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Abstract—We consider a circuit-switched network with non-
hierarchical alternate routing and trunk reservation involving
two types of connections that are modeled as long-lived and short-
lived calls. The long-lived calls can be reserved well in advance
and the short-lived calls are provided on demand. Therefore,
we assume that the long-lived calls have strict priority over the
short-lived ones. We develop approximations for the estimation of
the blocking probability based on the quasi-stationary approach
in two ways. One uses the Erlang fixed-point approximation
(EFPA) and the other uses the overflow priority classification
approximation (OPCA). We compare the results of the approxi-
mations with simulation results and discuss the accuracy of the
approximations under different system parameters such as ratio
of offered load, number of links per trunk, maximum allowable
number of deflections and trunk reservation. We also discuss the
robustness of the quasi-stationary approximation to the ratio of
the mean holding times of the long-lived and short-lived calls as
well as that of EFPA and OPCA to the shape of the holding time
distribution. Finally, we demonstrate that OPCA can be applied
to a large network such as the Coronet.

Index Terms—blocking probability, circuit switching, alternate
routing, trunk reservation, Erlang fixed-point approximation,
overflow priority classification approximation, quasi-stationary
approximation, OFS

I. INTRODUCTION

Circuit switching has been widely used in telephony and
it is envisaged that it will have a renewed and important
role in future optical networks [1]–[5]. Circuit switching
normally does not require buffering, which is very costly in the
optical domain. If the traffic on a circuit-switched network is
sufficiently heavy and it is well managed, such a network can
guarantee quality of service (QoS) to customers in a way that
can lead to efficient trunk utilization and low consumption
of energy per bit [6]. In the core Internet, where traffic is
heavily multiplexed, it is easier to achieve high utilization and
therefore the role of circuit switching at the core is clearly
important. Circuit switching can also lead to a green and
efficient operation end-to-end for large bursts of data if the
amount of data to be transmitted is known in advance.

Circuit-switched networks may encounter traffic overload
situations when the offered traffic exceeds the network capac-
ity, and in such situations, there is a need to reject (block, or
drop) new calls. The proportion of blocked traffic is defined
as blocking probability. Such blocking (or dropping) has
adverse implication on QoS perceived by users and therefore
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blocking probability should not exceed a certain predetermined
values. For over a century, operators have considered blocking
probability as a key performance measure for circuit switched
network design and dimensioning. In today’s competitive en-
vironment, limiting blocking probability is clearly important.

To reduce blocking probability in circuit-switched networks,
various approaches for dynamic or alternate routing have been
studied [7]–[9], where new calls that cannot be admitted by
their primary routes may overflow to other routes that may
be more costly in terms of the use of network resources. The
use of more and more costly alternate routes may adversely
affect blocking probability. Therefore, the number of allowable
overflow attempts by a particular call may be limited, so a call
is blocked after a finite number of alternate routes attempts.

While traffic flows are transmitted optically on the data
plane, the configuration of an optical cross connect (OXC)
is done by an electronic control unit. The control units of
different OXCs can also communicate with each other and
compose the control plane, which is responsible for lightpath
set up and tear down, as well as routing, label distribution
and state dissemination using protocols such as GMPLS and
RSVP-TE [10].

A circuit-switched network with alternate routing, under the
assumptions of Poisson call arrivals for any source destination
(SD) pair and exponential call holding times, can be modeled
as a Markovian overflow loss network. The transition rates
between states of a trunk are obtained considering arrival and
departure rates of connections on their primary path and those
that overflow to the trunk from other fully occupied trunks.
The stationary occupancy distribution can, in principle, be
obtained by a numerical solution of the steady-state equations
of a multidimensional Markov process. Such models usually
do not admit product-form solutions [11] and are not amenable
to analysis that lead to a scalable solution for realistic size net-
works. Therefore accurate, robust and scalable approximations
are important.

Circuit-switched networks with alternate routing can be
classified into two classes: hierarchical and non-hierarchical.
In hierarchical networks, the trunks are ranked into several
tiers. New calls first attempt to access trunks from the lowest
tier, if rejected, they overflow and attempt to access trunks
from higher tiers. For hierarchical networks, accurate blocking
probability approximations can be obtained using moment
matching approaches [12], [13].

A more difficult problem is to accurately approximate block-
ing probabilities in non-hierarchical networks with mutual
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overflows [7], where congestion on a specific trunk causes
overflow to the other trunks, and where this overflow loads up
the other trunks so that they in turn yield overflow back to
the original trunk. Clearly, in such non-hierarchical systems,
load dependencies may be much stronger than in hierarchical
systems that do not have mutual overflow, and modeling
involving independence assumptions is more likely to lead to
significant errors. Despite wide applicability and importance,
and a century-long research effort, no robust and generic
methodology is available for approximation of the blocking
probability of general non-hierarchical networks that captures
their overflow-induced state dependencies in a scalable way,
except for studies for particular applications [14]–[16].

One simple and commonly used approach for approxima-
tion of blocking probabilities in non-hierarchical networks
is the Erlang fixed-point approximation (EFPA) [9], [17]–
[20], proposed by Cooper and Katz [21] in 1964. It is based
on decoupling a given system into independent subsystems,
each of which is modeled by an M/M/K/K queueing system.
Convergence and uniqueness of solutions of EFPA is not
always guaranteed [9], [22]. Despite its popularity, EFPA
is known to introduce two types of errors, Poisson error
and independence error [23]. Various attempts to address the
errors include [21], [24] that provided means to reduce the
Poisson error by moment matching and [25] that tackled
the independence error by capturing the correlation between
trunks.

In recent years, we have developed a new method called
overflow priority classification approximation (OPCA) [23],
[26]–[28] that can either improve or complement EFPA to
achieve more accurate blocking probability approximations for
circuit switched networks with alternative routing.

In this paper, we retain the assumption that holding times are
independent and follow identical exponential distribution as
in most of the published work on analysis of circuit-switched
networks. However, we assume that the calls are classified
into two types, long-lived (static) and short-lived (dynamic),
where the holding times of the long-lived calls are significantly
larger than those of the short-lived calls. This assumptions is
justified by the fact that the variations in holding times in
circuit switched optical networks can be significant. Permanent
or semi-permanent connections between major cities or data
centers [1], that are used to serve many flows of many users
over a long period of time, can be considered as (long-
lived) calls where the holding time can be in terms of hours.
Examples of such long-lived connections can also include
circuit switched connections in the Large Hadron Collider
(LHC) network [2], which can be modeled as long-lived calls.
On the other hand, on-demand dynamic connections between
individual SD pairs of users in the order of seconds or less
may be classified as short-lived calls. Classification of calls
to long-lived and short-lived have been discussed in various
papers (e.g. [29], [30], [31], [32]).

Long-lived connections are likely to have priority over the
short-lived ones, as long-lived connections can be booked
well in advance, so it is reasonable to assume that their
performance will not be affected by the loading of the short-
lived ones. Furthermore, long-lived connections between major

cities or data centers carry traffic from many users, so it
is justifiable for them to have preemptive priority over the
short-lived ones. Otherwise, the long-lived connections have
to compete with the much more frequent short-lived demands
in the same pool of resources, so their blocking probability
will increase significantly, which will be detrimental to the
many customers they serve. Such priority is also likely to be
given to connections that serve the large data bursts generated
by the LHC [2] which were the key reason for the design of
the LHC network. Then lower priority short-lived connections
can share the remaining capacity.

These assumptions justify the use of the so-called quasi-
stationary approximation [33]–[35] that are suitable in the
cases where changes in system states observed by one type
of traffic, due to changes in other traffic type(s), are rare.

To the best of our knowledge, the problem of blocking
probability evaluation of circuit switched networks with alter-
nate routing and multiple priorities assigned to short-lived and
long-lived calls has not been studied before. In this paper we
apply both OPCA and EFPA to evaluate blocking probability
of the two traffic types in circuit-switched network with
alternate routing. We compare between the results obtained
against simulation benchmarks and explain their performance
in various different scenarios and parameter ranges. Then we
discuss the insight gained into performance tradeoffs as well
as design and dimensioning implications.

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a detailed description of our network model
and define notation and basic concepts. Next, in Section III,
we provide algorithms based on EFPA and OPCA to evaluate
the blocking probability of the model. Then, in Section IV, we
provide numerical results over a wide range of parameters for
two network topologies (fully meshed and NSF) and discuss
performance and design implications. Finally, the paper is
concluded in Section V.

II. THE MODEL

We consider a circuit-switched network described by a
graph G(N,E) where N is a set of n nodes and E is the set
of e arcs. The e arcs correspond to trunks where trunk i ∈ E
carries C(i) links. The N nodes are designated 1,2,3, . . . ,N,
each of them has circuit switching capabilities. We assume
that all the nodes have full wavelength conversion capabilities
and can switch traffic from any link on one trunk to any other
link on an adjacent trunk.

