. Rearranging, we obtain:

0 = a(1− bN)− b.

Define: f(x) = a(1− xN)− x.

To prove existence and uniqueness, we show that f(x) = 0, 0 ≤ x ≤ 1, has a unique solution.

To establish solution existence, we observe that f(x) is continuous and for x = 0, f(x) > 0 and

for x = 1, f(x) < 0. Therefore, a solution exists by the intermediate-value theorem.

To establish solution uniqueness, suppose f(x1) = f(x2) = 0 for 0 < x1 < x2 < 1. The

mean-value theorem requires the existence of a y satisfying f(x2) − f(x1) = f ′(y)(x2 − x1) or

f ′(y) = 0, where x1 ≤ y ≤ x2. This provides us with a contradiction because simple calculations

reveal that f ′(x) < 0. Therefore, x1 = x2.

A2 Existence and Uniqueness of the Solution for OPCA

From Eq. (5), we observe that a unique an+1 is recursively obtained from a0, a1, . . . , an. And,

it takes N steps before we obtain aN (the last an value). Then, we can obtain a unique POPCA

which is given by aN/a.

B Proof that TN(A) ≥ 0 for all A ≥ 0

We show that TN (A) is positive on the whole positive real line and we do that by showing that

each of its derivatives at 0 is positive. In other words, we divide the original problem into several

sub-problems, which are relatively easier to solve, and solve them individually. Then some of

24

the sub-problems are further subdivided to enable solution. We continue to apply this “divide

and conquer” approach to each sub-problem until they are all solved.

It will simplify the formulae involving the derivatives of TN (A) if we define α = N
N+1 . Then

we have

TN (A) =
A

N
αNSN (A)SN

(
A

α

)
− 2αNSN (A)SN

(
A

α

)
+ SN (A)2

− AN+1

NN !
SN (A) +

αNAN

N !
SN

(
A

α

)
− αNAN+1

NN !
SN

(
A

α

)
+

A2N+1

N(N !)2
. (B1)

Now we approach the task of calculating the derivatives of each of the terms in this sum.

The following equations will help here.

S′
n(x) = Sn−1(x) n = 0, 1, . . . , (B2)

where S−1(x) is identically zero, and so

Sn(0) =


0 n = −1

1 otherwise.

(B3)

We record as a series of lemmas the derivatives of each of the terms in TN (A). In proving

these lemmas, we will rely on (B2) in addition to Leibnitz rule in the guise

dn

dxn
[xcf(ax)g(bx)] =

n∑
i=0

(
n

i

)
c(c− 1) · · · (c− i+ 1)xc−i d

n−i

dxn−i
[f(ax)g(bx)] (B4)

where

dn

dxn
[f(ax)g(bx)] =

n∑
i=0

(
n

i

)
aibn−ig(i)(ax)f (n−i)(bx),

and f (n)(x) is shorthand for dnf(x)/dxn and c is integer.

25

Lemma 2.

dn

dAn

[
A

N
αNSN (A)SN

(
A

α

)]
=

αN

N

[
n

n−1∑
i=0

(
n− 1

i

)
SN−i

(
A

α

)
SN−n+1+i(A)

(
1

α

)i

+A

n∑
i=0

(
n

i

)
SN−i

(
A

α

)
SN−n+i(A)

(
1

α

)i]
,

dn

dAn

[
A

N
αNSN (A)SN

(
A

α

)]
A=0

=



αN

N n
∑n−1

i=0

(
n−1
i

) (
1
α

)i
, 0 ≤ n ≤ N + 1,

αN

N n
∑N

i=n−N−1

(
n−1
i

)(
1
α

)i
, N + 2 ≤ n ≤ 2N + 1,

0, n > 2N + 1.

(B5)

Proof. The first equality follows immediately by rewriting (B4). In particular, we set f = g =

SN , a = 1/α, b = 1 and c = 1.

We evaluate at A = 0. The second term is multiplied by A and is thus immediately elimi-

nated. The form of the first term depends on n. Three cases arise, namely, those stated in Eq.

(B5) For 0 ≤ n ≤ N + 1, the product SN−i(0)SN−n+1+i(0) = 1, as a consequence of (B2). The

rest is straightforward.

Lemma 3.

dn

dAn

[
−2αNSN (A)SN

(
A

α

)]
= −2αN

n∑
i=0

(
n

i

)
SN−i

(
A

α

)
SN−n+i(A)

(
1

α

)i

dn

dAn

[
−2αNSN (A)SN

(
A

α

)]
A=0

=


−2αN

∑n
i=0

(
n
i

) (
1
α

)i
, 0 ≤ n ≤ N,

−2αN
∑N

i=n−N

(
n
i

)(
1
α

)i
, N + 1 ≤ n ≤ 2N.

0, n > 2N.

(B6)

Proof. The first equality follows immediately from a rewriting of (B4). In particular, we set

f = g = SN , a = 1/α, b = 1 and c = 0. Again the rest is straightforward.

Lemmas 4-8 involve differentiation of the general form given by (B4). This can be accom-

plished in the same way as detailed in the proofs of Lemmas 2 and 3. We provide a summary

26

in Table B1, but omit the proofs of Lemmas 4–8, which involve straightforward calculations.

