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Abstract—Overflow loss systems are an important class of
teletraffic models. Evaluation of blocking probabilities in such
systems involving mutual overflow effects is a difficult problem.
In the literature, decoupling a given system into independent
subsystems is typically regarded as a scalable, though non-robust,
approach to the problem. This paper presents a new method that
is based on a radically different idea from that of the conventional
approach. Firstly a surrogate model that, in a systematic way,
approximately captures the state dependencies due to the overflow
model is designed. Secondly it is observed that approximation of
the blocking probability of the surrogate model provides a good
approximation to the blocking probability in the original model.
We introduce important concepts underpinning this surrogate-
based approximation method, and demonstrate its effectiveness
by applying it to an overflow model that incorporates mutual
overflow effects common to various applications of overflow loss
systems. Extensive and statistically reliable experiments demon-
strate that the new method yields significantly and consistently
better results compared to the conventional approach, improving
the accuracy by orders of magnitude in many instances and yet
requiring less computational effort.

I. INTRODUCTION

We consider an important class of teletraffic models called
overflow loss systems. They arise in a variety of contexts
of telecommunication systems, including gradings [1], [2],
circuit-switched networks using alternate routing [3], [4], and
optical burst-switching networks [5], [6]. They have also found
emerging applications in service sectors for modeling, e.g.,
video server systems [7], [8], call centers [9], [10], health-
care systems [11], [12], and have led to potential solutions
to challenging problems for cost-effective operations of such
systems subject to stringent quality of service requirements.

In general, overflow loss systems are characterized by
calls/requests requiring service in a system comprising mul-
tiple server groups. An incoming call either is admitted to
a server group with at least one idle server or overflows to
another server group. If all server groups accessible to the
call are busy, it is blocked and cleared from the system. The
probability that calls are blocked and cleared from the system,
known as the blocking probability, is an important performance
measure of overflow loss systems.

It is well known in traffic engineering that evaluation of
blocking probabilities in overflow loss systems is a difficult
problem [13]. This is particularly true for non-hierarchical
models where overflow from any server group may directly
or indirectly affect the load of any other server group. In

particular, the mutual overflow effect [3] refers to a situa-
tion where there is congestion on a specific server group
causing overflow to the other server groups, and where this
overflow loads up the other server groups so that they in
turn yield overflow back to the original server group. Such
models, in many practical cases, are not amenable to an exact
analysis because they exhibit significant state dependencies,
which make the state-space required for an exact analysis
too large [14]. The challenge is to find a robust methodology
for approximations of such models to capture their overflow-
induced state dependencies in a scalable way.

This paper proposes a new and versatile approach, called
information exchange surrogate approximation (IESA), for
development of robust approximation algorithms for blocking
probability evaluation in non-hierarchical overflow loss sys-
tems. The key philosophy that guides the design of IESA is
to establish a certain surrogate model that in a systematic
way approximately captures the state dependencies due to
mutual overflow in the original model. It is expected that the
surrogate model yields a close but somewhat different blocking
probability from that of the original model such that the error
introduced in approximation of the surrogate model ideally
cancels out the difference between the blocking probability of
the surrogate model and that of the original model. We call
such a surrogate-based approach a surrogate approximation.

IESA is based on a type of surrogate models called an
information exchange system (IES). An incoming call in an
IES that finds a server group busy may exchange certain
congestion information with a call in service at the server
group before overflowing to other server groups. Such an
imbedded information exchange mechanism allows overflow-
ing calls to propagate congestion information in the system
and also dictates selections of server groups for subsequent
attempts by an overflowing call. An IES is different from the
original model where there is no such information exchange
mechanism and the overflow decision of a call is independent
of past experience of other calls. IESA aims to find a “right”
IES such that approximation of the IES yields a robust and
scalable approximation of the original model.

IESA can be applied to any application of overflow loss
systems. In this paper, we demonstrate the effectiveness of
IESA by applying it to a model that incorporates mutual
overflow effects commonly seen in various applications of
overflow loss systems. This model makes it convenient to intro-
duce important concepts underpinning IESA and suitable for
exposing the weaknesses of conventional approaches proposed



in the literature. We observe that an IESA algorithm based
on an appropriate IES can lead to significant improvement in
accuracy compared to the conventional approaches.

The rest of the paper is organized as follows. In Sec-
tion II, we review the conventional approaches proposed
in the literature for blocking probability evaluation in non-
hierarchical overflow loss systems. Section III provides the
model of the overflow loss system considered in this paper.
In Section IV, we describe the set of call attributes used in
defining an IES and introduce IES1 and IES2 as two IES-type
surrogate models. Section V presents detailed equations that
form the two IES-based surrogate approximation algorithms.
Numerical results are provided in Section VI to demonstrate
the effectiveness of IESA. Section VII draws conclusions.

II. RELATED WORK

McNamara [14] showed that non-hierarchical overflow loss
systems do not have product-form solutions for the blocking
probability. The problem, with the assumptions of Poisson
arrivals and exponentially distributed service times, can only
be solved exactly by a multi-dimensional Markov process. Al-
though the blocking probability can, in principle, be obtained
by solving numerically a set of steady-state equations, this
approach is not scalable because of the curse of dimensionality.
For the simplest case where the system comprises only two
server groups, McNamara managed to compute the exact
solutions only for a symmetric system with up to five servers
in each server group.

Koole and Talim [9] modeled multi-skill call centers as
non-hierarchical overflow loss systems and proposed a method
called exponential approximation (EA) for evaluation of block-
ing probabilities. EA is equivalent to a classic method first
introduced in [15] and now widely known as the Erlang fixed
point approximation (EFPA) [16] for evaluation of blocking
probabilities in circuit-switched networks. Guo et al. [8] mod-
eled video server systems as non-hierarchical overflow loss
systems and applied a similar approach to EA for evaluation
of blocking probabilities.