In the context of a core WDM network, a wavelength
channel can be viewed as a link. In this case, trunk i ∈ E
is composed of f (i) fibers, each of which supports w(i)
wavelengths. Accordingly, trunk i ∈ E carries C(i) = f (i)w(i)
wavelength channels called links. However, if the WDM
network is further extended to the metropolitan or local areas, a
link can have a sub-wavelength capacity [36]. The assumption
above that all nodes can switch traffic from any link on
one trunk to any other link on another trunk, in the WDM
context implies that we assume that all switches have full
wavelength conversion capabilities. In principle, our model
can be extended to exclude this assumption, as we can, in our
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model, split every switch and trunk to multiple “sub-switches”
and “sub-trunks” each of which is dedicated to one color
wavelength. Then increase the number of allowable alternate
routes by a factor of the number of wavelengths. However, this
implies a significant increase in the computational complexity
of our solutions as the graph that describes the network and
the number of alternate routes significantly increase. Katib
and Medhi [37] studied by simulations the tradeoff between
alternate routing and the number of converters for single
priority networks. The focus of this paper is on developing
accurate approximations for blocking probability for networks
with alternate routing and long-lived and short-lived calls.

Let Γ be a set of directional Source-Destination (SD) pairs.
Every directional SD pair m ∈ Γ, is defined by its end-nodes.
Thus, m = {s,d} ∈ Γ represents the directional SD pair s to
d. We will distinguish between the term SD pair which is an
unordered set of the two endpoints: Source and Destination,
and the directional SD pair that refers to the ordered set:
Source-Destination.

The calls are classified according to their priority p (p =
1,2). Long-lived calls (p = 1) have preemptive priority over
short-lived calls (p = 2). For each directional SD pair m ∈ Γ,
calls of priority p arrive according to a Poisson process
with arrival rate λ(m, p) [38]. The holding times of calls are
assumed exponentially distributed with mean 1/µ(m, p) [39].
We assume that holding times are exponentially distributed for
tractability. However, it is well known that in loss systems,
blocking probability is highly insensitive to the shape of the
holding time distribution and only dependent on the mean
value of the holding times. This has been proven for the
M/G/K/K system. In Section IV, we have also demonstrated
numerically that the blocking probability of our model is also
insensitive to the shape of the holding times in Subsection
IV-I. Let

ρ(m, p) =
λ(m, p)
µ(m, p)

be the offered traffic (measured in erlangs) for directional SD
pair m. We set

ρ(p) = ∑
m∈Γ

ρ(m, p).

A route between source s and destination d is the sequence
of trunks associated with the corresponding arcs in the path
between s and d in G(N,E). A path between s and d comprises
a sequence of trunks – one on each trunk on the route between
s and d.

It is very likely that for a directional SD pair m ∈ Γ, there
are multiple routes between the source and the destination that
do not share a common trunk. Such routes are often called
edge-disjoint paths or disjoint paths [40]–[42]. Edge-disjoint
alternate routing is often used to achieve load balancing in
optical and other networks [43], [44]. Although using disjoint
paths has benefit in reducing blocking probability, non-disjoint
paths are often used in practice. Our approximation methods
are also applicable to the cases where paths are not disjoint.
However, at this stage the strong dependency between trunks
in this case which may increase network blocking probabil-
ity causes our approximation methods to underestimate the
blocking probability. Development of algorithms to improve

accuracy in the case of non-disjoint paths is still an open
problem. In this paper, we only consider disjoint paths in the
numerical examples presented in Section IV.

For each m ∈ Γ, we designate a route with the least number
of hops as the primary path U(m,0) of the directional SD
pair m. If there are multiple routes with the least number of
hops, for tractability, the choice is made randomly with equal
probabilities. Also, in practice, it may have the advantage
of keeping the routing table unchanged. Then considering
a new topology where the trunks of the primary path are
excluded, the first alternative path for m is chosen to minimize
the number of hops in the new topology. Again, a tie is
broken randomly. Therefore, all the paths for m, including one
primary path and several alternative paths, are edge-disjoint.
Let Tm be the maximum number of available alternative paths a
directional SD pair m can have based on the network topology.

Furthermore, a maximal number D of overflow attempts to
alternate paths are set for calls from all directional SD pairs
in Γ. Setting the limit D, implies that a call of the directional
SD pair m, can only use

T (m) = min{Tm,D}

alternative paths. Therefore, before a call is blocked, the
procedure continues until all available and allowable T (m)
routes are attempted.

It is convenient to maintain the entire set

{U(m,0),U(m,1), . . . ,U(m,T (m))}

of alternative routes for the directional SD pair m∈ Γ in which
U(m,0) is the primary path and U(m,d) is the dth alternate
path. This allows for cases where D does not limit the number
of usable alternative path.

In our model, the ranking of alternative paths is based on
the number of hops and in the case of equality in the number
of hops, the rank is chosen randomly. Based on our ranking,
if d(u)> d(v) then the number of hops of U(m,d(u)) is equal
or higher than the number of hops in U(m,d(v). However, in
practice, other cost functions (e.g. geographic distance) can be
also used for the ranking.

If a request for a call arrives at source node s to the
destination node d, and capacity is available on all trunks of
the primary path U({s,d},0), then this primary path will be
used for the transmission of this call.

An arriving call of any type can use any free link on any
trunk. When a long-lived call arrives, it can obtain a path on
the primary path if no trunk of its primary path has all the
links used by long-lived calls. In this case, if it finds all the
links in any trunk on its primary path busy, it will preempt a
randomly chosen short-lived call. Then the preempted short-
lived call will release its resource to the long-lived call and
overflow to its next alternate path. If the arriving high priority
long-lived call finds that all the links are occupied by higher
priority calls on at least one of the trunks of the primary path,
it will attempt a route on the first alternate path. In such a case,
the long-lived call is said to be overflowed from its primary
path and to attempt its first alternate path. The same procedure
is repeated until the long-lived call exhausts all its D alternate
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path attempts. Then if it still cannot obtain a path the call will
be blocked and cleared of the network.

When a short-lived call arrives, it can obtain a path on the
primary path if no trunk of its primary path has all the links
used by either long-lived or short-lived calls. Otherwise it will
overflow to its first alternate path. Again, the same procedure
is repeated. If it is not able to obtain a path in its D alternate
path attempts, the call is blocked and cleared of the network.

We realize that call reattempts can affect blocking proba-
bility. However, normally our intention is to dimension the
network so that the blocking probability is maintained below
a certain small value. In this case, the proportion of call
reattempts out of the total arriving calls is small and their
effect on the blocking probability is negligible.

Considering stability of the network, and recognizing that
less resources are used by a call that uses its primary path,
priority is given to such calls. To facilitate such priority, a
certain number of unoccupied links are reserved for calls
attempting their primary path. In particular, if the number of
links occupied on trunk j is greater than or equal to a given
reservation threshold RT ( j, p), the overflowed calls of priority
p are not allowed to use that trunk. In the paper, we use trunk
reservation to reserve certain number of links to primary path
calls to avoid large number of overflowed calls in the network
which may cause instability. In all the numerical examples
that are presented in the paper (excluding the case of the large
Coronet network discussed in Subsection IV-K), both EFPA
and OPCA have converged to a unique solution.

III. BLOCKING PROBABILITY APPROXIMATIONS

In this section we describe the approximations we use for
blocking probability evaluation for the long-lived and short-
lived calls. We use the term 0-call for a call transmitted on
its primary path, and the term d-call for a call transmitted on
its dth alternate path, for d = 1,2, . . . ,T (m). Accordingly, the
term (d,m, p)-call refers to a d-call of priority p, p = 1,2 and
directional SD pair m, in which for long-lived traffic p = 1
and for short-lived traffic p = 2. Assume that the arrivals of
the (d,m, p)-calls follow a Poisson process with rate a(d,m, p)
and the arrivals of the (d,m, p)-calls at trunk j ∈U(m,d) also
follow a Poisson process with rate a(d,m, p, j). And if j is the
first trunk on the path of the (d,m, p)-calls, then a(d,m, p, j) =
a(d,m, p). Let b(d, j, p) be the blocking probability for priority
p d-calls on trunk j ∈ E .

The (d,m, p)-calls occur only when (d− 1,m, p)-calls are
blocked. Therefore, we have

a(d,m, p) = a(d−1,m, p)(1− ∏
j∈U(m,d−1)

(1−b(d−1, j, p)))

(1)
and a(0,m, p) = ρ(m, p). For a particular trunk along the path
j ∈U(m,d), we have

a(d,m, p, j) = a(d,m, p)
∏i∈U(m,d)(1−b(d, i, p))

1−b(d, j, p)
(2)

for d = 0,1, . . . ,T (m). For d > T (m) or j /∈ U(m,d),
a(d,m, p, j) = 0.