Table B1: Form of (B4) for Lemmas 2-8

f g a b c

Lemma 2 SN SN 1/α 1 1

Lemma 3 SN SN 1/α 1 0

Lemma 4 SN SN 1 1 0

Lemma 5 SN 1 1 1 N + 1

Lemma 6 SN 1 1/α 1 N

Lemma 7 SN 1 1/α 1 N + 1

Lemma 8 1 1 1 1 2N + 1

Lemma 4.

dn

dAn
[SN (A)SN (A)] =

n∑
i=0

(
n

i

)
SN−i(A)SN−n+i(A)

dn

dAn
[SN (A)SN (A)]A=0 =



∑n
i=0

(
n
i

)
, 0 ≤ n ≤ N,∑N

i=n−N

(
n
i

)
, N < n ≤ 2N

0, n > 2N.

(B7)

Lemma 5.

dn

dAn

[
− 1

NN !
AN+1SN (A)

]
= − 1

NN !

n∑
i=0

(
n

i

)
(N + 1)!

(N + 1− i)!
AN+1−iSN−n+i(A)

dn

dAn

[
− 1

NN !
AN+1SN (A)

]
A=0

=


0, 0 ≤ n ≤ N,

− (N+1)!
NN !

(
n

N+1

)
, N + 1 ≤ n ≤ 2N + 1

0, n > 2N + 1.

(B8)

27

Lemma 6.

dn

dAn

[
αN

N !
ANSN

(
A

α

)]
=

αN

N !

n∑
i=0

(
n

i

)
N !

(N − i)!
AN−iSN−n+i

(
A

α

)(
1

α

)n−i

dn

dAn

[
αN

N !
ANSN

(
A

α

)]
A=0

=


0, 0 ≤ n ≤ N − 1,

αN
(
n
N

) (
1
α

)n−N
N ≤ n ≤ 2N

0 n > 2N.

(B9)

Lemma 7.

dn

dAn

[
−αN

NN !
AN+1SN

(
A

α

)]
=

−αN

NN !

n∑
i=0

(
n

i

)
(N + 1)!

(N + 1− i)!
AN+1−iSN−n+i

(
A

α

)(
1

α

)n−i

dn

dAn

[
−αN

NN !
AN+1SN

(
A

α

)]
A=0

=


0, 0 ≤ n ≤ N,

−αN N+1
N

(
n

N+1

)
(1α)

n−N−1 N + 1 ≤ n ≤ 2N + 1

0 n > 2N + 1.

(B10)

Lemma 8.

dn

dAn

[
A2N+1

N(N !)2

]
A=0

=


(2N+1)!
N(N !)2

, n = 2N + 1

0, otherwise.

(B11)

The next step is to collect all of these terms together to obtain T
(n)
N (0). The formula is

different for different ranges of n, as the previous lemmas indicate, and the ranges depend on

N .

28

Lemma 9.

T
(n)
N (0) =

αN

N n
(
1 + 1

α

)n−1 − 2αN
(
1 + 1

α

)n
+ 2n 0 ≤ n < N

αN

N n
(
1 + 1

α

)n−1 − 2αN
(
1 + 1

α

)n
+ 2n + αN n = N

αN

N (N + 1)
(
1 + 1

α

)N − 2αN
∑N

i=1

(
N+1
i

)(
1
α

)i
+
∑N

i=1

(
N+1
i

)
−N+1

N + αN−1(N + 1)− αN N+1
N n = N + 1

αN

N n
∑N

i=n−N−1

(
n−1
i

)(
1
α

)i − 2αN
∑N

i=n−N

(
n
i

)(
1
α

)i
+
∑N

i=n−N

(
n
i

)
−N+1

N

(
n

N+1

)
+ αN

(
n
N

)(
1
α

)n−N − αN N+1
N

(
n

N+1

)(
1
α

)n−N−1
N + 2 ≤ n ≤ 2N

0 otherwise.

(B12)

B1 The Easy Cases

We now have to verify that each of the derivatives of TN (A) is non-negative to complete the

proof of the OPC conjecture. The cases are

{0 ≤ n < N}, {N}, {N + 1}, {N + 2 ≤ n ≤ 2N}. (B13)

The most difficult case turns out to be the last of these: {N +2 ≤ n ≤ 2N}, and we leave it

till the next and subsequent sections. We deal with all of the three other cases here. It simplifies

formulae a little to consider n!T
(n)
N in each case.

Lemma 10.