EA is based on decoupling the given system into inde-
pendent server groups (subsystems), and assuming that the
aggregate of original traffic and overflow traffic offered to a
server group of N servers follows a Poisson process. In this
way, it is able to treat each server group as an independent
M/M/N/N system, and the probability that a server group
is busy is approximated by the Erlang B formula [17]. This
approach inherently gives rise to non-linear equations that
entail a fixed-point solution of the blocking probability.

EA relies on two fundamental assumptions that are rarely
completely satisfied:

• Poisson assumption. EA assumes that the overflow
traffic follows a Poisson process, whereas it is known
to have higher variance than a Poisson process [18].

• Independence assumption. EA assumes that server
groups are mutually independent, whereas they are in
fact statistically dependent because a large number of
busy servers in a server group may indicate a heavy
traffic period, so that other server groups are also
likely to be heavily loaded at that time.

The effect of the Poisson assumption can be mitigated by char-
acterizing overflow traffic using moment-matching techniques
[18], [19]. However, it was observed in [20] that the reduction
in error is marginal, implying that the dominant source of error
in such systems is the independence assumption. Holtzman
[21] proposed a method of taking dependence into account
by approximating conditional probabilities which reflect the
dependence. However, such a brute-force approach directly
applied to the given system is not scalable.

The overflow priority classification approximation (OPCA)
proposed in [20] was the first notable surrogate approximation
algorithm for addressing the difficult problem of blocking
probability evaluation in non-hierarchical overflow loss sys-
tems. OPCA is based on a surrogate model called in this
paper a preemptive priority system (PPS). PPS is constructed
by introducing a preemptive priority regime to calls in the
original model in such a way that each call is classified
according to its seniority in terms of the number of times it
overflows. Classifying calls according to their seniority creates
a multi-level traffic hierarchy in PPS where the n-th level
of the hierarchy includes calls of seniority n or lower. In
this way, OPCA essentially transforms the original model that
is a non-hierarchical system into a surrogate model that is
a hierarchical system. Applying decomposition in each level
of the analysis for the hierarchical surrogate model provides
a computationally efficient way for estimating its blocking
probability. In particular, for overflow loss systems where a call
requires service from only one server group, the approximation
can be obtained hierarchically in a finite number of steps
without the need for a fixed-point solution.

As demonstrated in [20] and further demonstrated in this
paper, OPCA is a scalable surrogate approximation algorithm
that is accurate for systems where calls have full or almost
full accessibility to server groups. It is a rudimentary approach
to modeling state dependencies and requires substantial mod-
ifications and adaptations to make it versatile to deal with
generic limited-accessibility systems. The new IESA approach
proposed here has its historical roots in OPCA. However, they
differ fundamentally at a conceptual level. The core discrimi-
nating idea of IESA from OPCA is the conceptual replacement
of the preemptive priority regime supporting OPCA by the
information exchange mechanism underpinning IESA.

III. THE MODEL

Consider an overflow loss system with M traffic sources
forming the set F and k server groups forming the set D.
Calls/requests from source m ∈ F have access to nm different
server groups; the set of these server groups is denoted by
Γm ⊆ D. The set of traffic sources that have access to server
group d ∈ D is denoted by Φd ⊆ F . Let k∗d = maxm∈Φd

nm,
d ∈ D. The number of servers on server group d ∈ D is Nd.

When a request from source m arrives, the system ran-
domly selects with equal probability a server group d ∈ Γm. If
the number of calls being served by server group d is less than
Nd, the request is admitted; otherwise, the request randomly
attempts (with equal probability among the remaining server
groups) another server group in Γm. This process continues
until either the request is served by one of the server groups
in Γm, or all server groups in Γm are found to be busy. In the
latter case, it is blocked and cleared from the system.



A request from source m is defined as a 0-call if it has just
been initiated. The request becomes an n-call, 1 ≤ n ≤ nm−1,
if it has overflowed n times. When the request becomes an
nm-call, it is blocked and cleared from the system.

Requests from source m form an independent Poisson
arrival process with rate λm. The service time of a request from
source m is exponentially distributed with mean 1/µm. The
offered traffic from source m is Am = λm/µm. The offered
traffic to the system is A =

∑
m∈F Am.

IV. INFORMATION EXCHANGE SYSTEM

This section provides the details of our design of the IESA
approach. We begin by describing the set of call attributes used
in defining an IES. Then, we introduce IES1 as an equivalent
surrogate model to PPS that provides an information exchange
viewpoint on PPS. We discuss how the insight gained from
the success and limitation of OPCA motivates the design of
IES2 as a more appropriate surrogate model in generic limited-
accessibility systems.

A. Call attributes

Calls in IES are designed to have several attributes. The
first is the call identity, denoted by I , that includes the traffic
source where the call is initiated and the elapsed time since the
start of its service. The second is a set of server groups, denoted
by ∆, that the call has already attempted and overflowed
from. The specific choice of the other attributes is part of
the definition of a particular IES. They are normally based
on information received from other calls. In this paper, we
consider IES where calls have not more than three attributes,
but in principle, the definition of IES can be further extended
to include additional attributes. In the case of an IES with three
attributes, the third attribute is denoted by Ω.

Let Ii, ∆i and Ωi denote the first, second and third attribute
(if it exists) of request i. Henceforth, we will use (I,∆)-call
and (I,∆,Ω)-call to denote calls in IES with two and three
attributes, respectively. This notation is more comprehensive
than the n-call notation used in the original model where
a call is simply characterized by the number of times it
has overflowed. However, in contexts where the number of
overflows so far is sufficient to characterize calls in IES, we
will still use the shorter n-call notation.

In general, some or all of the attributes of a given call may
change during the sojourn time of the call in the system and
will dictate when the call leaves the system. The attributes
of a call in IES may change when it meets other calls in
the system and exchange certain information. The particular
rule by which these attributes change is also a part of the
definition of the particular IES under consideration. We use the
information exchange features of IES to develop new surrogate
models that give rise to new approximation algorithms for
blocking probability evaluation in non-hierarchical overflow
loss systems.