Let a(d, j, p) be the total offered load of priority p d-calls,
on trunk j. They are related with a(d,m, p, j) by

a(d, j, p) = ∑
m∈Γ

a(d,m, p, j). (3)

Also, let ã(d, j, p) be the total offered load of priority p
calls that include 0-calls, 1-calls, 2-calls . . . d-calls, on trunk
j. The variables ã(d, j, p) and a(d, j, p) are related by

ã(d, j, p) =
d

∑
i=0

a(i, j, p). (4)

Since long-lived traffic has preemptive priority over short-
lived traffic, the blocking probability of higher priority long-
lived traffic can be evaluated as if it were alone in the network.
In other words, it is sufficient to consider a network with a
single class of traffic and apply EFPA and OPCA directly to it
for the estimation of blocking probability of long-lived traffic.
For lower priority short-lived traffic, the available capacity
is the leftover of long-lived carried traffic and therefore the
blocking probability of short-lived calls in a trunk is dependent
on the number of links occupied by long-lived calls in the
trunk. To evaluate the blocking probability of the short-lived
traffic, we use quasi-stationary approximation in both EFPA
and OPCA and calculate the conditional blocking probabil-
ity of short-lived traffic for each state of long-lived traffic
occupancy and then compute the weighted average of these
probabilities using the stationary distribution of the long-lived
traffic link occupancy.

TABLE I. Summary of Notation

d-call a call transmitted on its dth alternate path
(d,m, p)-call d-call of priority p (p = 1,2) and directional SD pair m
ρ(m, p) offered load of SD pair m and priority p
a(d,m, p) offered load of (d,m, p)-calls
a(d,m, p, j) offered load of (d,m, p)-calls on trunk j
a(d, j, p) total offered load of priority p d-calls on trunk j
ã(d, j, p) total offered load of priority p up to d-calls on trunk j
b(d, j, p) blocking probability for priority p d-calls on trunk j
B(m, p) blocking probabilities for priority p traffic from SD pair m
B(p) network blocking probability for priority p traffic

A. EFPA

To obtain the estimation of the network blocking probability
for the long-lived traffic by EFPA, we begin by setting
initial randomly chosen Uniform[0,1) values to trunk blocking
probabilities and the probability that a call is admitted on a
trunk is 1 minus the trunk blocking probability. With these
initial values, we treat the trunks as if they were independent
and the probability that a call is admitted to the primary path
is the product of probabilities that a call is admitted to all the
individual trunks along the path. The primary path blocking
probability is 1 minus the probability that a call is admitted to
the path. The carried traffic on the primary path for a particular
SD pair is the unblocked proportion of the offered traffic,
which is also the carried traffic on each trunk along the path
attributed to this SD pair. Accordingly, the offered load of the
SD pair to a trunk is obtained by the carried traffic attributed to
that SD pair divided by 1 minus the trunk blocking probability.
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The traffic overflowed to the first alternative path is the
traffic offered to the primary path, multiplied by the primary
path blocking probability and, in the same way, traffic offered
to other alternative paths can also be obtained. Having obtained
the traffic offered to every SD pair that uses the trunk, the total
traffic offered to the trunk is their sum. Then, we calculate
the steady-state probabilities of each trunk in the network and
update the trunk blocking probabilities with the ones obtained
based on the state probabilities. All these steps compose
one iteration of the fixed-point equations. The iterations will
continue until the difference of the trunk blocking probabilities
of successive two iterations is less than a given value. Hav-
ing obtained the trunk blocking probabilities, we can obtain
network blocking probability for the long-lived traffic.

Let q( j,1, i) be the steady-state probability of having i links
busy by long-lived traffic in trunk j. We evaluate the trunk
state probability q( j,1, i), for each j and i ∈ {1, . . . ,C( j)} by

q( j,1, i) =

(
a(0, j,1)+1{RT ( j,1)> i−1}

D

∑
n=1

a(n, j,1)

)
×q( j,1, i−1)/i, (5)

where 1{} is the indicator function and q( j,1,0) is set such
that ∑C( j)

i=0 q( j,1, i) = 1 is satisfied. The blocking probability,
for the long-lived traffic with d overflows, on trunk j is
estimated by

b(d, j,1) =

{
q( j,1,C( j)) d = 0,

∑C( j)
i=RT ( j,1) q( j,1, i) d ≥ 1.

(6)

To evaluate the blocking probability for the lower priority
short-lived traffic, we use the quasi-stationary approximation
(in the sense of [33]–[35], [45]). Such an approximation is
often used when the variations in system state observed by
one type of traffic are very rare. In our case, as the holding
times of long-lived calls are far longer than those of the
short-lived calls, so that short-lived calls only rarely observe
changes in their service rate during their holding time and
can approximately reach steady-state while the number of
long-lived calls remains unchanged. Under such conditions,
accurate approximation for the blocking probability for the
short-lived calls can be obtained by computing the short-
lived traffic blocking probability for each state of the long-
lived traffic trunk occupancy and then computing the weighted
average of these probabilities using the stationary distribution
of the long-lived traffic trunk occupancy. A more detailed
description of this approximation for our case follows.

To obtain the network blocking probability approximation
for the short-lived traffic by EFPA, the procedure is similar to
that for the long-lived traffic. The difference is the steady-state
probabilities and the blocking probabilities of the short-lived
traffic are conditional on the number of links that are occupied
by the long-lived calls on that trunk.

Let b(d, j,k,2) be the blocking probabilities for the short-
lived calls with d overflows for each trunk j when there are
k ∈ {0, . . . ,C( j)} links free in trunk j.

First, set: b(d, j,0,2) = 1, for each d, and also for d =
1,2, . . . ,D, when k ≤C( j)−RT ( j,2), set b(d, j,k,2) = 1.

Next, to evaluate other b(d, j,k, p) values, we evaluate the
trunk state probability q( j,k,2, i) for each trunk j and each
state i ∈ {1, . . . ,k} using

q( j,k,2, i) =

(
a(0, j,2)+1{R( j,k)> i−1}

D

∑
n=1

a(n, j,2)

)
×q( j,k,2, i−1)/i, (7)

where R( j,k) = RT ( j,2)+k−C( j) and q( j,k,2,0) is set such
that ∑k

i=0 q( j,k,2, i) = 1 is satisfied.
Then we obtain

b(d, j,k,2) =


1 k = 0 or R( j,k)≤ 0,
q( j,k,2,k) d = 0 and R( j,k)> 0,

k

∑
i=R( j,k)

q( j,k,2, i) d ≥ 1 and R( j,k)> 0.

(8)
The blocking probability, for the short-lived traffic with d

overflows, on trunk j is estimated by

b(d, j,2) =
C( j)

∑
i=0

q( j,1, i)×b(d, j,C( j)− i,2). (9)

Equations (1) – (9) form a set of fixed-point equations which
can be solved by successive substitutions.

Having obtained the results of the fixed-point equations, we
calculate the blocking probabilities for the long-lived traffic
(p = 1) and short-lived traffic (p = 2) from SD pair m by

B(m, p) = 1−
D

∑
d=0

a(d,m, j, p)(1−b(d, j, p))/ρ(m, p), (10)

where j is the last trunk in the route for the calls of SD pair
m that overflow d times. Let B(p) be the network blocking
probability for long-lived traffic (p = 1) and short-lived traffic
(p = 2), which is the average of blocking probabilities of all
SD pairs, weighted by their offered load.

B(p) = ∑
m∈Γ

B(m, p)×ρ(m, p)/ ∑
m∈Γ

ρ(m, p). (11)

Algorithm 1 is used to obtain the network blocking proba-
bility B(1) for the long-lived traffic.

The relative error is a parameter, set to measure the dif-
ference of the substitution results and the iteration will stop
when

∑
j∈E

|b(d, j,1)− b̂(d, j,1)|< error. (12)

In this paper, we set

error = 10−8. (13)

Algorithm 2 describes the computation of the network
blocking probability for the short-lived traffic which is depen-
dent on the state probability q( j,1, i) computed by Algorithm
1.