αN

N
n

(
1 +

1

α

)n−1

− 2αN

(
1 +

1

α

)n

+ 2n ≥ 0 n = 1, 2, ..., N − 1. (B14)

Proof. We divide by 2n, replace α by N
N+1 and rearrange to obtain in place of the left side of

29

(B14) that

1 +
n

2N

1(
1 + 1

N

)N (1 + 1

2N

)n−1
− 2

1(
1 + 1

N

)N (1 + 1

2N

)n
= 1− 1(

1 + 1
N

)N (1 + 1

2N

)n−1[
2− n− 2

2N

]
. (B15)

For this to be non-negative for 0 ≤ n < N we observer that the logarithm (to base e) of the

second term is less than 0; that is,

−N log

(
1 +

1

N

)
+ (n− 1) log

(
1 +

1

2N

)
+ log 2− log

(
1

1− (n−2)
4N

)
< 0. (B16)

Using the inequalities

x− x2

2
< log(1 + x) < x, log

(1

1− x

)
> x for 0 ≤ x ≤ 1. (B17)

we see that the expression in (B16) does not exceed

−N
(1
N

− 1

2N2

)
+

(n− 1)

2N
+ log 2− (n− 2)

4N
≤ (log 2− 1) +

n+ 2

4N
≤ log 2− 1 +

N + 1

4N
.

which is clearly negative for N ≥ 10. The remaining small collection of cases of the original

inequality can be checked by hand. We have used Maxima to check the cases N < 10.

Lemma 11.

αN
(
1 +

1

α

)N−1
− 2αN

(
1 +

1

α

)N
+ 2N + αN ≥ 0. (B18)

Proof. For N ≥ 2, αN < 1
2 , so that

αN
(
1 +

1

α

)N−1
− 2αN

(
1 +

1

α

)N
+ 2N + αN = 2N + αN − 2N

(3N + 2

2N + 1

)(
1− 1

2(N + 1)

)N
≥ 2N

[
1−

(3N + 2

2N + 1

)(
1− 1

2(N + 1)

)N]
. (B19)

As in the previous lemma, we do this by showing that the logarithm of
(
3N+2
2N+1

)(
1− 1

2(N+1)

)N

30

is negative using the inequalities given in (B17). This reduces to

log
3

2
+ log

(
1 +

1

6N + 3

)
+N log

(
1− 1

2(N + 1)

)
≤ log

3

2
− 1

2
+

1

2(N + 1)
+

1

6N + 3
. (B20)

which is negative for N ≥ 7. The remaining few cases can be checked by hand (on the original

inequality (B18)), and we have used Maxima to do this. It is an indication of the tightness of

this inequality that the first four cases all give the value zero.

Lemma 12.

αN

N
(N + 1)

(
1 +

1

α

)N
− 2αN

N∑
i=1

(
N + 1

i

)(1
α

)i
+

N∑
i=1

(
N + 1

i

)
− N + 1

N

+ αN

(
N + 1

N

)(1
α

)
− αN N + 1

N
≥ 0. (B21)

Proof. We begin by rewriting the expression as

αN−1
(
1 +

1

α

)N
− 2αN

[(
1 +

1

α

)N+1
− 1− 1

αN+1

]
+

2N+1 − 2− 1

α
+ αN−1(N + 1)− αN−1

= 2N+1 − αN−1
(
1 +

1

α

)N[
1 + 2α

]
+ (N + 3)αN +

1

α
− 2. (B22)

Now we use the inequality αN > 1
e to obtain

2N+1 − αN−1
(
1 +

1

α

)N[
1 + 2α

]
+ (N + 3)αN +

1

α
− 2

≥ 2N+1 − (α+ 1)N
[1
α
+ 2
]
+

N + 3

e
− 2 ≥ 2N

[
2−

(19
6

)(
1− 1

2(N + 1)

)N]
(B23)

for N ≥ 6 and the final term is positive for N ≥ 9, because
(
1 − 1

2(N+1)

)N
is decreasing in N

and is less than 12
19 for N = 9. Again the remaining few terms can be checked by hand, and

again we have done this using Maxima.

31

B2 The Final Term

The proof of the OPC conjecture will be complete when we have proved the following lemma.

This proof will occupy the remainder of the paper.

Lemma 13.

αN

N
n

n−1∑
i=0

(
n− 1

i

)(1
α

)i
− 2αN

N∑
i=n−N

(
n

i

)(1
α

)i
+

N∑
i=N−n

(
n

i

)
− N + 1

N

(
n

N + 1

)
+αN

(
n

N

)(1
α

)n−N
− αN N + 1

N

(
n

N + 1

)(1
α

)n−N−1
≥ 0

(B24)

for n = N + 2, N + 3, ..., 2N.

First we replace n by n−N − 1 to obtain for the left side of the above inequality:

n+ 1 +N

N
αN

N∑
i=n

(
n+N

i

)
α−i − 2αN

N∑
i=n+1

(
n+N + 1

i

)
α−i +

N∑
i=n+1

(
n+N + 1

i

)
− α−1

(
n+N + 1

N + 1

)
+ αN−n−1

[(
n+N + 1

N

)
−
(
n+N + 1

N + 1

)]
(B25)

where now we have to prove this non-negative for 1 ≤ n ≤ N − 1, and as before α = N
N+1 .

We fix n+N + 1 = R and define

Ω(n,N) =
n+ 1 +N

N
αN

N∑
i=n

(
n+N

i

)
α−i−2αN

N∑
i=n+1

(
n+N + 1

i

)
α−i+

N∑
i=n+1

(
n+N + 1

i

)
− α−1

(
n+N + 1

N + 1

)
+ αN−n−1

[(
n+N + 1

N

)
−
(
n+N + 1

N + 1

)]
. (B26)

The idea of the proof here is to show that for the “diagonal” this expression is zero, and that

when we move away from the diagonal the value increases. The first assertion is (more precisely)

expressed in the following lemma.