B. IES1

As an illustration of the power of IES we show how, as
a special case, it can encompass PPS. IES1 is constructed to
be equivalent to PPS but provides an information exchange

viewpoint on PPS. Let calls in both systems be described using
the (I,∆)-call notation. Let |∆| be the cardinality of the set
∆. An (I1,∆1)-call that attempts an unavailable server group
busy serving an (I2,∆2)-call, |∆1| < |∆2|, is a junior call,
while the (I2,∆2)-call in service is a senior call. In PPS,
the junior call is given the right to preempt the senior call and
access the server group. The preempted call will then overflow
and attempt server groups that it has not attempted before. If a
server group is available, the service period of the preempted
call continues from where it was last preempted. On the other
hand, instead of preempting the senior call, the junior call in
IES1 exchanges its two attributes with those of the senior call
(including seniority, i.e., |∆|) and then overflows. Thus, if PPS
and IES1 are both loaded with exactly the same arrival process,
at any point in time, for any call in either PPS or IES1, there
exists a corresponding call in the other system that has the
same attributes and is in the same position (either in service
or being overflowed). This one-to-one correspondence makes
PPS and IES1 equivalent, so they have the same blocking
probability.

In its general form, IES1 is described as follows. Consider
an (I1,∆1)-call from source m with |∆1| < nm that arrives
at server group d ∈ Γm. If the server group has one or more
servers idle, the call is admitted. Otherwise, if the most senior
call that the server group is serving is an (I2,∆2)-call with
|∆1| ≥ |∆2|, the arriving call overflows and becomes an
(I1,∆1 ∪ {d})-call. However, if |∆1| < |∆2|, we have a case
where a junior call attempts a server group serving a senior
call. In such a case, the two calls exchange their attributes. In
particular, the call in service becomes an (I1,∆1)-call while
the arriving call overflows and becomes an (I2,∆2 ∪ {d})-
call. In either case, if the cardinality of the second attribute of
the overflowed call reaches nm given that it is a request from
source m, the call is blocked and cleared from the system.

An overflowed (I,∆)-call from source m that is not
blocked will never attempt server groups that are included in
∆. It will attempt with equal probability other server groups
in Γm. A new call from source m has ∆ set to ∅ (empty set)
and can try with equal probability any server group in Γm.
Thus, in IES1, the cardinality of the second attribute of any
call that overflows from server group d is at most k∗d.

IES1 is equivalent to PPS and therefore does not lead
directly to a more accurate approximation than OPCA. Nev-
ertheless, IES1 is important for the following two reasons:

• IES1 provides a convenient approach to understanding
why OPCA provides more accurate blocking probabil-
ity evaluation in full-accessibility systems than EA.

• IES1 is based on an information exchange mechanism.
The insight gained from its success and limitation
serves as a guideline to the design of more robust
approximation algorithms under the IESA framework.

IES1 by nature has a higher blocking probability than that
of the original model. To explain this effect, consider a junior
call in IES1 that attempts an unavailable server group busy
serving a senior call. The junior call will exchange its two
attributes with the senior call and then overflow. In this way,
the overflowed call “forgets” the information of unavailable
server groups carried in its own second attribute. Instead, it will



subsequently use the information of unavailable server groups
previously carried by the senior call, and hence will not attempt
those server groups. There is, however, a positive probability
that the congestion information is outdated. That is, one or
more of those server groups presumed to be unavailable might
have become available during the sojourn time of the senior
call in the system. The rule defined by IES1 does not allow
the overflowed call to access such available server groups. In
contrast, an overflowed call in the original model is allowed to
access any server group that is available. As a result, IES1 has
a higher blocking probability compared to the original model.

Since the information exchange mechanism allows IES1
to gather the congestion information of server groups in the
system, as we build the multi-level traffic hierarchy for approx-
imation, more and more state dependencies can be captured
and embedded in the overflow traffic in each subsequent level
of the analysis. In each level of the analysis, we make the two
fundamental assumptions of EA discussed in Section II. As a
result, the approximation of IES1 underestimates its blocking
probability. Nevertheless, the impact of such simplifying as-
sumptions on the approximation error is likely to be weaker
than in the case of EA. This is because with EA there is no spe-
cific mechanism to capture the state dependencies. Therefore,
one can expect that the error introduced by approximation of
IES1 is likely to be smaller than that introduced by EA to the
original model. Given the fact that the blocking probability of
IES1 is greater than that of the original model, one can further
expect that the blocking probability predicted by OPCA will
be greater than that of EA.

As demonstrated in [20] and further demonstrated in Sec-
tion VI of this paper, for systems where calls have full or al-
most full accessibility to server groups, OPCA is very accurate
which implies that IES1 is the right surrogate model. However,
for systems where calls have more limited accessibility to
server groups, IES1 can be very different from the original
model which leads to inaccurate approximations.

To illustrate this effect, let us consider the system where
each of the k server groups has only one server. Consider
a 0-call from source 1 that has access to server groups 1
and 2. Assume that server group 1 is busy serving a 1-call
which is a request from source 2 that has access to server
groups 1 and 3. Also, assume that server group 2 is available.
The new call from source 1 attempts server group 1 and is
rejected because of the 1-call in service. The senior call has
already attempted server group 3 and has been rejected there.
Under IES1, the junior call exchanges both attributes with the
senior call, and will be blocked and cleared from the system
because it becomes a 2-call from source 2. Note that, before
information exchange, the junior call should have been given
the opportunity to attempt server group 2 where a call from
source 1 has access. The information that server group 3 is
unavailable was irrelevant for the junior call when it was a
0-call from source 1. The outcome here is a loss of a request,
which would not have happened in the original model.

