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Abstract—We study the problem of stochastic job assignment
in a server farm comprising multiple processor-sharing servers
with various speeds and finite buffer sizes. We consider two types
of assignment policies, without jockeying, where an arriving job
is assigned only once to an available server, and with jockeying,
where a job may be reassigned at any time. We also require that
the underlying Markov process under each policy is insensitive.
Namely, the stationary distribution of the number of jobs in the
system is independent of the job size distribution except for its
mean. For the case without jockeying, we derive two insensitive
heuristic policies, one aims at maximizing job throughput and
the other trades off job throughput for energy efficiency. For
the case with jockeying, we formulate the optimal assignment
problem as a semi-Markov decision process and derive optimal
policies with respect to various optimization criteria. We further
derive two simple insensitive heuristic policies with jockeying,
one maximizes job throughput and the other aims at maximizing
energy efficiency. Numerical examples demonstrate that, under a
wide range of system parameters, the latter policy performs very
close to the optimal policy. Numerical examples also demonstrate
energy/throughput tradeoffs for the various policies and, in the
case with jockeying, they show a potential of substantial energy
savings relative to a policy that optimizes throughput.

Index Terms—Server farms, energy efficiency, job assignment,
insensitivity, processor sharing.

I. INTRODUCTION

Increasing demand for data processing and storage in nearly
every sector of the economy has led to a tremendous growth
of data centers. Server farms in data centers often consist
of thousands of servers and a cooling infrastructure. Energy
efficiency of server farms is important considering green-
house emissions concerns. The U.S. Environmental Protection
Agency estimated that servers and data centers consumed
about 1.5% of total U.S. electricity consumption in 2006,
more than doubled since 2000 [1]. This energy consumption
figure along with its increasing growth underscore the need
for efficient energy management of data centers in facilitating
a low carbon economy in the information age [2].

Part of the overall approach for energy reduction in data
centers is to manage the power consumption of server farms.
The first step is to design power-aware hardware that can
be controlled as to balance between energy consumption and
processing speed. With this capability, researchers have pro-
posed speed scaling methods to optimize energy consumption
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by controlling the server speeds based on their carried load,
e.g., [3]–[7]. More recently, researchers have proposed right-
sizing techniques to dynamically activate/deactivate servers for
energy conservation [8].

The approach that we take in this paper is to investigate
how to assign user jobs, with throughput and energy criteria,
in server farms as a function of server speeds and the current
workload. Our approach provides a way for optimizing energy
consumption by controlling carried load on the networked
servers. In our model, we consider heterogeneous servers run-
ning at fixed speeds. The different server speeds are justified
as different servers may be purchased at different times from
different vendors using different technologies and designs. For
local fine tuning, our approach can also be combined with local
speed scaling at each server.

The problem studied here is a stochastic job assignment
in a server farm comprising multiple processor-sharing (PS)
servers with various speeds and finite buffer sizes. PS server
farms are an important architecture [9] and suitable for model-
ing web-server systems [10]–[14]. Under PS, all existing jobs
at each server share the processing capacity and are served
at equal rates. PS enables fair processing of jobs, in contrast
to the first-come-first-served (FCFS) service discipline. This is
desirable in web-server systems where the file size distribution
is known to have high variability [15].

An important property of our job assignment policies is
known as insensitivity. Namely, the stationary (steady-state)
distribution of the number of jobs in the system depends on
the job size distribution only through its mean. The reasoning
for such requirement is to achieve robustness and predictability
of the deployed server farm. Namely, to assure the accuracy
and predictability of analytical tools under a wide range of job
size distributions. The importance of designing systems that
possess the insensitivity property was also discussed in [16],
[17] and in [18, Ch. 11].

In this paper, we study two types of insensitive assignment
policies. One is referred to as assignment without jockeying,
where a newly arrived job is assigned once to one of the
available servers and cannot be reassigned later on. The other
is referred to as assignment with jockeying, where a job can
be reassigned at any time. Assignment without jockeying is
less flexible than assignment with jockeying. Computation of
the stationary distribution in this class of insensitive policies
is difficult because it involves a large multidimensional state
space. Assignment with jockeying has more freedom and suits
better a single server farm where the servers are collocated in a
single physical center and can use e.g. a shared DRAM-storage
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[19] or flash-storage [20]. In other cases, the jockeying model
can provide performance bounds for server farms. This class
of insensitive policies is scalable in computation and hence
tractable for assignment optimization.

Most of the job assignment policies proposed in the litera-
ture consider servers with infinite buffer sizes and hence aim
at optimizing delay performance. We review the related work
in Section II. In our study of the job assignment policies, we
consider PS servers with finite buffer sizes in situations where
a minimum rate is guaranteed to all jobs on a server [16]. Our
focus is on throughput and energy criteria. In particular, we
aim to control energy consumption of the server farm along
with its job throughput. We consider the energy efficiency
measure of [21], defined in our context as the number of jobs
processed divided by the total energy used in the process.
Accordingly, given two job assignment policies that consume
the same amount of energy, the one that yields a higher job
throughput is defined to have a higher energy efficiency.