Lemma 14.

Ω(K − 1,K) = Ω(K − 1,K + 1) = 0, K = 1, 2, (B27)

Proof. This is a straightforward calculation:

Ω(K − 1,K) =

(
2K

K

)[K

K + 1
− 1
]
+

(
2K

K

)(
1− K

K + 1

)
= 0. (B28)

32

Ω(K − 2,K) =

(
2K − 1

K

)(
K

K + 1
− 1

)
+

(
2K − 1

K − 1

)[(K − 1

K + 1
− 2
) K

K + 1
+ 1

]
+

K

K + 1

(
2K − 1

K

)(
1− K − 1

K + 1

)
= 0.

(B29)

Now let Υ(n,N) = Ω(n − 1, N + 1) − Ω(n,N). The remainder of the proof is concerned

with the following lemma. Once it is completed, combined with Lemma 14, it gives the required

result.

Lemma 15. For 0 ≤ n < N Υ(n,N) ≥ 0.

The proof of this result in itself will require several lemmas. Indeed, its proof appears to

be non-trivial, although elementary. To simplify the expressions, we let β = N+1
N+2 . Then a

straightforward and omitted calculation shows that

Υ(n,N) =

(
N + n+ 1

N + 1

)(
β − βN−n+1

)
−
(
N + n+ 1

N

)(
1− n+ 1

N + 1

)
αN−n−1

+
N−n−1∑

i=0

(
N + n+ 1

N − i

)[(N − i

N + 2
− 2
)
βi+1 −

(N − i

N + 1
− 2
)
αi
]
.

(B30)

Now we note that the sum in this expression for Υ(n,N) is (the details are provided in Appendix

I of [30]):

N−n−1∑
i=0

(
N + n+ 1

N − i

)[(N − i

N + 2
− 2
)
βi+1 −

(N − i

N + 1
− 2
)
αi
]

=
1

2

{N−n−1∑
i=0

(
N + n+ 1

N − i

)[(N − i

N + 2
− 2
)
βi+1 −

(N − i

N + 1
− 2
)
αi
]

+
N−n−1∑

i=0

(
N + n+ 1

n+ 1 + i

)[(n+ 1 + i

N + 2
− 2
)
βN−n−i −

(n+ 1 + i

N + 1
− 2
)
αN−n−1−i

]}
. (B31)

This yields

Υ(n,N) =

(
N + n+ 1

N + 1

)(
β − βN−n+1

)
−
(
N + n+ 1

N

)(
1− n+ 1

N + 1

)
αN−n−1

+
N−n−1∑

i=0

(
N + n+ 1

N − i

)
S(i)

2
(B32)

33

where

S(i) =

[(
N − i

N + 2
− 2

)
βi+1 −

(
N − i

N + 1
− 2

)
αi

]
+

[(
i+ n+ 1

N + 2
− 2

)
βN−n−i −

(
i+ n+ 1

N + 1
− 2

)
αN−n−1−i

]
. (B33)

Lemma 16. S(i) is increasing in i for 0 ≤ i ≤ 1
2(N − n− 1).

Proof. Let

Q(i) =

[(
N − i

N + 2
− 2

)
βi+1 −

(
N − i

N + 1
− 2

)
αi

]
. (B34)

Then

S(i) = Q(i) +Q(N − n− 1− i). (B35)

Differentiating with respect to i we have

S′(i) = Q′(i)−Q′(N − n− 1− i). (B36)

To show, then, that S(i) is increasing for 0 ≤ i ≤ 1
2(N − n − 1), we shall show that Q′(i) is

decreasing for 0 ≤ i ≤ N − n − 1. We observe that βi+1 ≤ αi for all real i in the range in

question, and hence that

Q′′(i) = − 2

N + 2
βi+1 lnβ +

(
N − i

N + 2
− 2

)
βi+1(lnβ)2 +

2

N + 1
αi lnα−

(
N − i

N + 1
− 2

)
αi(lnα)2

=

[
2− (N + 4 + i) ln

(
N + 2

N + 1

)]
βi+1

N + 2
ln

(
N + 2

N + 1

)
−
[
2− (N + 2 + i) ln

(
N + 1

N

)]
αi

N + 1
ln

(
N + 1

N

)
≤ −

[
(N + 4 + i) ln

(
N + 2

N + 1

)
− (N + 2 + i) ln

(
N + 1

N

)]
αi

N + 1
ln

(
N + 1

N

)
≤ 0,

(B37)

which is enough to complete the proof.

The next lemma now follows from the preceding one.

34

Lemma 17.

Υ(n,N) ≥
(
N + n+ 1

N + 1

)(
β − βN−n+1

)
−
(
N + n+ 1

N

)(
1− n+ 1

N + 1

)
αN−n−1

+

(
N + n+ 1

N

)
S0 +

S1

2

N−n−2∑
i=1

(
N + n+ 1

N − i

)
. (B38)

Now define

Un =

⌊N−n−1
2

⌋∑
i=1

(
N + n+ 1

N − i

)
. (B39)

Then we have the following lemma.

Lemma 18.