In systems where calls have more limited accessibility to
server groups, the probability of a call in IES1 “paying” for
this kind of irrelevant information rises, as a result of which,
OPCA increasingly overestimates the blocking probability
of the original model. On the other hand, in the case of

full-accessibility systems where OPCA is known to be very
accurate, since nm = k, m ∈ F , this effect never happens.

C. IES2

The success and limitation of IES1 motivates us to design
IES2 as a more appropriate surrogate model in generic limited-
accessibility systems. Calls in IES2 have a third attribute Ω
representing an estimate of the number of unavailable server
groups in the system. Unlike IES1, the seniority of a call
in IES2 is determined by the value of Ω. The information
exchange in IES2 between a junior call and a senior call
involves only the third attribute and never involves the first and
second attributes. In this way, IES2 behaves more like the orig-
inal model, where an overflowed call retains its call identity
(using the first attribute) and its actual overflow record (using
the second attribute) during its hunt for an available server
group. Meanwhile, exchange of the third attribute allows the
overflowed call in IES2 to gather the congestion information
of other server groups to capture the state dependencies in the
original model and ensures a higher blocking probability in
IES2 than in the original model.

Formally, IES2 is described as follows. A new call entering
the system has ∆ set to ∅ and Ω set to 0. Consider an
(I1,∆1,Ω1)-call from source m with |∆1| < nm and Ω1 < k
that arrives at server group d ∈ Γm. If the server group has
one or more servers idle, the call will access the server group.
Otherwise, if the most senior call that the server group is
serving is an (I2,∆2,Ω2)-call with Ω1 ≥ Ω2, the arriving
call overflows and becomes an (I1,∆1 ∪ {d},Ω1 + 1)-call.
However, if Ω1 < Ω2, we have a case where a junior call
attempts a server group serving a senior call. In such a case,
the two calls exchange their third attribute. In particular, the
call in service becomes an (I2,∆2,Ω1)-call while the arriving
call overflows and becomes an (I1,∆1 ∪ {d},Ω2 + 1)-call. In
this way, for an arriving (I,∆,Ω)-call in IES2, we will always
have |∆| ≤ Ω. This implies that the number of server groups
that the request has already attempted (and overflowed) is a
lower bound of the estimate of the number of server groups
that are unavailable in the entire system.

An overflowed (I,∆,Ω)-call from source m that is not
blocked will never attempt server groups that are included in
∆. For the remaining nm−|∆| server groups in Γm, there is a
certain probability P that they are all unavailable. To evaluate
this probability, the (I,∆,Ω)-call from source m assumes that
∆ is included in the set of server groups presumed unavailable,
and evaluates P as follows:

P =


0, if Ω < nm;(

Ω−|∆|
nm−|∆|

)(
k−|∆|

nm−|∆|
) , if Ω ≥ nm.

(1)

Notice that an (I,∆,Ω)-call from source m that is still in the
system must satisfy |∆| ≤ Ω < k and |∆| < nm, so we have
0 ≤ P < 1.

With probability P , the (I,∆,Ω)-call is blocked and
cleared from the system. With probability 1−P , it will instead
continue to attempt a server group in Γm−∆ with probability
1/(nm− |∆|). Then, the process repeats itself until the call is
admitted, |∆| reaches nm, or Ω reaches k; in either of the two
latter cases, the call is blocked and cleared from the system.



V. APPROXIMATION

This section presents the detailed form of the EA and
two IES-based surrogate approximation algorithms. We begin
by showing how to apply EA to the original model. Then,
we derive equations that represent the IES1-based surrogate
approximation algorithm, which we call IESA1. In particular,
we describe the multi-level traffic hierarchy embedded in IES1.
This provides a fundamental hierarchy based on information
exchange, and hence a steppingstone for development of the
more robust IES2-based surrogate approximation algorithm,
which we call IESA2.

The nature of random hunting for an available server group
requires account to be taken of each random sequence of server
groups that a request attempts. For this purpose, we define
Ψ(X,x), x = 0, 1, . . . , |X|, as the set of ordered choices of x
elements from X . By definition, Ψ(X, 0) = ∅.

A. EA

To apply EA to the original model, the system of k server
groups is decoupled into k independent subsystems, where
the d-th subsystem is treated as an M/M/Nd/Nd system
having load equal to the original traffic plus all the traffic that
overflows to it from the other server groups.

For each d ∈ D in the original model, define

• ad,m,n,s – Offered traffic to server group d (d /∈
s) made up of n-calls from source m that have
overflowed sequentially from n server groups in Γm

along the path s = {s1, s2, . . . , sn}, m ∈ Φd,
n = 0, 1, . . . , nm − 1.

• ad,n – Offered traffic to server group d made up of
n-calls, n = 0, 1, . . . , k∗d − 1.

• Ad – Combined traffic offered to server group d made
up of 0-calls, 1-calls, . . ., or (k∗d − 1)-calls; namely,

Ad =

k∗
d−1∑
n=0

ad,n.

• vd,m,n,s – Overflow traffic from server group d (d ∈ s)
made up of n-calls from source m that have over-
flowed sequentially from n server groups in Γm along
the path s (sn = d), m ∈ Φd, n = 1, 2, . . . , nm.

• Bd – Probability that all servers of server group d are
busy, serving n-calls with n = 0, 1, . . . , or k∗d − 1.

Summing ad,m,n,s over all eligible m ∈ Φd and each n-
element path s from the set Ψ(Γm − {d}, n), we obtain

ad,n =
∑

m∈Φd,nm>n

∑
s∈Ψ(Γm−{d},n)

ad,m,n,s (2)

for n = 0, 1, . . . , k∗d − 1, where ad,m,0,∅ = Am/nm.