In Section III, we describe the stochastic model for job
assignment to heterogeneous PS servers with finite buffer sizes
comprising the PS server farm. Two insensitive assignment
policies for the model without jockeying are derived in Section
IV, where one aims at maximizing the job throughput and
the other trades off job throughput for energy efficiency. In
Section V, we characterize the class of insensitive policies
with jockeying, and in Section VI, we use the framework of
semi-Markov decision process (SMDP) to derive the optimal
policy within this class under a family of cost functions.
Furthermore, in Section VII, we derive two very simple
insensitive heuristic policies with jockeying and show that
one maximizes the job throughput and the other aims to
maximize the energy efficiency. Numerical results presented
in Section VIII illustrate throughput versus energy savings
tradeoffs of the various policies with and without jockeying.
Finally, conclusions are drawn in Section IX.

II. RELATED WORK

A server farm can be modelled as a queueing system having
multiple servers, each with its own queue. Since the work
of Haight [22] in 1958, there has been a wealth of studies
reported in the literature on job assignment in such a system.
The related work can be classified into two broad categories:
1) non-jockeying models where jockeying is not permitted
between the parallel queues, and 2) jockeying models where
jockeying is allowed. In general, compared to non-jockeying
models, a significant improvement of the system performance
can be expected with jockeying models.

Join the shortest queue (JSQ) is a classic job assignment
policy and has been extensively studied. Under JSQ, an
incoming job is assigned to the queue with the least number
of existing jobs. Haight [22] derived the stationary distribution
under JSQ in a system of two FCFS queues for both non-
jockeying and jockeying models, where jockeying is permitted
at any time when the two queues differ in length by one.
Winston [23] considered a non-jockeying model of multiple
FCFS queues with homogeneous servers, and showed that
JSQ maximizes the number of jobs served by a certain time.

The models of [22], [23] assume Poisson arrival process and
exponential job size distribution. Weber [24] extended the
result of [23] to the case of an arbitrary arrival process and
job size distributions with non-decreasing hazard rate. For
non-jockeying models with Poisson arrival process, Whitt [25]
showed that the delay performance of JSQ in FCFS systems
is sensitive to the variability of the job size distribution. Gupta
et al. [11], [12] observed that the delay performance of JSQ
in PS systems shows near-insensitivity to the variability of
the job size distribution. The non-jockeying policies that we
derive in this paper are closely related to JSQ, but they are
explicitly designed as insensitive policies for PS server farms
with throughput and energy criteria.

Two other well-known job assignment policies are round-
robin (RR) and least-work-left (LWL). Under RR, jobs are
assigned to the queues in a cyclical fashion. Although RR is
simple, JSQ has better performance in both FCFS systems [26]
and PS systems [11], [12] because of the advantage of utilizing
queue length information in decision making. Under LWL, an
incoming job is dispatched to the queue that has the least total
outstanding work. LWL is a size-aware policy that requires
knowledge of queue length information and the remaining
service requirement of each job at each queue. LWL is good
for FCFS systems, but its performance in PS systems can be
remarkably bad if the variability of the job size distribution is
high [9], [11], [12]. Several enhanced size-aware policies have
been proposed and analyzed in [13], [27], [28] for PS systems.
The policies that we propose in this paper for PS server farms
are based on queue length information only, and are explicitly
designed as insensitive policies.

Beginning with Haight [22], various jockeying models have
been studied in the literature, all of which dealt with JSQ in
FCFS systems [29]–[34]. To the best of our knowledge, we are
not aware of any study in the literature on jockeying models
in PS systems. In this paper, we propose insensitive jockeying
policies for job assignment in PS server farms, and our focus
is on job throughput and energy efficiency.

For large-scale server farms, researchers have proposed
various distributed implementations of job assignment policies,
e.g., randomized load balancing [35], join-idle-queue [14], be-
cause centralized policies can be unappealing in circumstances
where they may require excessive overhead of keeping all up-
to-date server states. The policies that we study in the present
paper assume knowledge of queue length information and may
suit better a single server farm where the servers are collocated
in a single physical center.

III. SYSTEM MODEL

We model a server farm by K independent servers, each
having its own finite buffer for queuing its jobs. For k =
1, . . . ,K, denote by Bk the buffer size of server k, and by
µk its service rate, defined as the units of jobs that can be
processed per time unit by the server, e.g., bits per second.

We assume that job sizes (in units) are independent and
identically distributed with an absolutely continuous cumula-
tive distribution function (CDF) F (x), x ≥ 0, and have unity
mean without loss of generality. Each server k serves its jobs
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at a total speed of µk using the PS service discipline. Thus,
the service requirement of a job at server k follows a CDF
given by Fk(x) = F (µk · x).

We assume that jobs arrive at the system according to
a Poisson process with rate λ and are assigned to one of
the servers with at least one vacant slot in its buffer. The
assignment policy is subject to the control elaborated below.
If all buffers are full, the arriving job is lost.

In our design of the job assignment policies, we aim to
control the energy efficiency of the server farm along with
its job throughput. With current computer server technology,
energy consumption of a server is monotonically increasing
with the server speed µ and is usually represented by the
function

ε(µ) ∝ µβ , β > 0 (1)

with β = 3 being the most commonly used value in the
literature [4], [36]. However, some researchers argue that ε(µ)
is not necessarily convex [5], [6]. The optimal policies that we
propose in this paper do not assume convexity.