EFPA is known to introduce two types of errors:
1) The Poisson error — EFPA assumes that the traffic

offered to any trunk follows a Poisson process whereas
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Algorithm 1 Compute B(1) and q( j,1, i) by EFPA

Require: ρ(m,1) for m ∈ Γ
initial: b(d, j,1) ← 0, b̂(d, j,1) ← 1 for j ∈ E , d ∈
{0, . . . ,D}
while ∑d∈{0,...,D}∑ j∈E |b(d, j,1)− b̂(d, j,1)|> error do

for j ∈ E , d ∈ {0, . . . ,D}, m ∈ Γ do
b̂(d, j,1)← b(d, j,1)
compute a(d,m,1) in Eq. (1)
compute a(d,m, j,1) in Eq. (2)
compute a(d, j,1) in Eq. (3)
for i ∈ {1, . . . ,C( j)} do

compute q( j,1, i) in Eq. (5)
end for
compute b(d, j,1) in Eq. (6)

end for
end while
for m ∈ Γ do

compute B(m,1) in Eq. (13)
end for
compute B(1) in Eq. (11)

Algorithm 2 Compute B(2) by EFPA

Require: ρ(m,1), ρ(m,2) for m ∈ Γ, q( j,1, i) for j ∈ E and
i ∈ {1, . . . ,C( j)}
initial: b(d, j,2) ← 0, b̂(d, j,2) ← 1 for j ∈ E , d ∈
{0, . . . ,D}
while ∑d∈{0,...,D}∑ j∈E |b(d, j,2)− b̂(d, j,2)|> error do

for j ∈ E , d ∈ {0, . . . ,D}, m ∈ Γ do
b̂(d, j,2)← b(d, j,2)
compute a(d,m,2) in Eq. (1)
compute a(d,m, j,2) in Eq. (2)
compute a(d, j,2) in Eq. (3)
for k ∈ {1, . . . ,C( j)}, i ∈ {1, . . . ,k} do

compute q( j,k,2, i) in Eq. (7)
compute b(d, j,k,2) in Eq. (8)

end for
compute b(d, j,2) in Eq. (9)

end for
end while
for m ∈ Γ do

compute B(m,2) in Eq. (13)
end for
compute B(2) in Eq. (11)

in fact the traffic offered by an overflow call is known to
have higher variance than a Poisson process [13], when
traffic offered to a sequence of trunks on a path may be
smoothed out when offered to one trunk due to blocking
in another trunk.

2) The independence error — EFPA assumes that trunks
are mutually independent, whereas they are in fact statis-
tically dependent.

As both the Poisson and the independence errors are related
to two effects that are characteristics of circuit switched
networks, namely, an effect associated with overflows and the

effect associated with the fact that a call requires a multi-
hop path to be established. We will henceforth call errors
of EFPA caused by these two effects overflow errors and
path errors. While overflow errors cause underestimation of
blocking probability (ignoring high variance of overflow traffic
and dependence), path error overestimates blocking probability
because it ignores the effect of traffic smoothing, and the
positive correlation of trunk occupancy along the path that
increases the probability to admit calls. These relationships
between the errors and their effects are shown in Table II.

TABLE II. EFPA Errors

Overflow Error Path Error
Poisson Error underestimate overestimate

Independence Error underestimate overestimate

B. OPCA

OPCA works by using a hierarchical surrogate second
system and estimating the blocking probability in the second
system by an EFPA-like algorithm. The surrogate system is
defined by regarding an overflow loss network as if it were
operating under a preemptive priority regime where each call is
classified according to the number of times it has overflowed
and junior calls (calls that experienced less overflows) are
given priority. By giving priority to junior calls, the seniors
calls that have more “information” about busy paths, namely,
paths where at least one trunk is busy (all the links in that
trunk is busy), are preempted and overflowed and these senior
calls will only attempt alternate paths which they did not
visit before. In this way, the surrogate system operates as a
hierarchical network where the traffic is strictly prioritized and
layered according to how many times it overflows. We remind
the reader that the prioritization introduced in the surrogate
system is artificially introduced to obtain a more accurate
approximation and it is not a feature of the real network.

Despite the fact that the surrogate system may be different
from the real system we aim to analyze, the application of
EFPA to the surrogate system can, in many cases, provide
a better blocking probability approximation for the original
problem than the application of EFPA to the original problem
due to the following reasons.

1) OPCA avoids the adverse effects on accuracy of mutual
overflow.

2) OPCA increases the proportion of the 0-calls in the
system and reduces the overflowed traffic. Since 0-calls
do not violate the Poisson and independence assumptions,
increasing the proportion can reduce the Poisson and
independence errors.

3) Having more primary traffic reduces also the indepen-
dence errors.

The procedure of the blocking probability calculation by
OPCA is similar to that of EFPA and the difference between
the two is due to the preemptive priority of the surrogate model
of OPCA. In OPCA, we first solve the fixed-point equations
considering only traffic offered to the primary path that has not
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overflowed yet, and obtain the network blocking probability
for it. Then, we calculate the total traffic comprises the traffic
that has not overflowed and the traffic that has overflowed
once. We again solve the fixed-point equations and obtain the
blocked portion of the total traffic. Subtracting the traffic that
was blocked once in the primary path from the total blocked
traffic, we obtain the traffic that is blocked twice, which gives
the blocking probability for the traffic that has overflowed
once. Blocking probabilities of traffic that has overflowed more
than once are obtained recursively in a similar way.

In the following we provide detailed information on how to
apply OPCA to the present problem of approximating blocking
probability of circuit switched networks for the long-lived and
short-lived traffic.

We begin by evaluating the trunk state probability t(d, j, p, i)
of long-lived traffic (p = 1) for each trunk j, for d deflections
and each state i ∈ {1, . . . ,C( j)} using

t(d, j,1, i)=

(
a(0, j,1)+1{RT ( j,1)> i−1}

d

∑
n=1

a(n, j,1)

)
× t(d, j,1, i−1)/i, (14)

where t(d, j,1,0) is set to satisfy ∑C( j)
i=0 t(d, j,1, i) = 1.

The average blocking probability b̄(d, j,1) on trunk j, for
the long-lived calls with up to and including d overflows, is
estimated by

b̄(d, j,1) =
∑d

n=1

(
a(n, j,1)∑C( j)

i=RT ( j,1) t(d, j,1, i)
)

ã(d, j,1)

+
a(0, j,1)t(d, j,1,C( j))

ã(d, j,1)
(15)

and b̄(0, j,1) is estimated using the Erlang-B formula, i.e.
b̄(0, j,1)=E (a(0, j,1),C( j)). The blocking probability for the
long-lived traffic, for d-overflows calls, on trunk j is estimated
by

b(d, j,1) =

{
b̄(0, j,1) d = 0,
b̄(d, j,1)ã(d, j,1)−b̄(d−1, j,1)ã(d−1, j,1)

a(d, j,1) 1≤ d ≤ D.

(16)
Note that the blocking probability for the unoverflowed calls
is calculated using the Erlang-B formula. Having obtained
the trunk blocking probability b(d, j,1), the network blocking
probability can be computed by equations (13) and (11). Al-
gorithm 3 is used to compute the network blocking probability
for the long-lived traffic.

After calculating all the blocking probabilities for different
layers for the long-lived traffic, we move on to calculate the
blocking probabilities for the short-lived traffic.

Let h( j, i) for i ∈ {1, . . . ,C( j)} and each trunk j be the
probability that there are i number of long-lived calls in trunk
j. So that

h( j, i) =

(
a(0, j,1)+1{RT ( j,1)> i−1}

D

∑
n=1

a(n, j,1)

)
×h( j, i−1)/i (17)

where h( j,0) is set such that ∑C( j)
i=0 h( j, i) = 1 is satisfied.

Let b̄(d, j,k,2) be the blocking probabilities for the short-
lived calls with d overflows for each trunk j when there are
k ∈ {0, . . . ,C( j)} links free in the trunk j. For d = 0,1, . . . ,D,
b̄(d, j,0,2) = 1. For d = 1,2, . . . ,D, when R( j,k) = k−C( j)+
RT ( j,2) ≤ 0, b̄(d, j,k,2) = 1. To evaluate other b̄(d, j,k, p),
we evaluate the trunk state probability t( j,k,d,2, i) for each
trunk j, each state i ∈ {0,1, . . . ,k} and d using

t(d, j,k,2, i)=

(
a(0, j,2)+1{R( j,k)> i−1}

d

∑
n=1

a(n, j,2)

)
× t(d, j,k,2, i−1)/i, (18)

where t(d, j,k,2,0) is set such that ∑k
i=0 t(d, j,k,2, i) = 1 is

satisfied, and t(0, j,k,2,k) is estimated using the Erlang-B
formula, i.e. t(0, j,k,2,k) = E (a(0, j,2),k).