Un(
N+n+1

N

) ≥
(N + 3n+ 5

2N − 2n− 2

)[(3N + n+ 3

N + 3n+ 5

)N−n
2 − 1

]
− 1. (B40)

In other words, the following is true.

Υ(n,N) ≥
(
N + n+ 1

N + 1

)(
β − βN−n+1

)
−
(
N + n+ 1

N

)(
1− n+ 1

N + 1

)
αN−n−1

+

(
N + n+ 1

N

)
S0

+

(
N + n+ 1

N

)[(N + 3n+ 5

2N − 2n− 2

)[(3N + n+ 3

N + 3n+ 5

)N−n
2 − 1

]
− 1

]
S1.

(B41)

Proof. This is proved as follows:

Un(
N+n+1

N

) =

⌊N−n−1
2

⌋∑
i=1

i∏
k=1

(N + 1− k

n+ 1 + k

)
=

⌊N−n−1
2

⌋∑
i=1

(i∏
k=1

(N + 1− k)(N + 1 + k − i− 1)

(n+ 1 + k)(n+ 1− k + i+ 1)

) 1
2

≥
⌊N−n−1

2
⌋∑

i=1

(
i∏

k=1

(N + 1)2 − (i+ 1)(N + 1)

(n+ 1)2 + (i+ 1)(n+ 1)

) 1
2

≥
⌊N−n−1

2
⌋∑

i=1

(
(N + 1− i+1

2)

(n+ 1 + i+1
2)

)i

=

⌊N−n−1
2

⌋∑
i=1

(
2N − i+ 1

2n+ i+ 3

)i

≥
⌊N−n−1

2
⌋∑

i=1

(
2N − N−n−1

2 + 1

2n+ N−n−1
2 + 3

)i

=

⌊N−n−1
2

⌋∑
i=1

(
3N + n+ 3

N + 3n+ 5

)i

≥
(

N + 3n+ 5

2N − 2n− 2

)((
3N + n+ 3

N + 3n+ 5

)N−n
2

− 1

)
− 1.

(B42)

35

B3 Final Estimates

At this point we change from using N and n as the variables to using R = N + n + 1 and

D = N − n− 1, so that N = R+D
2 and n+ 1 = R−D

2 . The right side of inequality (B41) can be

rewritten as

Q(D,R) =
R−D

R+ 4 +D

(
1− βD+1

)
− 2 + 2D

R+ 2 +D
αD + (L0 +R0) +M(L1 +R1) (B43)

where

M =
(2R+ 2−D

2D

)((2R+ 2 +D

2R+ 2−D

)D+1
2 − 1

)
− 1 (B44)

L0 =
(N

N + 2
− 2
)
β1 −

(N

N + 1
− 2
)
α0 (B45)

=
(
2− R+D

R+ 2 +D

)
−
(
2− R+D

R+ 4 +D

)
β1 (B46)

R0 =
(n+ 1

N + 2
− 2
)
βN−n −

(n+ 1

N + 1
− 2
)
αN−n−1 (B47)

=
(
2− R−D

R+ 2 +D

)
αD −

(
2− R−D

R+ 4 +D

)
βD+1 (B48)

L1 =
(N − 1

N + 2
− 2
)
β2 −

(N − 1

N + 1
− 2
)
α1 (B49)

=
(
2− R− 2 +D

R+ 2 +D

)
α1 −

(
2− R− 2 +D

R+ 4 +D

)
β2 (B50)

R1 =
(n+ 2

N + 2
− 2
)
βN−n−1 −

(n+ 2

N + 1
− 2
)
αN−n−2 (B51)

=
(
2− R+ 2−D

R+ 2 +D

)
αD−1 −

(
2− R+ 2−D

R+ 4 +D

)
βD. (B52)

where α = N
N+1 = R+D

R+2+D and β = N+1
N+2 = R+2+D

R+4+D .

We state, as a lemma, the final requirement for our proof.

Lemma 19. Q(D,R) ≥ 0 for 0 ≤ D ≤ R− 4 and R ≥ 4.

We note that the cases D = 0 and D = 1 are already covered by equation (B27). We also

note that L0,L1,R0,R1 are non-negative, as is the first term in Q(D,R). Moreover the negative

(second) term does not exceed 1 in absolute value.

It will be convenient to write

W =
R−D

R+ 4 +D

(
1− βD+1

)
− 2 + 2D

R+ 2 +D
αD. (B53)

36

It is a remarkable (and frustrating) fact that all of the non-negative terms are needed to make

the inequality Q(D,R) valid in this range. We begin by replacing each of them by somewhat

simpler forms. We write

ρ =
2

2 +R+D
. (B54)

Lemma 20.

L0 = ρ−
(ρ

ρ+ 1

)
+ 2
(ρ

ρ+ 1

)2
, (B55)

W = (1− ρ)D − 2

(1 + ρ)D+1
+ 1− ρ

ρ+ 1
(D + 2), (B56)

L1 =
(ρ2

(ρ+ 1)3

)
(4− 2ρ− 5ρ2 − ρ3), (B57)

R1 = (1 +Dρ)(1− ρ)D−1 −
(
1 + (D + 1)

ρ

ρ+ 1

)(
1− ρ

ρ+ 1

)D
, (B58)

M =
1

u

(
(1 + u)(D+1)/2 − 1

)
− 1 (B59)

where

1

u
=

2R+ 2−D

2D
=

2

D

(1
ρ
− 1

2

)
− 3

2
. (B60)

The following lemma is obtained by the judicious use of the binomial expansion. We aim to

have a common denominator of 1/(1 + ρ)D in the various summands in the required inequality.