IV. INSENSITIVE ASSIGNMENT POLICIES WITHOUT
JOCKEYING

Our first server farm model considers job assignment poli-
cies without jockeying. Within this class of job assignments,
we derive two job assignment policies which are insensitive to
the job size distribution. The first policy, called the insensitive
policy with short queue preference, or briefly the I-SQP policy,
prefers servers with short queue lengths. We argue that I-
SQP aims at maximizing the job throughput. The second
policy, called the insensitive policy with short queue and
energy preference, or briefly the I-SQEP policy, modifies I-
SQP by trading off job throughput for energy efficiency. These
assertions are supported by the optimal policies derived for a
model where jockeying is permitted.

The insensitivity property under both policies is implied by
the condition derived for a generalized semi-Markov process
(GSMP). The model and the condition are briefly presented
in the Appendix. In Section IV-A, we derive the insensitivity
conditions for a class of assignment policies, where I-SQP
and I-SQEP are two particular cases. In Section IV-B and
Section IV-C, we derive the stationary distributions under I-
SQP and I-SQEP, respectively, and show that both policies
induce insensitive GSMPs.

A. Insensitivity conditions for assignment without jockeying

Let nk(t) be the number of existing jobs in server k at
time t and consider the stochastic process n(t), t ≥ 0, where
n(t) = (n1(t), . . . , nK(t)).

When a new job arrives at time t finding the system at state
n(t) = n, where n = (n1, . . . , nK), the job is assigned to
server k having at least one vacant buffer slot, i.e., nk < Bk,
with probability γk(n) > 0. If all buffers are full, the job is
dropped.

The augmented set S0 (see the Appendix) consists of one
element s0 whose lifetime is exponentially distributed with
mean 1/λ. The augmented set S1 (see the Appendix) consists

of K elements {s1, . . . , sK} whose lifetimes are distributed
according to Fk(x) with means 1/µk, respectively.

At time 0, the element s0 is activated and its lifetime decays
at a constant rate of λ. When s0 dies, a new job arrival occurs
and the lifetime is instantaneously reborn. Every death follows
an instantaneous rebirth measuring the residual time until the
next job arrival.

Each arrival assigned to server k activates an instance of
the element sk measuring its lifetime. At every state n, each
instance of sk decays at a state-dependent rate c(n, sk) =
µk/nk.

Let ek denote the unit K dimensional vector with one in
the k-th component and zero elsewhere. The transition matrix,
p(n, s,n′), upon a lifetime death is given by

p(n, s,n′) =


γk(n), if s = s0, nk < Bk and n′ = n + ek

1, if s = sk, nk > 0 and n′ = n− ek

0, elsewhere.
(2)

Note that the transitions in (2) are conditioned on the
event that a respective lifetime component, s, expires. The
probabilities that a particular s expires are governed by the
independent lifetime distributions and the decaying rates.

It is easily verified that if all Fk(x) are exponentially
distributed, the process n(t) is a Markov process. Denoting its
stationary distribution by π(n), the partial balance equations
are given by

π(n + ek)µk = π(n)λγk(n), ∀n : nk < Bk, 1 ≤ k ≤ K.
(3)

For every n 6= 0, let (n,n − ek1 ,n − ek1 − ek2 , . . . ,n −
ek1−ek2−· · ·−ekn−1

,0) be a direct path from state n to state
0, which is a loop-free path of length n, where n =

∑K
k=1 nk.

Define the product

Φ(n) = γk1(n− ek1)γk2(n− ek1 − ek2) · · · γkn−1(n−
ek1 − ek2 − · · · − ekn−1).

Define the distribution

π(n) = CΦ(n)

K∏
k=1

(
λ

µk

)nk
(4)

where C = π(0) is the normalization constant.

B. Insensitive policy with short queue preference

The I-SQP policy introduces job allocation preference for
short queues by setting

γk(n) =
Bk − nk∑K
i=1(Bi − ni)

. (5)

It is straightforward to verify that (4) with γk(n) given by
(5) satisfies the partial balance equations in (3) for each n,
regardless of the selected path used to define Φ(n). Since
partial balancing implies global balancing, (4) with γk(n)
given by (5) is also the stationary distribution under the I-SQP
policy and, due to the result of the Appendix, it is insensitive
to the job size distribution.
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We note that the I-SQP policy is equivalent to an insensitive
routing algorithm proposed in [16] for a special example of
processor-sharing networks. The blocking probability in this
context is obtained as

P = π(B1, . . . , BK).

C. Insensitive policy with short queue and energy preference

The I-SQEP policy is defined by setting

γk(n) =
Bk − nk +

(
µ̂
µk

)ω − 1∑K
i=1

[
Bi − ni +

(
µ̂
µi

)ω − 1
] (6)

where µ̂ = maxi µi. The parameter ω is designed to give pref-
erence to slower servers that require less energy consumption.
It is clear that the I-SQEP policy reduces to the I-SQP policy
when ω = 0. With an increasing ω, there is a higher probability
that the I-SQEP policy assigns a job to a slower server that
consumes less energy.

As in the case of the I-SQP policy, it is straightforward to
verify that (4) with γk(n) given by (6) satisfies (3). Therefore,
the distribution given by (4) with γk(n) given by (6) is also
the stationary distribution under the I-SQEP policy and is
insensitive to the job size distribution.

However, it should be noted that the I-SQEP policy is
deficient in the sense that it could assign a job to a queue
with no vacancy. That is, if server k is busy serving Bk jobs,
a new arrival is assigned to it with probability(

µ̂
µk

)ω − 1∑K
i=1

[
Bi − ni +

(
µ̂
µi

)ω − 1
]

in which case it will be lost.
Let nk = (n1, . . . , nK) denote the state where nk = Bk and

ni ≤ Bi for all i 6= k. Enumerating all nk for k = 1, . . . ,K,
we derive the blocking probability of the I-SQEP policy as

P =

K∑
k=1

∑
nk

π(nk)γk(nk).