Then we obtain

b̄(d, j,k,2) =


t(0, j,k,2,k) d = 0,

k

∑
i=R( j,k)

t(d, j, i,2, i) d ≥ 1 and R( j,k)> 0,

1 otherwise.
(19)

The averaged blocking probability, for the short-lived traffic
with d overflows, on trunk j is estimated by

b̄(d, j,2) =
C( j)

∑
i=0

h( j, i)× b̄(d, j,C( j)− i,2). (20)

The blocking probability for the short-lived d-calls, on trunk
j is estimated by

b(d, j,2) =

{
b̄(0, j,2) d = 0,
b̄(d, j,2)ã(d, j,2)−b̄(d−1, j,2)ã(d−1, j,2)

a(d, j,2) 1≤ d ≤ D.

(21)
Then the network blocking probability can be computed by

equations (13) and (11). Algorithm 4 is used to compute the
network blocking probability B(2) for the short-lived traffic.

IV. NUMERICAL RESULTS

We begin this section by comparing the performance of
OPCA to the performance of EFPA in approximating the
blocking probability for the long-lived and short-lived traffic
using simulations. The comparison is performed for a 6-
node fully-meshed network and the 13-node National Science
Foundation (NSF) network.

Then, we extend our comparison, to consider a range
of scenarios and parameter values for each scenario. In all
cases considered, we also provide intuitive explanation to the
discrepancies between the two approximations and simulation
results for the blocking probability as it varies according to the
various effects. In particular, we consider traffic effects such
as offered load, and the difference between the two types of
traffic, in terms of the offered load and mean holding times.
The latter is especially important to observe the accuracy and
sensitivity of quasi-stationary approximation.

Finally, we consider design factors such as: the number of
links per trunk, the maximal allowable number of alternate
paths, and the effect of trunk reservation. We also discuss the
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Algorithm 3 Compute B(1) and h( j, i) by OPCA

Require: ρ(m,1) for m ∈ Γ
for d ∈ {0, . . . ,D} do

initial: b(d, j,1)← 0, b̂(d, j,1)← 1 for j ∈ E
while ∑ j∈E |b(d, j,1)− b̂(d, j,1)|> error do

for j ∈ E , m ∈ Γ do
b̂(d, j,1)← b(d, j,1)
compute a(d,m,1) in Eq. (1)
compute a(d,m, j,1) in Eq. (2)
compute a(d, j,1) in Eq. (3)
compute ã(d, j,1) in Eq. (4)
for i ∈ {1, . . . ,C( j)} do

compute t(d, j,1, i) in Eq. (14)
end for
compute b̄(d, j,1) in Eq. (15)
compute b(d, j,1) in Eq. (16)

end for
end while

end for
for m ∈ Γ do

compute B(m,1) in Eq. (13)
end for
compute B(1) in Eq. (11)
for j ∈ E , i ∈ {1, . . . ,C( j)} do

compute h( j, i) in Eq. (17)
end for

Algorithm 4 Compute B(2) by OPCA

Require: ρ(m,1), ρ(m,2) for m ∈ Γ, h( j, i) for j ∈ E and
i ∈ {1, . . . ,C( j)}
for d ∈ {0, . . . ,D} do

initial: b(d, j,2)← 0, b̂(d, j,2)← 1 for j ∈ E
while ∑ j∈E |b(d, j,2)− b̂(d, j,2)|> error do

for j ∈ E , m ∈ Γ do
b̂(d, j,2)← b(d, j,2)
compute a(d,m,2) in Eq. (1)
compute a(d,m, j,2) in Eq. (2)
compute a(d, j,2) in Eq. (3)
compute ã(d, j,2) in Eq. (4)
for k ∈ {1, . . . ,C( j)}, i ∈ {1, . . . ,k} do

compute t(d, j,k,2, i) in Eq. (18)
compute b̄(d, j,k,2) in Eq. (19)

end for
compute b̄(d, j,2) in Eq. (20)
compute b(d, j,2) in Eq. (21)

end for
end while

end for
for m ∈ Γ do

compute B(m,2) in Eq. (13)
end for
compute B(2) in Eq. (11)

robustness of the approximations to the shape of the holding
time distribution.

In all scenarios considered, the arrival process of calls for
each directional SD pair and each type of traffic follows a
Poisson process and the total traffic offered to each directional
SD pair is equal to T . The variable T is our measure of traffic
load for all cases in both topologies. The shortest path is set to
be the primary route for each SD pair, and the alternate routes
are pre-assigned ordered by their length. For those routes with
the same lengths, the order is chosen randomly and remains
unchanged afterwards.

A. Default parameter setting

In many experiments we repeatedly use the same set of
parameters with possibly small variations. It is convenient
to present them once in this section and through the section
only point out the deviations from this default set. This set of
parameters will henceforth be referred to as Default parameter
setting and is described as follows.

For both 6-node fully meshed network and NSF network,
both long-lived and short-lived calls arrive according to a
Poisson process and the ratio of offered long-lived traffic to
that of short-lived traffic is 1 : 1. The holding time of both
long-lived and short-lived calls are exponentially distributed
and the mean holding time of long-lived traffic is 200 times
higher than that of the short-lived traffic. The total number of
links per trunk is 20. The threshold of long-lived traffic is 16
(80%) and the threshold of the short-lived traffic is 18 (90%).
The maximal allowable number of alternate paths are set 4 for
both long-lived and short-lived calls in 6-node fully meshed
network and 2 in NSF network, respectively.

We have chosen to present the results, for each network,
for the long-lived and short-lived calls in two separate figures
because they are different by several order of magnitude,
and if presented on the same figure as a function of traffic
load, for reasonable traffic loads that give acceptable blocking
probability to short-lived traffic, in many cases, the blocking
probability for the long-lived traffic will be too low for
accurate evaluation by simulation.

B. Blocking probability for the long-lived traffic

We evaluate here the blocking probability for the long-
lived traffic by EFPA, OPCA and simulations. Since long-
lived traffic has preemptive priority over short-lived traffic, the
blocking probability for the long-lived traffic can be evaluated
as if it were alone in the network. In other words, it is sufficient
to consider a network with a single class of traffic. We note that
the case of a single class of traffic was considered in [27]. Here
we add examples, intuitive explanations and interpretation of
the results.

At first, we consider a 6-node fully meshed network model.
In such a network, there are in total 15 different SD pairs (or
equivalently 30 directional SD pairs). As the offered traffic for
each directional SD pair is T , so the total offered traffic in the
network is 30T .

In Fig. 1 (a), we present results for the blocking probabilities
obtained by OPCA, EFPA and simulations for long-lived
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Fig. 1. Blocking probabilities for the long-lived traffic (single
priority) versus T in (a) a 6-node fully-meshed network and
(b) NSF network.

 

Fig. 2. NSF network topology, each solid line represents a
bi-directional trunk between two nodes.

traffic (single priority). We observe in the figure that EFPA
and OPCA tend to underestimate blocking probability when
the offered load is low. This is due to the fact that in a
fully meshed network with low traffic load, and therefore less
overflows, long paths will be very rare. Accordingly, overflow
error will dominate path errors causing underestimation of
blocking probability.

Since the surrogate model of OPCA gives preemptive
priority to new calls, and therefore allocates more resources
to the primary path traffic, this surrogate model has less
overflow traffic than the original model approximated by
EFPA, leading to less overflow error, less Poisson error, and
therefore less underestimation of blocking probability for the
long-lived traffic (single priority). Recall that OPCA is based
on approximating the blocking probability of the surrogate
model treating each link independently and assuming it is
loaded by Poisson arrivals.

Furthermore, we observe that as the traffic load increases,
the underestimation for both EFPA and OPCA of the blocking
probability is reduced. This is consistent with the fact that in
high load overflow probability increases, leading to overflow
path length growth, and therefore path error increase. As
observed, the path error in the cases of high traffic load may
cancel out the overflow error to improve the approximation.

Next, we consider an NSF network with 13 nodes and
16 bidirectional trunks. As the number of SD pairs is (13×
12/2) = 78, the total offered traffic in this case is 156T . The
topology of the NSF network is shown in Fig. 2. The results
for the blocking probabilities for the long-lived traffic as a
function of T is shown in Fig. 1 (b). We obtain results that
have similar behavior to those obtained for the 6-node fully
meshed network case in the sense that OPCA outperforms
EFPA. But since the number of alternate paths in NSF network
is much less than that in 6-node fully meshed network, in NSF
network, OPCA outperforms EFPA less than in the case of the

6-node fully meshed network.

C. Blocking probability for the short-lived traffic
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Fig. 3. Blocking probabilities the for short-lived traffic in (a) a
6-node fully-meshed network and (b) NSF network. The ratio
of the offered long-lived traffic to offered short-lived traffic is
1:1.

Figures 3 (a) and (b) present the blocking probabilities
results we obtained by OPCA, EFPA and simulations for
short-lived traffic, as a function of T , in the same 6-node
fully meshed and NSF networks described above, but now we
consider the two classes of traffic using the networks so T is
now the total offered traffic of both long-lived and short-lived
calls for each directional SD pair. The parameters are set as
in the Default parameter setting in IV-A.