Lemma 21. Let

CL0 =
ρ2

(1 + ρ)D+1

(
1 + (D − 1)ρ+

1

2
(D − 1)(D − 2)ρ2

)
(3 + ρ) (B61)

CL1 =
ρ2

(1 + ρ)D+1

(
1 + (D − 2)ρ+

1

2
(D − 2)(D − 3)ρ2

)
(4− 2ρ− 5ρ2 − ρ3), (B62)

CW =
−1

(ρ+ 1)D+1

(5
2
Dρ2 +

1

2
D2ρ2 +

1

2
Dρ3 +

1

2
D3ρ3

)
(B63)

CR1 =
ρ2

(1 + ρ)D+1

(
(D + 2)− ρ(D2 − 2)− ρ2(D − 1)(1 + 2D)− ρ3(D − 1)D

)
(B64)

CM =
D − 1

2
+

D(D2 − 1)ρ

16

(
1 +

1

2
(D + 2)ρ

)(
1 +

ρ

4
(D − 2)

(
1 +

1

2
(D + 2)ρ

))
. (B65)

Then for D ≥ 3

L0 ≥ CL0, L1 ≥ CL1, M ≥ CM, W ≥ CW, R1 ≥ CR1. (B66)

37

The details of the proof are given in Appendix II of [30]. In view of this lemma it is enough

to show that

CL0 + CW + CM(CL1 + CR1) ≥ 0, (B67)

for R ≥ 6 and 3 ≤ D ≤ R− 4.

The next two lemmas can be proved by straightforward calculations (See Appendices III and

IV of [30]) based on what we know about the ranges of ρ and D. We note that, for D ≥ 5,

ρ ≤ 2
13 .

Lemma 22.

CL0 + CW + CM(CL1 + CR1) ≥

−
[
D8(2ρ5) +D7(6ρ4) +D6(16ρ3) +D5(44ρ5 + 338ρ4 − 128ρ3 + 8ρ2)

+D4(96ρ4 + 496ρ3 − 288ρ2 − 32ρ) +D3(576ρ3 + 152ρ2 + 320ρ)

+D2(2336ρ2 − 1248ρ) +D(1984ρ)
]
.

(B68)

Lemma 23. For D ≥ 5,

CL0 + CW + CM(CL1 + CR1) ≥

−
[
2D8ρ5 + 6D7ρ4 + 16D6ρ3)− (128ρ3 − 8ρ2)D5

−(106ρ2 + 32ρ)D4 + 320D3ρ+D2(2336ρ2 − 851ρ)
]
.

(B69)

Now we define

W =− 2336ρ+ 851− 320D + (106ρ+ 32)D2

+ (128ρ2 − 8ρ)D3 − 16ρ2D4 − 6ρ3D5 − 2ρ4D6,

(B70)

so that by Lemma 23

CL0 + CM(CL1 + CR1) ≥ ρD2W (B71)

for D ≥ 5, and, leaving aside the special case where this fails, it is enough to show that W

is non-negative. For the moment we shall assume that D ≥ 5, and return to the special cases

excluded by this at the end.

38

Now we rewrite W in terms of R and D, reversing the substitution ρ = 2
R+D+2 , and simplify

to obtain

W =(32D2 − 320D + 851)R6 + (112D3 − 812D2 + 844D + 2136)R3

+ (80D4 − 100D3 − 534D2 − 1272D − 7608)R2

+ (−96D5 + 700D4 + 1660D3 − 5384D2 − 25456D − 28832)R

− 128D6 + 212D5 + 1931D4 − 56D3 − 15640D2 − 33952D − 23760.

(B72)

Next we split the argument into two cases: R/D ≥ 10 and R/D < 10. For the former, we

note that the sum of the R3 and R terms in W exceeds

11200D5 − 81200D4 + 84400D3 + 213600D2 − 95D5 + 700D4

+ 1660D3 − 5384D2 − 25456D − 28832

= 11105D5 − 80500D4 + 86060D3 + 208216D2 − 25456D − 28832, (B73)

which is positive for D ≥ 5. The sum of the R6, R2 and constant terms in R and in W (B70)

exceeds

320000D6−3200000D5+8510000D4+8000D6−10000D5−53400D4−127200D3−760800D2

− 128D6 + 212D5 + 1931D4 − 56D3 − 15640D2 − 33952D − 23760

≥ 327D6−3210D5+8450D4−128D3−780D2−34D−24 ≥ 550D4−128D3−780D2−35D−24,

(B74)

which is again positive in the range D ≥ 5.