V. INSENSITIVE ASSIGNMENT POLICIES WITH JOCKEYING

When job jockeying is permitted, jobs can be reassigned
to any server with buffer vacancies at any time. It provides
significantly more freedom for optimization compared to the
case without jockeying. As in Section IV, we constrain our-
selves to policies under which the stationary distributions are
insensitive.

A. Insensitivity conditions with jockeying

For the assignments with jockeying, we could not use
the GSMP framework presented in the Appendix to show
insensitivity of the job assignment class we need which is
defined below. Nevertheless, we can show the insensitivity
of that class by using the symmetric queue model with state
dependent service rates derived in [37].

Consider the following class of assignments with jockeying
which is sufficiently versatile to tradeoffs between throughput

and energy consumption. Let n =
∑K
k=1 nk, B =

∑K
k=1Bk.

The underlying idea is to define for each policy φ a feasible
group of server sets {T φ(n) : 1 ≤ n ≤ B}, where T φ(n) is
the set of servers designated for serving the existing jobs in the
system at state n. Since jockeying is allowed, the assignment
decisions are made upon each arrival and each departure.

The objective of our job assignment class is to facilitate a
tradeoff between job throughput and long run average energy
consumption. Note that our policies are functions of the total
number of existing jobs and do not consider their residual
service requirements.

Since the symmetric queue model with state dependent
service rate in [37] is defined for a one dimensional queue
length and our system comprises multiple queues, we define
for each policy φ the following one-to-one mapping Θφ

between a two dimensional queue and a one dimensional
queue

Θφ : Q2 7−→ Q1.

The mapping maps the buffer (queue) positions of Q2
def
=

{(k, l) : 1 ≤ k ≤ K, 1 ≤ l ≤ Bk} onto the positions of the
logically combined queue, Q1

def
= {1, . . . , B}, so as to match

the sets used in the underlying definition of {T φ(n)}.
The mapping Θφ can be defined recursively. This is clarified

by the two examples which are given in Section VII; one aims
to maximize job throughput and the other aims to maximize
energy efficiency. Note that there is more than one mapping
Θφ that could match {T φ(n)}. Since each server k uses the
PS regime, any mapping that engages the same server sets
will do. Additionally, as a result of the insensitivity property
of such policies (shown below), the stationary distribution of
the underlying stochastic process, {nφ(t), t ≥ 0}, under any
such mapping is the same.

To show that for every mapping Θφ (i.e., policy φ), the
system can be defined as a symmetric queue on the Q1

domain, we first specify the state dependent service rate over
the Q2 domain.

The total service rate under policy φ at state n is given by

µφ(n) =

K∑
k=1

µk · I{nk > 0} =
∑

k∈T φ(n)

µk
def
= µφ(n),

where I{E} is the indicator function of event E.
Using the PS regime, the proportion of service rate allocated

to the job in each position 1 ≤ l ≤ nk of server k (provided
that nk > 0) is given by

γφ(k, l,n) =
µk

nkµφ(n)
.

When a job at position l of server k, with its corresponding
position in the logically combined queue being j def

= Θφ(k, l),
completes its service and leaves the queue, the jobs in positions
j+1, . . . , n of the logically combined queue move to positions
j, . . . , n− 1, respectively.

A symmetric queue is characterized by the symmetry be-
tween service rate allocated to each position and the prob-
ability that a newly arrived job will join the system in the
corresponding position. Specifically, suppose that a job arrives
to the server farm at state n having a total number of n < B
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jobs. Then, the total number of jobs is increased to n + 1,
and their new state n′ is uniquely determined by the set
T φ(n + 1) (the set of servers designated for service at state
n + 1). To obtain the required symmetric queue, a new
arrival is assigned to position l of server k with a symmetric
probability which equals the departure probability from that
position, γφ(k, l,n′). When the new job is placed in its
designated position, say (k, l), which corresponds to position
j = Θφ(k, l) in the logically combined queue, jobs previously
in positions j, . . . , n of the logically combined queue move to
positions j + 1, . . . , n+ 1, respectively.

Using the one-to-one mapping Θφ, all state dependent
service rates and position placement probabilities can be
expressed on the single dimensional domain, Q1. With this
logically combined queue, each server k serves only the jobs
located at its associated positions using a PS regime. To
distinguish it from the conventional PS regime where each
server equally divides its attention among all waiting jobs,
we refer to this version of the PS regime as the localized PS
regime.

Note that the job departure rate depends on the number
of busy servers. Since each server has its own service rate,
it follows that for every predetermined position labeling and
policy φ, the total service rate of the logically combined queue
is determined by the queue length, n. Thus,

µφ(n) = µφ(n) and γφ(k, l,n) = γφ(Θφ(k, l), n). (7)

In [37], it was shown that a stationary symmetric queue
in the context of Q1 is insensitive to phase-type distributions
(defined as a mixture of Erlang distributions). It was further
established there that a network of nodes with symmetric
queues has a stationary distribution that factorizes into a
product form over the nodes, and is itself insensitive. The
result was extended in [38] to a general distribution.