With the independence assumption, the offered traffic
asn,m,n−1,s−{sn} to server group sn, which has overflowed
sequentially from n − 1 server groups along the path s, is
overflowed with probability Bsn from server group sn and
then becomes the overflow traffic vsn,m,n,s. With probability
1/(nm − n), the overflow traffic vsn,m,n,s will be offered to

server group d, given that it is not in the path s and therefore
has not been attempted. Accordingly, we have

ad,m,n,s =
vsn,m,n,s

nm − n
(3)

and vsn,m,n,s = asn,m,n−1,s−{sn}Bsn . Thus, we can derive
ad,m,n,s as

ad,m,n,s =
Am

nm

n∏
i=1

Bsi

nm − i
(4)

and Ad as

Ad =
∑

m∈Φd

Am

nm

[
1+

nm−1∑
n=1

∑
s∈Ψ(Γm−{d},n)

n∏
i=1

Bsi

nm − i

]
. (5)

Using the Poisson assumption, we calculate the probability
Bd using the Erlang B formula

Bd = E(Ad, Nd). (6)

For compatibility, EA requires that the Bd values so calculated
be the same as those used to calculate the reduced load in
(5). Thus, (5) and (6) constitute a set of fixed-point equations,
which can often be solved by a successive substitution method.
In our numerical examples, we use the method of [22] for
solving the Bd values. The iteration is continued until the
changes of the Bd values are less than 10−8.

It follows that the overall blocking probability of the
original model predicted by EA is given by

BEA = 1−
∑

d∈D Ad(1−Bd)

A
. (7)

In (7), 1−Bd is the probability that server group d has one or
more servers idle. Therefore, Ad(1 − Bd) is the total traffic
carried by server group d estimated by EA. The blocking
probability of calls from source m is given by

B̂m =

∑
s∈Ψ(Γm,nm) vsnm ,m,nm,s

Am
. (8)

B. IESA1

In IES1, classifying calls according to their seniority cre-
ates a hierarchy where the n-th level of the hierarchy includes
calls of seniority n or lower. The seniority of a call in service
in server group d ∈ D of IES1 is at most k∗d − 1.

IESA1 is based on the following multi-level traffic hierar-
chy considered for each server group in IES1 to capture the
exchange of the two attributes. At level 0, the offered traffic
to server group d is made up of new calls (with |∆| = 0)
only. An arriving call that finds the server group available is
admitted; otherwise, the call is rejected. At each subsequent
level n = 1, 2, . . . , k∗d − 1, the offered traffic to server group
d is made up of the offered traffic to it at level n − 1 plus
all calls that overflow at level n− 1 from other server groups
and hence are offered as calls with |∆| = n to server group
d. An arriving call, with |∆| = 0, 1, . . . , or n, that finds the
server group available is admitted; otherwise, all servers of the
server group are busy, serving calls with |∆| = 0, 1, . . . , or n.
If the seniority of the arriving call is lower than that of
the most senior call in service, the arriving call overflows



with information exchange; otherwise, it overflows without
information exchange.

In each level of the analysis, IESA1 assumes that the
offered traffic to each server group in IES1 is Poisson and
the states of different server groups are mutually independent.
Thus, the system of k server groups is decoupled into k
independent subsystems, where the d-th subsystem is treated
as an M/M/Nd/Nd system.

For each d ∈ D in the surrogate IES1 model, define

• aIES1
d,m,n,s – Offered traffic to server group d (d /∈ s)

made up of calls from source m with |∆| = n that
have overflowed sequentially from n server groups in
Γm along the path s = {s1, s2, . . . , sn}, m ∈ Φd,
n = 0, 1, . . . , nm − 1.

• aIES1
d,n – Offered traffic to server group d made up of

calls with |∆| = n, n = 0, 1, . . . , k∗d − 1.

• AIES1
d,n – Offered traffic to server group d at level n,

n = 0, 1, . . . , k∗d − 1.

• vIES1
d,m,n,s – Overflow traffic from server group d (d ∈ s)

made up of calls from source m with |∆| = n that
have overflowed sequentially from n server groups
in Γm along the path s (sn = d), m ∈ Φd,
n = 1, 2, . . . , nm.

• vIES1
d,n – Overflow traffic from server group d made up

of calls with |∆| = n, n = 1, 2, . . . , k∗d.

• bIES1
d,n – Probability that a call with |∆| = n overflows

from server group d at level n, n = 0, 1, . . . , k∗d − 1.

• BIES1
d,n – Probability that all servers of server group

d at level n are busy, serving calls with |∆| =
0, 1, . . . , or n, n = 0, 1, . . . , k∗d − 1.

By definition, we have AIES1
d,n = AIES1

d,n−1 + aIES1
d,n , n =

0, 1, . . . , k∗d−1, where we set AIES1
d,n = 0 for n < 0. Summing

aIES1
d,m,n,s over all eligible m ∈ Φd and each n-element path s

from the set Ψ(Γm − {d}, n), we obtain

aIES1
d,n =

∑
m∈Φd,nm>n

∑
s∈Ψ(Γm−{d},n)

aIES1
d,m,n,s (9)

for n = 0, 1, . . . , k∗d − 1, where aIES1
d,m,0,∅ = Am/nm. For n =

0, 1, . . . , k∗d − 1, in each level n, BIES1
d,n is obtained by

BIES1
d,n = E(AIES1

d,n , Nd). (10)

With probability BIES1
d,n−1 − BIES1

d,n−2, all servers of server
group d at level n − 1 are busy and the most senior call it
is serving is a call with |∆| = n − 1. The offered traffic
AIES1

d,n−2 (made up of calls with |∆| ≤ n − 2) to the server
group is overflowed with information exchange and forms the
overflow traffic vIES1

d,n . On the other hand, with probability
BIES1

d,n−1, all servers of server group d at level n− 1 are busy,
serving calls with |∆| ≤ n − 1. The offered traffic aIES1

d,n−1
to the server group is simply overflowed without information

exchange and contributes to the overflow traffic vIES1
d,n . Thus,

for n = 1, 2, . . . , k∗d, we derive vIES1
d,n as

vIES1
d,n = AIES1

d,n−2(BIES1
d,n−1 −BIES1

d,n−2) + aIES1
d,n−1B

IES1
d,n−1

= AIES1
d,n−1B

IES1
d,n−1 −AIES1

d,n−2B
IES1
d,n−2

(11)

where we set AIES1
d,n = 0 and BIES1

d,n = 0 for n < 0.
Accordingly, the probability bIES1

d,n is derived by bIES1
d,n =

vIES1
d,n+1/a

IES1
d,n , n = 0, 1, . . . , k∗d − 1.