As expected, comparing Figs. 3 (a) and (b) with their
long-lived traffic (single priority) counterparts Figs. 1 (a)
and (b), respectively, we observe significantly lower blocking
probability (by several orders of magnitude) for the long-
lived traffic than for short-lived traffic. Specifically, observe
the blocking probability in Fig 3 (a) for load of T = 12 versus
the equivalent load of T = 6 in Fig. 1 (a). Also, for the NSF
network, we compare the blocking probability in Fig. 3 (b)
for load of T = 0.5 to that of Fig. 1 (b) for load of T = 0.25.

Furthermore, we observe that OPCA provides better approx-
imations for both long-lived traffic and short-lived traffic in
both networks than EFPA.

If the threshold of long-lived traffic is larger than or equal
to that of short-lived traffic, since long-lived calls can preempt
short-lived calls and not vice versa, the set of states in which
long-lived calls are blocked is a strict subset of the set
of states in which short-lived calls are blocked, and since
both processes arrive in accordance with Poisson processes,
blocking probability for the long-lived traffic must be lower
than that of short-lived traffic even if the offered long-lived
traffic is much larger than that of short-lived traffic. In general,
alternate routing further benefits long-lived traffic, because
longer alternate routes of long-lived traffic, that use more
network resources per bit than primary path traffic, have a
more detrimental effect on short-lived traffic than on long-
lived traffic.

To provide some protection to short-lived traffic, we set the
threshold of short-lived traffic larger than that of long-lived
traffic so that if the offered short-lived traffic is much smaller
than that of long-lived traffic, short-lived traffic may have a
smaller blocking probability than long-lived traffic. Notice that
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this threshold difference does not affect the “right” of the long-
lived traffic to behave as if it is alone in the system according
to their own threshold limitation on overflowed calls. This
limitation also provides some protection to short-lived traffic
from overflowed long-lived traffic using long alternative path
inefficiently.

However, in the present case, the offered short-lived traffic
is the same as that of long-lived traffic, thus the blocking
probability for the short-lived traffic is larger than that for
the long-lived traffic.

The preemptive property of long-lived traffic affects the
approximations of short-lived traffic in two distinct ways:

1) The capacity available to short-lived traffic is the leftover
of long-lived carried traffic and short-lived traffic can
be preempted by long-lived calls. Therefore, short-lived
calls may be forced to take longer alternate routes, so
the proportion of the overflow traffic in the total short-
lived traffic is higher than for long-lived traffic, leading to
higher overflow error and path error. For low traffic, since
the overflow error is dominant, this higher proportion of
overflow traffic in the total short-lived traffic will cause
further underestimation of the blocking probability for
the short-lived traffic for both EFPA and OPCA. On the
other hand, in a high loading scenario, since the path error
is dominant in high loading, this higher proportion will
cause further overestimation of the blocking probability
for the short-lived traffic for both EFPA and OPCA.

2) Long-lived carried traffic, which can be viewed as long-
lived background traffic for the short-lived traffic, exhibits
dependencies among various trunks. More specifically,
the congestion of long-lived traffic on one trunk is likely
to cause congestion of long-lived traffic on other trunks.
This congestion dependence of long-lived traffic (back-
ground traffic) on trunks in turn causes dependence in
capacity limitation for short-lived traffic among different
links which leads to congestion dependence of short-
lived traffic. However, in the quasi-stationary approach,
long-lived carried traffic are assumed to be independent.
This introduces another kind of dependence error, which
does not occur for long-lived traffic, that causes a further
underestimation of the blocking probability for the short-
lived traffic for both OPCA and EFPA. This effect causes
further underestimation for low traffic for both EFPA
and OPCA. As the total offered load increases and this
effect tends to underestimate the blocking probability
obtained by EFPA and OPCA, which will cancel out the
overestimation due to the first effect and lead to accurate
predictions by both EFPA and OPCA.

D. The effect of the ratio between the offered long-lived traffic
and offered short-lived traffic

Figs. 3 (a) and 4 (a)-(d) show the blocking probabilities
for the short-lived traffic when the ratios of the offered long-
lived traffic to offered short-lived traffic are 1:1, 1:2, 1:5, 2:1
and 5:1, respectively while all the other parameters are kept
the same as in the Default parameter setting in IV-A. As
long-lived traffic is not affected by short-lived traffic, we only
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Fig. 4. Blocking probabilities for the short-lived traffic in a
6-node fully-meshed network. The ratio of the offered long-
lived traffic to offered short-lived traffic is (a) 1:2, (b) 1:5, (c)
2:1, and (d) 5:1.

consider here the accuracy of OPCA and EFPA for short-lived
traffic.

Several observations emerge from Figs. 3 (a) and 4 (a)-(d):
1) OPCA is generally more accurate than EFPA.
2) The accuracy of OPCA in predicting blocking probability

for the short-lived traffic decreases when the proportion
of long-lived traffic increases.

3) EFPA accuracy is not significantly affected by the ratio
of the two traffic types.

4) Both EFPA and OPCA accuracy increases with increased
traffic load.

Observations 1 and 4 are consistent with what we have
observed in the case when the proportion was 1:1, and the
explanations above are applicable. To explain observations 2
and 3, recall that EFPA under light load suffers from the
dependency error. This fact is invariant to the proportion
between the offered long-lived traffic and offered short-lived
traffic. However, OPCA is able to reduce the dependency
error of short-lived traffic (notice that the quasi-stationary
approximation assumes independence between the long-lived
and short-lived traffic for both OPCA and EFPA). Therefore,
if the short-lived traffic is reduced, the ability of OPCA to
neutralize the dependence effects is also reduced.

Since OPCA has better performance in the cases of low
short-lived loading and EFPA has better performance in the
cases of high loading, max{OPCA,EFPA} is the best ap-
proximation. In [28], we obtained a similar conclusion that
max{OPCA,EFPA} is the best approximation for an optical
burst switched network.

For NSF network with 13 nodes and 16 trunks, the results
for the blocking probabilities for the short-lived traffic are
shown in Figs. 3 (b), 5 (a)-(d) when the ratios of the offered
long-lived traffic to offered short-lived traffic are 1:1, 1:2, 1:5,
2:1 and 5:1, respectively while all the other parameters are
kept the same as in the Default parameter setting in IV-A. We
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obtain results that have similar behavior to those obtained for
the 6-node fully meshed network case in the sense that OPCA
slightly outperforms EFPA in the cases of low loading.
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Fig. 5. Blocking probabilities for the short-lived traffic in NSF
network. The ratio of the offered long-lived traffic to offered
short-lived traffic is (a) 1:2, (b) 1:5, (c) 2:1, and (d) 5:1.

E. The effect of the number of links on each trunk

To examine the effect of the number of links (wavelength
channels) on each trunk on blocking probability and on the
accuracy of EFPA and OPCA, we increase now the number of
links on each trunk to 50 in the 6-node fully meshed network
we consider above. In particular, we consider a scenario where
the thresholds for long-lived traffic and short-lived traffic are
40 (80%) and 45 (90%), respectively while all the other
parameters are kept the same as in the Default parameter
setting in IV-A.
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Fig. 6. Blocking probabilities for (a) long-lived traffic (single
priority) and (b) short-lived traffic in a 6-node fully-meshed
network with 50 links each trunk.

In Fig. 6 (a) we provide the results obtained for the blocking
probabilities for the long-lived traffic. We can observe that
the accuracy of EFPA is improved comparing to the case of
20 links per trunk shown in Fig. 1 (a). The improvement in
accuracy is achieved because of the following reasons.

1) When the number of links on each trunk increases, the
variance of the overflow traffic decreases, leading to a
lower Poisson error.

2) The increase of the number of links on each trunk
also reduces the proportion of overflowed traffic and
therefore reduces the overflow error, which also increase
the accuracy of EFPA.

We also observed that OPCA, in general, is superior to EFPA,
so it is sandwiched between EFPA and the simulation results.

Fig. 6 (b) shows the blocking probability for the short-
lived traffic. We observe again that the accuracy of EFPA is
improved comparing to the case of 20 links per trunk shown in
Fig. 3 (a) and OPCA is generally sandwiched between EFPA
and the simulation results. The reasons for the improvement
in EFPA results are the same as those discussed in the case
of the long-lived traffic blocking probability evaluation.

Notice also that for the blocking probability evaluation for
both long-lived and short-lived traffic, OPCA still outperforms
EFPA in the case of 50 links per trunk. This together with
the improved accuracy as the number of links on each trunk
increases from 20 to 50, provide some evidence that OPCA
can be accurate as the network capacity scales upwards and
performs even better than for networks with lower capacity.
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Fig. 7. Blocking probabilities for (a) long-lived traffic (single
priority) and (b) short-lived traffic in a 6-node fully-meshed
network versus number of links on each trunk.