Due to the insensitivity property, the stationary distribution
πφ of the process {nφ(t), t ≥ 0} under any policy with
jockeying φ, is resolved from the following partial balance
equations

πφ(n+ 1)µφ(n+ 1) = πφ(n)λ, ∀ n < B. (8)

Denote by φ the set of all assignment policies with jockey-
ing based on queue length information only. Since φ does not
contain policies which may use specific service requirement
realizations, we may consider stationary policies that take
decisions only upon arrivals and departures. In the next section
we derive the optimal policy over the set φ.

VI. THE LONG-RUN AVERAGE COST OPTIMAL
ASSIGNMENT POLICY WITH JOCKEYING

The optimal job assignment problem of policies with jock-
eying can be formulated as an SMDP [39] with a long-run
average cost criterion under a variety of cost functions. This
assignment problem can be modeled using similar techniques
for a general rate control problem of a single insensitive
queue with Poisson arrivals studied in, e.g., [40], [41]. Nu-
merical methods for computing the optimal service rates in
such problems are well known, e.g., value iteration and policy

iteration, based on the optimality equations [39, p. 298] with
average-cost criterion. Since our problem has a finite state
space, the optimal policy can be computed by a simple forward
recursive procedure, which is derived next.

Important for the SMDP formulation are the feasible set
of servers that can be selected at each state n, T (n), and its
implied individual rate vector, µ(n). Both determine the total
service rate at state n, µ(n). Note that due to the localized PS
regime and the jockeying capability, only the total rate affects
the transitions of the underlying queue length, {n(t), t ≥ 0}.

For each n, T (n) can comprise at most min(n,K) servers
whose individual rates are taken from the set {µk : k =
1, . . . ,K}. Since each server k can work also at a fractional
capacity 0 ≤ αk ≤ 1, the set of feasible individual rate vector
is

µ(n) = {αkµk : k ∈ T (n)}

and the set of feasible total rates is

µ(n) =
∑

k∈T (n)

αkµk.

Thus, each rate µ(n), which drives the transitions of the
process {n(t), t ≥ 0}, can be chosen from the compact set

A(n) =
⋃
T (n)

|T (n)| = min(n,K)

∑
k∈T (n)

αkµk.

Due to the insensitivity property, we may assume exponen-
tial service distributions and consider the process {n(t)} under
an arbitrary assignment policy with jockeying φ, where the
service rate at each state n is chosen from A(n). Without
loss of generality, we may assume that all server buffers are
combined into a single buffer of size B.

Equally important for the computational procedure is the
immediate cost function at state n, C(n). A general function
that suits our need is a cost function defined as a sum of the
service rates’ cost at state n, R(n), and the holding cost at
state n, H(n). Specifically,

C(n) = R(n) + H(n).

Since we focus on server energy consumption, which de-
pends not only on the total service rate but also on the
individual server rates µ(n), we generalize the notation of
R(n) into a function R(µ(n)) which depends on the entire
rate vector.

Still, note that the transitions of the SMDP depend only
on the total service rate. Moreover, since the state space is
finite and each action set A(n) is compact, the optimal rate at
time t is given by a stationary real value rate function µ(n)
of the total rate. That is, the optimal cost cannot be reduced
by changing the total service rate between state transitions.
We use the notions of the previous sections, φ, to denote a
stationary policy.

By definition, the optimal policy minimizes the following
expected cost of the process {n(t), t ≥ 0} under stationary
distribution, i.e., it minimizes over all feasible φ

V φ
def
=
∑
n

πφ(n)C(n)
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where πφ is the stationary distribution under policy φ.
Additionally, the finite state space and the compact action

spaces imply the existence of the optimal policy, φ∗, and an
optimal value function

V ∗ = V φ
∗

= min
φ
V φ. (9)

The case of energy vs. job throughout

To evaluate the performance of job assignment policies, we
next define specific cost functions. One useful service rate
cost function is the energy consumed by the server farm when
servicing at a total rate of µ(n). For this purpose, we use the
common energy model defined in (1). Note that, although in
our examples we use the function ε(µ) = µ3, any positive cost
function can be used in our optimal recursive computational
procedure.

Since the server farm comprises K servers, i.e., K CPU
units, the service rate cost depends on the server constellation
used to achieve a total required service rate of µ. Thus, one
case of R(n) accounting the energy consumption at state n is

R(n)
def
= E(µ(n)) =

∑
k∈T (n)

µ3
k

where µ(n) = {µk : k ∈ T (n)} is the selected rate vector
at state n. That is, E[E(µ(n))] is the long-run average energy
consumption under stationary conditions when the function
µ(n) is used.

The following two holding cost functions are also useful.
For the first function, H1(n), let

L(n) =

{
λ, if n < B

0, if n = B

and, for every b > 0, define

H1(n)
def
= −bL(n).

Recalling that λ is the job arrival rate, E[L(n)] under
stationary conditions is the job throughput. Another holding
cost function is

H2(n)
def
= Q(n) = n.

That is, E[Q(n)] is the long-run average queue length under
stationary conditions.

Since we are mainly interested to derive a job assignment
policy which optimally balances between energy consumption
and job throughput, our numerical examples (given below) use
the cost function

C(n) = E(n) + H1(n). (10)

Now, let
V φ(b)

def
= Eφ − bLφ

where Lφ and Eφ are the job throughput and the average
consumed energy, respectively, under stationary conditions
given that policy φ is employed.