The offered traffic aIES1
sn,m,n−1,s−{sn} to server group sn,

which has overflowed sequentially from n − 1 server groups
along the path s, is overflowed with probability bIES1

sn,n−1
from server group sn and then becomes the overflow traffic
vIES1
sn,m,n,s. With probability 1/(nm − n), the overflow traffic
vIES1
sn,m,n,s will be offered to server group d, given that it

is not in the path s and therefore has not been attempted.
Accordingly, we have

aIES1
d,m,n,s =

vIES1
sn,m,n,s

nm − n
(12)

and vIES1
sn,m,n,s = aIES1

sn,m,n−1,s−{sn}b
IES1
sn,n−1.

It follows that the overall blocking probability of the
original model obtained by IESA1 is given by

BIESA1 = 1−
∑

d∈D A
IES1
d,k∗

d−1(1−BIES1
d,k∗

d−1)

A
. (13)

In (13), 1− BIES1
d,k∗

d−1 is the probability that server group d in
IES1 has one or more servers idle at level k∗d − 1. Therefore,
AIES1

d,k∗
d−1(1−BIES1

d,k∗
d−1) is the total traffic carried by server group

d in IES1 estimated by IESA1. The blocking probability of
calls from source m is given by

B̂IES1
m =

∑
s∈Ψ(Γm,nm) v

IES1
snm ,m,nm,s

Am
. (14)

The multi-level traffic hierarchy allows IESA1 to compute
AIES1

d,n and BIES1
d,n in each level n iteratively with the initial

condition AIES1
d,0 =

∑
m∈Φd

Am/nm. Thus, a unique solution
for BIESA1 is obtained after a bounded number of iterations.

C. IESA2

As in IES1, classification of calls in IES2 according to
their seniority creates a hierarchy where the j-th level of the
hierarchy includes calls for which the value of Ω is j or lower.
However, the seniority of a call in service can reach up to k−1
in any server group of IES2.

IESA2 is based on the following multi-level traffic hi-
erarchy considered for each server group in IES2 to cap-
ture the exchange of the third attribute while retaining the
first and second attributes. At level 0, the offered traffic to
server group d is made up of new calls (with |∆| = 0
and Ω = 0) only. An arriving call that finds the server
group available is admitted; otherwise, the call is rejected.
At each subsequent level j = 1, 2, . . . , k − 1, the offered
traffic to server group d is made up of the offered traffic to
it at level j − 1 plus all calls that overflow at level j − 1
from other server groups and hence are offered as calls with
|∆| = 1, 2, . . . , or min(j, k∗d − 1) and Ω = j to server group



d. An arriving call, with |∆| = 0, 1, . . . , or min(j, k∗d − 1)
and Ω = |∆|, |∆| + 1, . . . , or j, that finds the server group
available is admitted; otherwise, all servers of the server group
are busy, serving calls with |∆| = 0, 1, . . . , or min(j, k∗d − 1)
and Ω = |∆|, |∆|+ 1, . . . , or j. If the seniority of the arriving
call is lower than that of the most senior call in service, the
arriving call overflows with information exchange; otherwise,
it overflows without information exchange. Calls from source
m that overflow at level j, j = nm− 1, nm, . . . , or k− 1 may
become calls with |∆| = nm and/or Ω = k. In such situations,
they are by definition blocked and cleared from the system.

In each level of the analysis, IESA2 assumes that the
offered traffic to each server group in IES2 is Poisson and
the states of different server groups are mutually independent.
Thus, the system of k server groups is decoupled into k
independent subsystems, where the d-th subsystem is treated
as an M/M/Nd/Nd system.

For each d ∈ D in the surrogate IES2 model, define

• aIES2
d,m,j,n,s – Offered traffic to server group d (d /∈

s) made up of calls from source m with |∆| =
n and Ω = j that have overflowed sequentially
from n server groups in Γm along the path s =
{s1, s2, . . . , sn}, m ∈ Φd, j = 0, 1, . . . , k − 1,
n = 0, 1, . . . ,min(j, nm − 1).

• aIES2
d,j,n – Offered traffic to server group d made up of

calls with |∆| = n and Ω = j, j = 0, 1, . . . , k − 1,
n = 0, 1, . . . ,min(j, k∗d − 1).

• ãIES2
d,m,j,n,s – ãIES2

d,m,j,n,s =
∑j

i=n a
IES2
d,m,i,n,s, m ∈ Φd,

j = 0, 1, . . . , k − 1, n = 0, 1, . . . ,min(j, nm − 1).

• AIES2
d,j – Offered traffic to server group d at level j,

j = 0, 1, . . . , k − 1.

• vIES2
d,m,j,n,s – Overflow traffic from server group d (d ∈
s) made up of calls from source m with |∆| = n
and Ω = j that have overflowed sequentially from
n server groups in Γm along the path s (sn = d),
m ∈ Φd, j = 1, 2, . . . , k, n = 1, 2, . . . ,min(j, nm).

• zIES2
d,m,j,n,s – Blocked traffic from server group d (d ∈
s) made up of calls from source m with |∆| = n
and Ω = j that have overflowed sequentially from
n server groups in Γm along the path s (sn = d),
m ∈ Φd, j = 1, 2, . . . , k, n = 1, 2, . . . ,min(j, nm).