Now we consider the case R/D < 10. We rewrite W in terms of R/D and split it into two

39

parts:

P1 =

[
32

(
R

D

)4

+ 112

(
R

D

)3

+ 80

(
R

D

)2

− 96

(
R

D

)
− 128

]
D6

+

[
−320

(
R

D

)4

− 812

(
R

D

)3

− 100

(
R

D

)2

+ 700

(
R

D

)
+ 212

]
D5

+

[
851

(
R

D

)4

+ 844

(
R

D

)3

− 534

(
R

D

)2

+ 1660

(
R

D

)
+ 1931

]
D4.

(B75)

P2 =

[
2136

(
R

D

)3

− 1272

(
R

D

)2

− 5384

(
R

D

)
− 56

]
D3

+

[
−7608

(
R

D

)2

− 25456

(
R

D

)
− 15640

]
D2 +

[
−28832

(
R

D

)
− 33952

]
D − 23760. (B76)

It is simple to check that P1 is positive for all R/D < 10, R ≥ 9, D ≥ 5, and that P2 is positive

provided in addition R/D > 3.3. Thus W is positive provided 3.3 < R/D < 10, R ≥ 9, D ≥ 5.

The details are given in Appendix V of [30]. Apart from a few values that can be checked by

hand, then, it remains to show the result for R/D < 3.3.

We next write

W = Q1D
6 +Q2D

5 +Q3D
4 +Q4D

3 +Q5D
2 +Q6D − 23760, (B77)

where

Q1 = 32

(
R

D

)4

+ 112

(
R

D

)3

+ 80

(
R

D

)2

− 96

(
R

D

)
− 128;

Q2 = −320

(
R

D

)4

− 812

(
R

D

)3

− 100

(
R

D

)2

+ 700

(
R

D

)
+ 212;

Q3 = 851

(
R

D

)4

+ 844

(
R

D

)3

− 534

(
R

D

)2

+ 1660

(
R

D

)
+ 1931;

Q4 = 2136

(
R

D

)3

− 1272

(
R

D

)2

− 5384

(
R

D

)
− 56;

Q5 = −7608

(
R

D

)2

− 25456

(
R

D

)
− 15640;

Q6 = −28832

(
R

D

)
− 33952.

(B78)

We note that Q1, Q3, Q4 are increasing functions and that Q2, Q5, Q6 are decreasing functions

40

of R/D. In turn we replace R/D by each of 1.1, 1.2, 1.3, . . . , 3.2 in the increasing functions

and respectively, by 1.2, 1.3, 1.4 . . . , 3.3 in the decreasing ones to give worst case estimates over,

respectively, each of the intervals

[1.1, 1.2], [1.2, 1.3], [1.3, 1.4], . . . , [3.2, 3.3]. (B79)

It can be shown that, in each case, W given by (B77) is increasing (and therefore clearly positive)

by repeated differentiation and checking for positivity of the derivatives at the endpoint D = 14.

The details are given in Appendix VI of [30].

Finally we consider the case when R/D < 1.1. We rewrite W in terms of R and y = D/R

as follows

W = 32y2R8 − 320yR7 + (851 + 112y3 + 80y4 − 96y5 − 128y6)R6

+ (−812y2 − 100y3 + 700y4 + 212y5)R5 + (844y − 534y2 + 1660y3 + 1931y4)R4

+ (2136− 1272y − 5384y2 − 56y3)R3 + (−7608− 25456y − 15640y2)R2

+ (−28832− 33952y)R− 23760. (B80)

For each coefficient of a power of R, we again consider the worst case, by replacing y by 1 if

that coefficient is decreasing in y over the interval [1/1.1, 1], and by 1/1.1 if that coefficient is

to increasing over that interval. We collect the first two terms (R7 and R8) together and note

that this is increasing in y for any R ≥ 8. The result is that

W ≥ 32

(1.1)2
R8− 320

1.1
R7+800R6−136.5R5+2892R4−4576R3−48704R2−62784R−23760.

(B81)

It can be shown that this is increasing (and therefore clearly positive) by repeated differentiation

and checking for positivity of the derivatives at the endpoint 1/1.1 The details are given in

Appendix VII of [30].

There only remain a fairly small finite number of cases for small values of R and D. Each

of these have been checked using Maxima. We give the details in Appendix VII of [30] for all of

41

the special cases, D = 2, 3, 4. This completes the proof!

References

[1] V. Abramov, S. Li, M. Wang, E. W. M. Wong, and M. Zukerman. Computation of blocking

probability for large circuit switched networks. IEEE Communications Letters. to appear.

[2] G. R. Ash and B. D. Huang. An analytical model for adaptive routing networks. IEEE

Transaction on Communiations, 41(11):1748–1759, November 1993.

[3] E. Brockmeyer. The simple overflow problem in the theory of telephone traffic. Teleteknik,

5:361–374, 1954.

[4] S. P. Chung, A. Kashper, and K. W. Ross. Computing approximate blocking probabil-

ities for large loss networks with state-dependent routing. IEEE/ACM Transactions on

Networking, 1(1):105–115, 1993.

[5] R. B. Cooper and S. Katz. Analysis of alternate routing networks with account taken of

nonrandomness of overflow traffic. Memo., Bell Telephone Lab., 1964.