In the case where the SMDP is defined with the cost
function of (10), the optimal assignment policy, φ∗(b), is the
solution of

min
φ
V φ(b). (11)

That is, φ∗(b) minimizes the long-run average cost of the
system, where the cost rate of the consumed energy is traded
off with the job throughput reward at rate b.

A particular interesting job reward rate is b∗, where the
energy cost and job throughput reward balances, namely, a b∗

that satisfies

V φ
∗
(b∗) = Eφ

∗
− b∗Lφ∗ = 0. (12)

For this case, we show below that φ∗(b∗) minimizes the ratio
Eφ/Lφ.

A. An optimal forward recursive procedure

Given that the state space is finite and is given by S =
{0, 1, . . . , B}, the minimum average cost of (9) and the opti-
mal rates are derived below by a forward recursive procedure.

For any given b and stationary policy φ, let V bφ (n) denote
the total expected cost until the next visit to state n = 0,
starting from state n and following policy φ. Also, let V b(n)
denote the minimum total expected cost until the next visit to
state 0, starting from state n ≥ 0. For n = 0, for the next
visit to state n = 0 under any policy φ, {n(t)} must first pass
through state n = 1, which occurs after 1/λ on the average.
Therefore, we have

V bφ (0) =
1

λ
C(0) + V bφ (1).

Since A(0) = {0}, the above relation also holds for V b(0)
and V b(1).

Before presenting the average-cost optimality equations
for the function V b(n), we need to address the issue that
the expected time between state transitions depends on the
state and on the policy φ. To this end, we employ the
“uniformization” device [42] and define a virtual exponential
clock that triggers events (arrivals and real or virtual service
completions) at rate λ+ µ̄, where µ̄ =

∑K
k=1 µk. The virtual

clock defines exponential time transitions occurring at rate
λ + µ̄. Since for every service policy φ, the real service rate
at each state n, µ(n), is not greater than µ̄, each uniform
transition is one of the following three types: 1) a new arrival
which occurs with probability λ/(λ + µ̄), 2) a real service
completion which occurs with probability µ(n)/(λ+µ̄), and 3)
a “dummy” service completion which occurs with probability
(µ̄− µ(n))/(λ+ µ̄).

By the optimality principle of dynamic programming, the
total expected cost function V b(n) are defined by the following
optimality equations:

(λ+ µ̄)V b(n) = min
µ(n)∈A(n)

{
C(n) + λV b(min(n+ 1, B))

+ µ(n)V b(max(n− 1, 0))

+ (µ̄− µ(n))V b(n)
}
.

(13)
Moreover, the stationary policy that uses the service rate µ(n)
which minimizes the right-hand side of (13) at each state n, is
the optimal policy for the total expected cost. If the minimum
is not unique, ties are broken by taking the largest minimizer
denoted by µb(n).
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Rearrange (13), we have

(λ+ µ̄)V b(n) = min
µ(n)∈A(n)

{
C(n) + µ(n)V b(max(n− 1, 0))

− µ(n)V b(n)
}

+ λV b(min(n+ 1, B)) + µ̄V b(n).
(14)

Further rearrange (14), we have

λ
[
V b(n)− V b(min(n+ 1, B))

]
=

min
µ(n)∈A(n)

{
C(n) + µ(n)

[
V b(max(n− 1, 0))− V b(n)

]}
.

(15)
Since the next transition from state n ≥ 1 must pass through

either state n − 1 or state min(n + 1, B) and the state space
is finite, the minimum expected total cost to enter state 0 is
finite and can be obtained by solving

V b(n)− V b(min(n+ 1, B)) =

min
µ(n)∈A(n)

1

λ

{
C(n) + µ(n)

[
V b(max(n− 1, 0))− V b(n)

]}
which is equivalent to the optimality equations (15) using the
differences V b(n)−V b(min(n+ 1, B)). Here, the differences

Y b(n)
def
= V b(n)−V b(min(n+1, B)), 0 ≤ n ≤ B−1 (16)

are the minimum total expected cost to move from state n to
state n+ 1.

For n = 0, (16) translates into

Y b(0) =
1

λ
C(0) (17)

and, for 1 ≤ n < B, we have

Y b(n) = min
µ(n)∈A(n)

1

λ

{
C(n) + µ(n)Y b(n− 1)

}
. (18)

Equations (17) and (18) comprise a set of forward recursive
equations for computing Y b(n), 1 ≤ n < B, along with the
average-cost optimal rates µb(n). The service rate function
µb(n) is the optimal average-cost service rate function if and
only if b = b∗, where b∗ satisfies (12).

Let τφ(n) denote the total time until the next visit to state
n = 0, starting from state n and following policy φ. Let φ∗

denote the optimal policy as a result of the above forward
recursive equations. The following respective relations hold
for every φ and b:

V bφ∗(0)

 > 0
= 0
< 0

if and only if

T (b)
def
=

V bφ∗(0)

τφ∗(0)

 > 0
= 0
< 0.

Also observe that V bφ∗(0) is decreasing in b. By starting with
two initial costs b1 and b2, such that b1 ≤ b∗ ≤ b2, one can
search for the optimal b∗ and φ∗ using an efficient procedure
as suggested in [43]. Next, we express the derivation above
into a complete procedure.

Forward recursive procedure

1) Start with initial b1 and b2 such that b1 ≤ b∗ ≤ b2 (see
below).