• BIES2
d,j – Probability that all servers of server group

d at level j are busy, serving calls with |∆| =
0, 1, . . . , or min(j, k∗d − 1) and Ω = |∆|, |∆| +
1, . . . , or j, j = 0, 1, . . . , k − 1.

By definition, we have AIES2
d,j = AIES2

d,j−1 +∑min(j,k∗
d−1)

n=0 aIES2
d,j,n, j = 0, 1, . . . , k − 1, where we set

AIES2
d,j = 0 for j < 0. Summing aIES2

d,m,j,n,s over all
eligible m ∈ Φd and each n-element path s from the set
Ψ(Γm − {d}, n), we obtain

aIES2
d,j,n =

∑
m∈Φd,nm>n

∑
s∈Ψ(Γm−{d},n)

aIES2
d,m,j,n,s (15)

for j = 0, 1, . . . , k − 1, n = 0, 1, . . . ,min(j, k∗d − 1), where
aIES2
d,m,0,0,∅ = Am/nm, aIES2

d,m,j,0,∅ = 0 for j = 1, 2, . . . , k − 1.

For j = 0, 1, . . . , k − 1, in each level j, BIES2
d,j is obtained by

BIES2
d,j = E(AIES2

d,j , Nd). (16)

With probability BIES2
sn,j−1 − BIES2

sn,j−2, all servers of server
group sn at level j − 1 are busy and the most senior call
it is serving is a call with Ω = j − 1. The offered traffic
ãIES2
sn,m,j−2,n−1,s−{sn} (made up of calls from source m with

Ω ≤ j − 2) to server group sn, which has overflowed
sequentially from n − 1 server groups along the path s, is
overflowed with information exchange and forms the overflow
traffic vIES2

sn,m,j,n,s. On the other hand, with probability BIES2
sn,j−1,

all servers of server group sn at level j − 1 are busy, serving
calls with Ω ≤ j−1. The offered traffic aIES2

sn,m,j−1,n−1,s−{sn}
to the server group is simply overflowed without information
exchange and contributes to the overflow traffic vIES2

sn,m,j,n,s.
Thus, we derive vIES2

sn,m,j,n,s as

vIES2
sn,m,j,n,s = ãIES2

sn,m,j−2,n−1,s−{sn}(B
IES2
sn,j−1 −BIES2

sn,j−2)

+ aIES2
sn,m,j−1,n−1,s−{sn}B

IES2
sn,j−1

= ãIES2
sn,m,j−1,n−1,s−{sn}B

IES2
sn,j−1

− ãIES2
sn,m,j−2,n−1,s−{sn}B

IES2
sn,j−2

(17)
for j = 1, 2, . . . , k and n = 1, 2, . . . ,min(j, nm), where we
set ãIES2

d,m,j,n,s = 0 for j < n and BIES2
d,j = 0 for j < 0.

Recalling (1), we let |∆| = n and Ω = j and denote
Pm,n,j for an (I,∆,Ω)-call from source m to represent the
probability P defined in (1). With probability Pm,n,j , the
remaining nm − n server groups in Γm are all presumed
to be busy, so the overflow traffic vIES2

sn,m,j,n,s is blocked
and cleared from the system. Thus, for j = 1, 2, . . . , k
and n = 1, 2, . . . ,min(j, nm), we derive the blocked traffic
zIES2
sn,m,j,n,s as

zIES2
sn,m,j,n,s = vIES2

sn,m,j,n,sPm,n,j . (18)

On the other hand, with probability 1 − Pm,n,j , the overflow
traffic vIES2

sn,m,j,n,s will continue to attempt a server group in
Γm − ∆. In particular, it is offered to server group d with
probability 1/(nm − n), given that it is not in the path s and
therefore has not been attempted. Accordingly, we have

aIES2
d,m,j,n,s =

vIES2
sn,m,j,n,s

nm − n
(1− Pm,n,j). (19)

Similarly to (13), the overall blocking probability of the
original model obtained by IESA2 is derived as

BIESA2 = 1−
∑

d∈D A
IES2
d,k−1(1−BIES2

d,k−1)

A
(20)

where AIES2
d,k−1(1−BIES2

d,k−1) is the total traffic carried by server
group d in IES2 estimated by IESA2. The blocking probability
of calls from source m is given by

B̂IES2
m =

∑nm

n=1

∑
s∈Ψ(Γm,n)

∑k
j=nm

zIES2
sn,m,j,n,s

Am
. (21)

The multi-level traffic hierarchy allows IESA2 to compute
AIES2

d,j and BIES2
d,j in each level j iteratively with the initial

condition AIES2
d,0 =

∑
m∈Φd

Am/nm. Thus, a unique solution
for BIESA2 is obtained after a bounded number of iterations.



D. Scalability

In (2), (9), (15), to compute the offered traffic of a
particular call type to each server group in the system, all
three approximations require path enumeration of a set of per-
mutations as a result of random hunting. In large systems, such
path enumeration requiring exponentially increasing computer
effort would make the algorithms computationally infeasible.

For this concern, we improve the approximations by in-
troducing an alternative hunting scheme as a substitute of
random hunting. This scheme is designed in a way that requires
significantly less effort in path enumeration while retaining a
certain randomness in resource selection. Under this scheme, a
request from source m is allowed to attempt any server group
in Γm with equal probability as its first choice. Then, the
request follows a strictly round-robin (RR) order in attempting
subsequent server groups in Γm during its hunt for an available
server group. For example, given Γm = {d1, d2, . . . , dnm

}, if
the request attempts server group d3 as its first choice, it must
follow the RR order {d3, d4, . . . , dnm

, d1, d2} and attempt each
subsequent server group with probability one until it finds an
available one. If all server groups in the RR order have been
attempted and found unavailable, the request is blocked and
cleared from the system.