We further increase the number of links on each trunk in
6-node fully meshed network and in Fig. 7 (a), we provide
the results obtained by EFPA and OPCA for the blocking
probabilities for the long-lived traffic versus number of links
on each trunk. The threshold of long-lived traffic is kept at
80% and the maximum allowable alternate paths is kept at
4. Let C be the number of links on each trunk. The offered
long-lived traffic (Erlangs) is 0.4C for each directional SD
pair, so the total traffic per SD pair in both directions is
0.8C. As increasing the traffic and the number of links on
each trunk at the same rate, will decrease the proportion
of overflowed traffic, thus in large capacity networks, only
negligible traffic is overflowed, so that almost all end-to-end
paths in our fully meshed networks are single link (the network
approximately turns into a fixed-routing network), this will
mean that approximately all links will be 80% utilized. In
fixed-routing large capacity networks, EFPA is accurate based
on Kelly [9]. Since there is only negligible overflow in large
capacity networks, as mentioned in the Introduction, we have
the condition under which model is based on fixed routing,
i.e. no overflow is allowed, OPCA is reduced to EFPA. This
is consistent with the results presented in Fig. 7 (a).

Fig. 7 (b) shows the blocking probability for the short-lived
traffic versus the number of links per trunk. The thresholds
of long-lived traffic and short-lived traffic are set as before at
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80% and 90%, respectively while all the other parameters are
kept the same as in the Default parameter setting in IV-A.
The offered traffic load for are both long-lived and short-
lived calls for each directional SD pair are 0.2C. Although,
in general, we observe similar results for short-lived traffic
blocking probability to those obtained for long-lived traffic, we
notice a slight difference between the EFPA and OPCA results
for the cases of 50 and 100 links per trunk, which indicates that
some overflows at these level occur which lead to conditions
where EFPA underestimate the blocking probability slightly
more than OPCA.
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Fig. 8. Blocking probabilities for (a) long-lived traffic (single
priority) and (b) short-lived traffic in NSF network with 50
links each trunk.

We also increase the number of links per trunk for the NSF
network to 50. In particular, we consider a scenario where
the thresholds for long-lived traffic and short-lived traffic are
40 (80%) and 45 (90%), respectively while all the other
parameters are kept the same as in the Default parameter
setting in IV-A. In Fig. 8 (a) we provide the results obtained
for the blocking probabilities for the long-lived traffic. And
the blocking probabilities for the short-lived traffic is shown
in Fig. 8 (b). The trends and behavior of the results presented
for the case of NSF network are consistent with the results
provided for the 6-node fully meshed network case.
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Fig. 9. Blocking probabilities for (a) long-lived traffic (single
priority) and (b) short-lived traffic in NSF network versus
number of links per trunk.

We also increase the number of links on each trunk in the
NSF network, and in Fig. 9 (a), we again provide the results
obtained by EFPA and OPCA for the blocking probabilities
for the long-lived traffic versus number of links per trunk.
These results are based on having the offered long-lived
traffic (Erlangs) to be 0.02C for each directional SD pair, the
threshold and the maximum allowable alternate paths are kept
the same as in the Default parameter setting in IV-A.
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Fig. 10. blocking probability for (a) long-lived traffic (single
priority) and (b) short-lived traffic for a 6-node fully-meshed
network

Then we consider the NSF network with long-lived and
short-lived traffic where the thresholds of long-lived traffic and
short-lived traffic are set as before at 80% and 90%, respec-
tively while all the other parameters are kept the same as in
the Default parameter setting in IV-A. Both the offered long-
lived traffic and offered short-lived traffic for each directional
SD pair are 0.01C. In Fig. 9 (b) we present the blocking
probabilities for the short-lived traffic versus number of links
per trunk obtained by EFPA and OPCA.

Comparing Figs. 9 (a), 7 (a), and Figs. 9 (b), 7 (b),
the results for NSF network are generally consistent with
those for 6-node fully meshed network. The results based on
OPCA and EFPA are almost identical. The small discrepancy
observed for short-lived traffic in the case of fully meshed
network does not exist in the present case because under
NSF the allowable number of alternate routes is smaller so
this scenario is closer to fixed-routing network than the fully-
meshed alternate-routing network, in which case we already
know that if large capacity is available on trunks both OPCA
and EFPA are very accurate.

F. The effect of maximal allowable number of alternate paths

Here we examine how the blocking probabilities is affected
by the maximal allowable number of alternate paths. The
maximal allowable number of alternate paths D limits how
many times traffic can overflow. Traffic that already overflowed
D times is not allowed to overflow again and will be blocked
and cleared of the network. For single class networks with light
traffic, increasing D appropriately means more opportunities
to overflow and benefits the system by reducing the blocking
probability. However, when the offered load in the network is
high, increasing D may not reduce the blocking probability
because of the inefficiency associated with having the average
number of links used per call unnecessarily long.

Fig. 10 (a) demonstrates the effect of maximal allowable
number of alternate paths on the blocking probability for the
long-lived traffic obtained by simulation, EFPA and OPCA.
The offered long-lived traffic is 6.3 Erlangs and the threshold
is 16 (80%). Fig. 10 (b) demonstrates the effect of maximal
allowable number of alternate paths on the blocking probabil-
ity for the short-lived traffic obtained by simulation, EFPA and
OPCA. We focus on the 6-node fully meshed network as the
low average node degree of NSF network restricts the number
of alternate paths and therefore the number of overflows. The
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Fig. 11. Blocking probability for short-lived traffic in a 6-node
fully-meshed network with long-lived and short-lived traffic.
The ratio of the offered long-lived traffic to offered short-lived
traffic is (a) 1:1 and (b) 5:1.

offered traffic load for both long-lived and short-lived traffic
are 3.6 Erlangs. We change the maximal allowable number
of alternate paths, while keeping all the other parameters the
same as in the Default parameter setting in IV-A.

We observe that there is a clear benefit, in the present
example, of 6-node fully meshed network, to increase the
maximal number of overflow to at least 2. After that, the
rate of decrease in the blocking probability for both long-lived
and short-lived traffic slow down as D increases, due to the
inefficiency of the long alternate paths.

G. The effect of trunk reservation

In general, thresholds are applied to reserve channels for
the primary path traffic and prevent the network from being
crowed by the overflow traffic. Also, the threshold of long-
lived traffic can protect the short-lived traffic from being
preempted by long-lived overflow traffic which requires longer
paths to establish a call, uses more resources, and may cause
congestion. Threshold of long-lived traffic should be chosen
carefully because small threshold for long-lived traffic will
cause many overflow calls unable to enter the network, leading
to large blocking probability for the long-lived traffic while
large threshold invites too much overflow traffic, congesting
the network and preempting short-lived calls.

We again consider a 6-node fully meshed networks and the
offered long-lived traffic and offered short-lived calls are both
3.6 Erlangs. We change the threshold of long-lived traffic,
while keeping all the other parameters the same as in the
Default parameter setting in IV-A.

For this case, Fig. 11 (a) illustrates the effect of threshold
for long-lived traffic on the blocking probability for the short-
lived traffic.

We can observe that when the both offered long-lived traffic
and offered short-lived traffic are equal, varying threshold of
long-lived traffic does not affect the blocking probability for
the short-lived traffic. This is because the blocking probability
for the long-lived traffic is very small and therefore the change
of the carried load of long-lived traffic (background traffic
of short-lived traffic) caused by the change of threshold for
long-lived traffic is also very small, so its effect on blocking
probability for the short-lived traffic is negligible.

Fig. 11 (b) shows the effect of changing threshold of
long-lived traffic on the blocking probability for the short-

lived traffic when the ratio of the offered long-lived traffic
and offered short-lived traffic is 5:1. The offered loads are
set to be 6 and 1.2, for long-lived and short-lived traffic,
respectively, and all the other parameters are the same as
in the Default parameter setting in IV-A. We can observe
that when long-lived traffic is much higher than short-lived
traffic, changing threshold of long-lived traffic will increase
the blocking probability for the short-lived traffic, due to the
fact that the blocking probability for the long-lived traffic is
in a range that increasing threshold of long-lived traffic will
considerably reduce the blocking probability and increase the
carried load of long-lived traffic (which is the background
traffic of short-lived traffic).

H. Robustness of the quasi-stationary approximation
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Fig. 12. The average blocking probabilities for the short-lived
traffic with different values of µ2 for a 6-node fully-meshed
network with 20 links each trunk and µ1 = 1.