2) Set b = (b1 + b2)/2 and use equations (17) and (18) to
compute Y b(n) and µb(n) for every 1 ≤ n ≤ B.

3) Employ the insensitivity and use the balance equations
of (8) to compute the stationary expected value of C(n)
using the stationary policy φb induced by the service
rates µb(n), 1 ≤ n ≤ B. That is, compute the optimal
average cost

T (b) =

B∑
n=0

πb(n)C(n) (19)

where

πb(n) = πb(0)

n∏
i=1

λ

µb(i)
, 0 ≤ n ≤ B.

4) Given one of the outcomes in (19) above, continue as
follows:

a) If T (b) = 0, then φ∗(b) = φ∗(b∗); stop.
b) If T (b) > 0, then the decreasing monotonicity

implies b < b∗; set b→ b1.
c) If T (b) < 0, then the decreasing monotonicity

implies b > b∗; set b→ b2.
5) If b2− b1 < ε, where ε is a predetermined error margin,

use φ∗(b) as an estimator of φ∗(b∗) and stop; otherwise,
go to step 2.

The initial b1 can be set to 0 here. The initial b2 can
be derived from any stationary feasible policy φ, e.g., those
introduced in Section VII-A and Section VII-B. That is,

b2 =

∑B
n=0 π

φ(n)R(n)∑B
n=0 π

φ(n)L(n)

where

πφ(n) = πφ(0)
n∏
i=1

λ

µφ(i)
, 0 ≤ n ≤ B.

B. The optimality of φ∗(b∗)

In our formulation, the measure of energy efficiency is given
by Lφ/Eφ. In the following theorem, we show that φ∗(b∗)
minimizes Eφ/Lφ and therefore maximizes energy efficiency.

Theorem 1: The job assignment policy with jockeying,
φ∗(b∗), defined by (11) and (12) is optimal, i.e.,

Eφ∗(b∗)

Lφ∗(b∗)
≤ E

φ

Lφ
, ∀ φ ∈ φ.

Proof: As shown above, for any given b > 0, φ∗(b)
minimizes V φ(b) = Eφ − bLφ over all φ ∈ φ. That is,

Eφ
∗(b) − bLφ

∗(b) ≤ Eφ − bLφ, ∀ φ ∈ φ.

Particularly, setting b = b∗ implies that

0 = Eφ
∗(b∗) − b∗Lφ

∗(b∗) ≤ Eφ − b∗Lφ, ∀ φ ∈ φ. (20)
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From the left-hand side equality of (20) it follows that

b∗ =
Eφ∗(b∗)

Lφ∗(b∗)
(21)

and from the right-hand side inequality it follows that

Eφ − b∗Lφ ≥ 0. (22)

By combining (21) and (22) we have

Eφ

Lφ
≥ b∗ =

Eφ∗(b∗)

Lφ∗(b∗)
.

We will denote the optimal policy φ∗(b∗) by I-J-OPT, to
emphasize that it is an insensitive policy with jockeying. Since
it is not given in an explicit form and may require a complex
computation, the derivation of heuristic policies has merit.

VII. HEURISTIC POLICIES WITH JOCKEYING

In this section, we derive two heuristic policies with jockey-
ing. The first policy, called the insensitive policy with jockeying
and with fastest idle server first, or briefly the I-J-FISF policy,
is optimal with respect to the throughput. The second policy,
called the insensitive policy with jockeying and with slowest
server first, or briefly the I-J-SSF policy, approximates the
(optimal) policy I-J-OPT and aims at maximizing the energy
efficiency.

A. Insensitive policy with jockeying and with fastest idle server
first

Without loss of generality, we label the servers in a decreas-
ing order of their speed, i.e., µ1 ≥ µ2 ≥ . . . ≥ µK . That is,
server 1 is the fastest server and server K is the slowest.

With localized PS, the job departure process depends only
on the set of busy servers. Thus, for every n =

∑K
k=1 nk, the

instantaneous departure rate from the server farm at state n is
maximized if the set of busy servers is set to

T (n) = {1, . . . ,min(n,K)}. (23)

This group of sets defines the I-J-FISF policy, denoted by φ1.
Note that the I-J-FISF policy satisfies two conditions at any
point in time, i.e., 1) no server is idle if a slower server is busy,
and 2) no server has more than one job if another server is
idle. Since I-J-FISF is a policy with jockeying, by definition, a
rearrangement of the existing jobs is always required whenever
it becomes necessary to satisfy the two conditions of the
policy. One example is when a faster server becomes empty
and a slower server still works. Another example is when a
slower server becomes empty and a faster server still has more
than one job.

The position mapping of φ1, Θφ1 , is defined iteratively
as follows. In the first iteration, the first buffer positions of
servers 1, 2, . . . ,K are mapped to the first K positions of the
logically combined queue in the order of the server labels
1, 2, . . . ,K, inheriting their original server rates. In every
subsequent iteration, the next remaining position levels from
the remaining buffers, say m ≤ K positions, are mapped to
the next m positions of the logically combined queue in the

order of the server labels. The iterations terminate when all
the positions of all server buffers have been mapped.

Position mapping Θφ1 matches the sets T (n) defined by
(23). It also defines a particular assignment with jockeying
policy which induces an insensitive policy when new jobs join
queue positions according to the probabilities defined by (7),
where φ is set to φ1.

Under the I-J-FISF policy, we have

µφ1(n) =

min(n,K)∑
k=1

µk.