Define R(Γm, n), n = 0, 1, . . . , nm, as the set of all n-
element RR paths enumerated from the set of server groups in
Γm. Clearly, for n > 0, the size of the set R(Γm, n) is simply
nm regardless of the value of n. Define Rd(Γm − {d}, n),
n = 0, 1, . . . , nm − 1, as the set of all n-element RR paths
enumerated from the set of server groups in Γm − {d} such
that, after the request from source m has attempted the n server
groups along an n-element RR path s, it will next attempt
server group d (with probability one) following the RR order
of the server groups in Γm. Clearly, for n > 0, there is only
one such path, so the size of the set Rd(Γm−{d}, n) is always
one regardless of the value of n. By definition, R(Γm, 0) =
Rd(Γm − {d}, 0) = ∅.

In forming the modified approximations, for which we use
the acronym EA-RR, IESA1-RR and IESA2-RR, respectively,
we replace Ψ(Γm − {d}, n) in (2), (9), (15) with Rd(Γm −
{d}, n), and Ψ(Γm, n) in (8), (14), (21) with Rd(Γm, n). We
also replace 1/(nm − n) in (3), (12), (19) and 1/(nm − i) in
(4), (5) with unity, since there are no alternative choices in the
revised hunting scheme.

VI. NUMERICAL RESULTS

We have conducted extensive experiments under a wide
range of system parameters. Here, due to space limitation, we
provide results for 1) a small system with M = 100, k =
10 and 2) a large system with M = 500, k = 100. In both
systems, we set Nd = 30, d ∈ D. In the small system, for each
value of k∗ ranging from 3 to 10, we set up 200 experiments;
in each experiment, we set nm = k∗ for 1 ≤ m ≤ 40, nm =
k∗−1 for 41 ≤ m ≤ 70, and nm = k∗−2 for 71 ≤ m ≤ 100.
For each source m, the set Γm is randomly (uniformly) chosen
from the set D. The offered traffic is set at A = 280 in all
cases. In the large system, for each value of k∗ ranging from
20 to 80 at a step of 10, we set up 200 experiments; in each
experiment, for each source m, we randomly choose nm from
[k∗ − 10, k∗ + 10] and the set Γm from D. The offered traffic

A is chosen such that the overall blocking probability of the
system is around 0.5%.

In all experiments, we obtain the blocking probability of
the original model by simulation. The results are obtained
in the form of an observed mean from multiple independent
runs of the corresponding experiment. The confidence intervals
at the 95% level based on the Student’s t-distribution are
maintained within ±1% of the observed mean. We compute
the error between the approximation and the simulation in
terms of the relative error and the logarithmic error. Given an
approximation result x and a simulation result y, the relative
error is (x−y)/y, and the logarithmic error is log10 x−log10 y.

For the small system, at each k∗, the mean and standard
deviation of approximation errors for overall blocking proba-
bilities of the system are obtained from the 200 experiments.
The results are presented in Fig. 1(a) for the relative error. In all
cases, we observe that the RR-based algorithms yield similar
blocking probabilities. This demonstrates that the proposed
alternative hunting scheme is an appropriate substitute of
random hunting.

For the large system, at each k∗, we obtain the mean and
standard deviation of approximation errors for overall blocking
probabilities of the system from the 200 experiments. The
results are presented in Fig. 1(b) for the relative error and in
Fig. 1(c) for the logarithmic error. The approximation errors
for per-source blocking probabilities are presented in the form
of cumulative distribution in Fig. 1(d) for the relative error and
in Fig. 1(e) for the logarithmic error. Running times of each
algorithm on an Intel machine are plotted in Fig. 1(f) on a
logarithmic scale.

We observe that IESA1 is very accurate when k∗ is close
to k. However, when k∗ is small, it significantly overes-
timates overall blocking probabilities by up to 200%. The
error of IESA1 for per-source blocking probabilities can be
more than 500% as bad. EA, on the other hand, significantly
underestimates the blocking probabilities as k∗ increases. The
almost 100% underestimation of the results means that EA
predicts a result lower by orders of magnitude. This effect is
demonstrated in the form of logarithmic errors in Fig. 1(c),
where we see that the performance of EA is exponentially
worse as k∗ increases. In all cases, IESA2 is consistently better
than EA, and is robust. Even in the large system, the relative
error of IESA2 falls within a very small range, from −30%
to −38%, for different k∗. The range of errors of IESA2 for
per-source results is between −16% and −62%.

The results in Fig. 1(f) demonstrate that IESA2 is more
efficient than EA with respect to the CPU running time.
Given that EA is known to be scalable, so is IESA2. In fact,
IESA2 is considerably more efficient than EA as k∗ becomes
large, corresponding to a large system, where computational
efficiency of approximations becomes important. Although
IESA1 is far more efficient than IESA2, it is accurate only
in certain special cases, and is far from robust as observed in
Fig. 1(a)–(e).

VII. CONCLUSION

We have introduced IESA as a new approximation method-
ology to address the challenging problem of blocking proba-
bility evaluation in non-hierarchical models of overflow loss
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Fig. 1. Comparison of approximations. (a) Relative errors for overall blocking probabilities in the small system. (b)–(f) are results of the large system. (b)
Relative errors for overall blocking probabilities. (c) Logarithmic errors for overall blocking probabilities. (d) Relative errors for per-source blocking probabilities.
(e) Logarithmic errors for per-source blocking probabilities. (f) CPU running times.

systems. Extensive and statistically reliable experiments have
demonstrated that the IESA2 algorithm is significantly and
consistently more accurate and yet computationally more ef-
ficient, compared to the conventional EA algorithm. IESA
is versatile and can be applied to more complex models of
overflow loss systems. This will greatly facilitate dimensioning
in telecommunication systems, resource management of video
server systems, staff configuration in call centers, capacity
planning for health care systems, all of which are important
applications of overflow loss systems known in the literature.
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