[6] D. Deloddere, W. Verbiest, and H. Verhille. Interactive video on demand. IEEE Comuni-

cations Magazine, 32(5):82–88, May 1994.

[7] A. A. Fredericks. Congestion in blocking systems – a simple approximation technique. Bell

Syst. Tech. J., 59(6):805–827, 1980.

[8] A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley, 1990.

[9] A. Harel. Sharp and simple bounds for the Erlang delay and loss formulae. Queueing

Systems, 64:119–143, 2010.

[10] P. J. Hunt and F. P. Kelly. On critically loaded loss networks. Advances in Applied

Probability, 21:831–841, 1989.

[11] D. L. Jagerman. Methods in traffic calculations. AT&T Bell Laboratories Technical Journal,

63(7):1283–1301, Sep. 1984.

42

[12] F. P. Kelly. Reversibility and Stochastic Networks. Wiley, Chichester, 1979.

[13] F. P. Kelly. Blocking probabilities in large circuit-switched networks. Advances in Applied

Probability, 18:473–505, June 1986.

[14] F. P. Kelly. Loss networks. The Annals of Applied Probability, 1(3):319–378, August 1991.

[15] L. Kosten. On the blocking probability of graded multiples. Nachrichtentech. Elek., 14:5–12,

Jan. 1937.

[16] A. Kuczura. The interrupted Poisson process as an overflow process. Bell Syst. Tech. J.,

52(3):437–448, 1973.

[17] A. Kuczura and D. Bajaj. A method of moments for the analysis of a switched communica-

tion network’s performance. IEEE Transactions on Communications, COM-25(2):185–193,

February 1977.

[18] D. Mitra. Asymptotic analysis and computational methods for a class of simple circuit-

switched networks with blocking. Advances in Applied Probability, 19:219–239, March 1987.

[19] D. Mitra, J. A. Morrison, and K. G. Ramakrishnan. ATM network design and optimization:

a multirate loss network framework. IEEE/ACM Transactions on Networking, 4(4):531–

543, August 1996.

[20] C. Pearce and R. M. Potter. Some formulae old and new for overflow traffic in telephony.

Australian Telecommunication Research, 11:92–97, 1977.

[21] R. M. Potter. Explicit formulae for all overflow moments in Kosten and Brockmeyer system

with renewal input. Australian Telecommunication Research, 13:39–49, 1980.

[22] K.-T. Ko Q. Huang and V. B. Iversen. Approximation of loss calculation for hierarchical

networks with multiservice overflows. IEEE Trans. Commun., 56(3):466–473, Mar. 2008.

[23] G. Raskutti, A. Zalesky, E. W. M. Wong, and M. Zukerman. Enhanced blocking probability

evaluation method for circuit-switched trunk reservation networks. IEEE Communications

Letters, 11(6):543–545, June 2007.

43

[24] R. Syski. Introduction to Congestion Theory in Telephone Systems, volume 4 of North

Holland Studies in Telecommunications. Elsevier Science Publishers B. V., 2nd edition,

1986.

[25] E. A. van Doorn and A. T. K. Ta. Proofs for some conjectures of Rajaratnam and

Takawira on the peakedness of handoff traffic. IEEE Transactions on Vehicular Technology,

52(4):953–957, 2003.

[26] W. Whitt. Blocking when service is required from several facilities simultaneously. AT&T

Tech. J., 64(8):1807–1856, Oct. 1985.

[27] R. I. Wilkinson. Theories of toll traffic engineering in the U.S.A. The Bell System Technical

Journal, 35(2):421–514, March 1956.

[28] E. W. M. Wong, J. Baliga, M. Zukerman, A. Zalesky, and G. Raskutti. A new method for

blocking probability evaluation in OBS/OCS networks with deflection routing. Journal of

Lightwave Technology, 27(23):5335–5347, 2009.

[29] E. W. M. Wong, M. Y. M. Chiu, Z. Rosberg, M. Zukerman, S. Chan, and A. Zalesky.

A novel method for modeling and analysis of distributed video on demand systems. In

Proceedings of IEEE ICC 2005, volume 1, pages 88–92, May 2005.

[30] E. W. M. Wong, B. Moran, A. Zalesky, Z. Rosberg, and M. Zuker-

man. A Proof of the OPC Conjecture (extended version). Avaiable online:

<http://www.ee.cityu.edu.hk/∼ewong/opc/proof of the opc conjecture.pdf>.

[31] E. W. M. Wong and T. S. Yum. Maximum free circuit routing in circuit-switched networks.

In Proceedings of IEEE INFOCOM ’90, volume 3, pages 934–937, June 1990.

[32] E. W. M. Wong, A. Zalesky, Z. Rosberg, and M. Zukerman. A new method for approximat-

ing blocking probability in overflow loss networks. Computer Networks, 51(11):2958–2975,

2007.

[33] A. Zalesky, H. L. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman. Stabilizing deflection

routing in optical burst switched networks. IEEE Journal on Selected Areas in Communi-

cations, supplement on optical communications and networking, 25(6):3–19, August 2007.

44

[34] I. B. Ziedins and F. P. Kelly. Limit theorems for loss networks with diverse routing. Advances

in Applied Probability, 21(4):804–830, December 1989.

45