As stated in Section III, when the holding times of long-
lived calls are far longer than those of the short-lived calls, we
can use the quasi-stationary approximation to obtain accurate
results. We use a 6-node fully-meshed network with 20 links
each trunk to illustrate by how much the holding time of long-
lived traffic should be longer than that of short-lived traffic, for
the quasi-stationary approximation to be accurate. The result
is shown in Fig. 12. In the scenario we consider, both the
offered long-lived traffic and offered short-lived traffic are 3.6
Erlangs, and the mean holding time of long-lived calls (1/µ1)
is 1.

As expected, when the holding times of short-lived calls
(1/µ2) are larger than or close to those of long-lived calls, the
short-lived calls cannot reach steady-state while the number
of long-lived calls remains unchanged, so the quasi-stationary
approximation is inaccurate. However, when the holding times
of short-lived calls are significantly shorter than those of
long-lived calls (e.g. by more than two orders of magnitude,
namely µ2 > 100), the blocking probability for the short-
lived traffic becomes invariant to further increase in the ratio
µ2/µ1, indicating that short-lived traffic may approximately
reach steady-state while its background state (due to long-
lived traffic activities) remains approximately unchanged, so
the quasi-stationary approximation can lead to accurate results.
The errors shown in Fig. 12 in this condition are mainly due
to overflow error and path error discussed above. From the
figure, we can observe that our approximation methods work
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well when the average holding times of short-lived calls is less
than 5% of the average holding times of long-lived calls.

I. The effect of the shape of the holding time distribution
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Fig. 13. The average blocking probabilities for (a) long-lived
traffic (single priority), and (b) short-lived traffic, considering
different service time distributions for a 6-node fully-meshed
network with 20 links in each trunk.

The results presented above are based on the assumption
that the holding times of both the long-lived and short-lived
traffic are exponentially distributed. It is therefore important
to examine the robustness of the approximations to the shape
of the holding time distribution. To this end, we compare
the results obtained under the exponential assumptions versus
results obtained under heavy-tailed holding time distribution,
where we maintain the same mean for the two alternatives.

In particular, we consider our heavy-tailed holding times, to
follow a Pareto distribution with a complementary distribution
function (CDF) presented in Subsection H-1 in [28], with δ
(seconds) being the scale parameter and minimum holding
time and γ being the shape parameter.

In our simulation we set δ = 0.5 for long-lived traffic and
δ = 0.0025 for short-lived traffic and γ = 2 for both types of
traffic. All the other parameters are kept the same as in the
Default parameter setting in IV-A.

Fig. 13 (a) shows the simulation blocking probability for
the long-lived traffic (single priority) for 6-node fully meshed
network with holding time exponential distributed and Pareto
distributed. The two curves are very close to each other and
their confidence interval are overlapped, which shows that
blocking probability for the long-lived traffic (single priority)
is insensitive to the holding time distribution.

Fig. 13 (b) shows the simulation blocking probability for
the short-lived traffic for 6-node fully meshed network of three
cases:

1) exponential exponential – holding time of both long-lived
and short-lived calls are exponentially distributed

2) exponential Pareto – holding time of long-lived traffic is
exponentially distributed while that of short-lived traffic
is Pareto distributed

3) Pareto Pareto – holding time of both long-lived and short-
lived calls are Pareto distributed.

The closeness of the simulation results of the three cases
illustrates that the blocking probability for the short-lived
traffic for 6-node fully meshed network is insensitive to the
holding time distribution shape.
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Fig. 14. The average blocking probabilities for (a) long-lived
traffic (single priority), and (b) short-lived traffic, considering
different service time distributions for the NSF network with
20 links in each trunk.

We have produced equivalent simulation results for the case
of the NSF network topology. The results are presented in
Fig. 14 (a) and (b). We observe similar behavior as in the
case of fully meshed networks that provide further evidence
that the assumption of exponential holding time distribution
is reasonable and that the blocking probability is not very
sensitive to the shape on the holding time distribution.

These results are consistent with equivalent results obtained
in [28] for OBS networks.

J. Computational complexity of the algorithms

TABLE III. Computational complexity of the algorithms

Trunk Running Running Memory Memory
time time of of

capacity of EFPA of OPCA EFPA OPCA
(seconds) (seconds) (bytes) (bytes)

C = 20 0.173369 0.413720 66840 89040
C = 100 0.431417 3.034318 95640 137040
C = 1000 278.515913 1065.012123 419640 677040

It is difficult to provide general analytical results for compu-
tational complexity of OPCA and EFPA because both require
fixed-point iterations to converge. Nevertheless, we provide
numerical examples that illustrate the time and memory com-
plexity of the algorithms.

In Table III, we provide information on running times and
memory usage of both EFPA and OPCA required for the
network blocking probability computation in a six-node fully
meshed network for three cases representing different trunk
capacity values.

We have observed from these numerical examples, that for
a small network, OPCA requires more computation time and
more memory than EFPA, but the overall computing resources
are manageable. As we demonstrate in the next subsection
OPCA is also applicable to the large Coronet network while
the equivalent EFPA results are unattainable.

K. The Coronet

We demonstrate here that OPCA is applicable to large
scale networks such as the Coronet, shown in Fig. 15, while
simulation results are computationally prohibitive for such
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Fig. 15. The Coronet topology.

large scale networks. With all of the 9900 SD pairs in the
network and one alternative path for each SD pair, the network
blocking probabilities for long-lived and short-lived traffic can
be obtained by OPCA within reasonable running time, as
shown in Fig. 16. The number of links per trunk is 50 and
the thresholds for long-lived traffic and short-lived traffic are
40 (80%) and 45 (90%). The maximum allowable number
of alternate paths is 1. All the other parameters are kept the
same as in the Default parameter setting in subection IV-
A. The running times used to calculate the network blocking
probabilities in the Coronet is about 121.734439 seconds by
OPCA, obtained using MATLAB 7.6.0 executed on a desktop
PC with IntelR CoreTM 2 Quad @ 3 GHz CPU, 4 GHz RAM
and 32-bit operating system.

 ! "#  ! $  ! $$  ! $%  ! $&  ! $#
" 

'(

" 
'%

" 
')

" 
'$

" 
'"

*+,-

.//0102-3456738902-:1+//8;-*<85630-=18418:>,-
/41-+5>-2810;:845+3-.?-=+81-*@,

A
0
:B
4
1C
-D
34
;
C
85
6
-=
14
D
+
D
838
:>
-/
4
1

-3
4
5
6
73
89
0
2
-:
1+
//
8;

 ! "#  ! $  ! $$  ! $%  ! $&  ! $#
" 

'(

" 
'%

" 
')

" 
'$

" 
'"

*D,-

.//0102-:1+//8;-*D4:E-:>=0<,-
/41-+5>-2810;:845+3-.?-=+81-*@,

A
0
:B
4
1C
-D
34
;
C
85
6
-=
14
D
+
D
838
:>
-/
4
1

-<
E
4
1:
73
89
0
2
-:
1+
//
8;

Fig. 16. The blocking probabilities obtained by OPCA for (a)
long-lived traffic (single priority), and (b) short-lived traffic
for the Coronet with 50 links per trunk.

V. CONCLUSIONS

In this paper, we have considered a circuit-switched network
with long-lived and short-lived calls where the long-lived calls
can preempt the short-lived ones. We use EFPA and OPCA
combined with the quasi-stationary approximation to estimate
the blocking probabilities. The results demonstrate that in
most cases, OPCA can estimate the blocking probabilities
reasonably well, and generally, better than EFPA. As long-
lived calls provides background traffic for short-lived ones,
the ratio of their offered load also affects the accuracy of
the approximations. Reduction of offered long-lived traffic
together with increase of offered short-lived traffic will im-
prove the accuracy of OPCA, while that of EFPA is not much
improved. However, when the number of links on each trunk
increases, the performance of EFPA is improved. Allowing
more alternate path traffic, either by increasing the maximum
allowable alternate paths or the long-lived traffic threshold, is

beneficial under light traffic. However, when the network is
fully occupied, it is important to restrict alternate path traffic.
We have observed that the quasi-stationary approximation re-
quires that the mean holding time of long-lived calls is at least
20 times longer than that of short-lived calls. Nevertheless,
this is not a very restrictive requirement if long-lived calls
represent static calls and short-lived calls represent dynamic
ones. We have also demonstrated that approximating blocking
probability based on the exponential holding time assumption
is not very sensitive to the shape of the holding time distribu-
tion, and is fairly accurate also for heavy-tailed holding time
distributions. We have illustrated by numerical examples that,
for small network, OPCA requires more computation time and
more memory than EFPA, but the overall computing resources
are manageable. For a large scale network such as the Coronet,
we have demonstrated that OPCA is also applicable while the
equivalent EFPA results are unattainable.
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