It is straightforward to verify that the partial balance equations
of (8) are satisfied by the following stationary distribution

πφ1(n) =


πφ1(0)

n∏
i=1

λ
µφ1 (i)

, if 0 ≤ n ≤ K,

πφ1(0)
(

λ
µφ1 (K)

)n−K K∏
i=1

λ
µφ1 (i)

, if K < n ≤ B,
(24)

where πφ1(0) is the normalization constant.
Next, we show that I-J-FISF is optimal in the following

sense. Given a policy φ ∈ φ, let UφT be the total units of jobs
processed by all servers until time horizon T under policy φ,
i.e.,

UφT =

∫ T

t=0

µ
(
|nφ(t)|

)
dt,

where nφ(t) =
(
nφ1 (t), . . . , nφK(t)

)
is the queue length vector

at time t under policy φ and |nφ(t)| =
∑K
k=1 n

φ
k(t).

Theorem 2: For every φ ∈ φ, µφ1

T ≥ µ
φ
T , ∀ T .

Proof: Recall that φ, by definition, is the set of all
assignment policies with jockeying based on queue length
information only. First note that under policy I-J-FISF, at any
time t, the number of busy servers is maximized and for each
k, nk(t) > 0 only if ni(t) > 0, for every i < k. Next, we prove
that a policy which does not satisfy this property, denoted
by (∗), can be strictly improved for some finite time horizon
(using a non-stationary policy).

Suppose that φ does not satisfy (∗) and we show that it
can be strictly improved. Under policy φ, there is a first time
t0, where nk(t0) > 0 and ni(t0) = 0 for some i < k.
Consequently, we can improve policy φ by a policy φ̃ which
mimics φ actions until time t0. At time t0, it moves a job,
denoted by r∗, from queue k to queue i and waits until the
next state transition (arrival or departure) at some time t1 > t0.
At that moment (just before a decision is taken by φ), it moves
job r∗ (if not left already) back to its original queue i. From t1
onwards, φ̃ continues to mimic φ, with the possible exception
in the scenario where r∗ has left at time t1. In this case, r∗

is replaced by a dummy job with the same residual service
requirement.

Since µi > µk and t1 − t0 > 0, it follows that

U φ̃t > Uφt , t ∈ [t0, t1)

with probability one.
Also, since any policy φ 6= I-J-FISF can be improved, I-

J-FISF is optimal for any finite horizon T . To show that φ1
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cannot be improved also with respect to the long run average
of the delivered service rate, i.e., job throughput, the argument
above shows the following. Any policy which violates property
(∗) above can be strictly improved unless it violates property
(∗) on a set of states whose stationary probability is zero.

The following corollary, implied from Theorem 2, shows
that I-J-FISF is also optimal with respect to job throughput
and blocking probability. Let Nφ

T be the total number of jobs
that have departed from all servers until time horizon T under
policy φ. Since φ ∈ φ is ergodic, we have

UφT /T

Nφ
T /T

−→ E(X) as T →∞ (25)

where E(X) is the expected job size.
Consider the limits of the departure rates measured in units

of jobs and the ones measured in number of jobs, respectively.
We have

µ̄φ
def
= lim

T→∞
1
T U

φ
T ,

Lφ def
= lim

T→∞
1
TN

φ
T .

(26)

By definition, Lφ is the job throughput, and by (25) and (26),
the ratio µ̄φ/Lφ is independent of the policy. Also, since the
job blocking probability, Pφ, is given by 1−Lφ/λ, Theorem
2 implies the following corollary.

Corollary 1: Policy I-J-FISF is also optimal with respect to
job throughput and job blocking probability. That is, for every
φ ∈ φ,

Lφ1 ≥ Lφ,

Pφ1 ≤ Pφ.

B. Insensitive policy with jockeying and with slowest server
first

For notational clarity and differently from Section VII-A,
we label the servers according to their energy efficiency,
using the convention of k < k′ if and only if ε(µk)/µk <
ε(µk′)/µk′ . Note that for ε(µ) = µβ and β > 1, k < k′ if and
only if µk < µk′ . Thus the server labels for the energy problem
are reversed compared to the labels used for the throughput
optimization. That is, the smaller the server rate the smaller
its label is; i.e., the lower its energy consumption is.

Assuming that energy consumption is proportional to the
server operational time, the least energy consumption assign-
ment policy in a non-blocking system (i.e., with unlimited
buffer sizes) is attained by maximizing the idle times of the
most energy consuming servers at time t. Intuitively, it is
attained by shifting the jobs toward the most energy conserving
servers. That is, after any change of state n, the jobs are
shifted toward the most energy conserving servers (filling up
the buffers of the servers with smallest labels). This least
energy consumption assignment policy is instrumental for our
blocking system. The assignment policy I-J-SSF is defined by
specifying the set of servers designated for serving the jobs,
at each state 1 ≤ n ≤ B, as

T (n) = {1, . . . , j} (27)

where j ≤ K is the smallest integer satisfying n ≤
∑j
i=1Bi.

The server sets in (27) indeed define the I-J-SSF policy
described above, in which the available servers with lowest
rates are designated for service for each state n. Policy I-J-
SSF is also denoted by φ2.

The position mapping Θφ2 of φ2 is defined iteratively as
follows. The B1 positions of server 1 (the most energy efficient
server) are mapped to the first B1 positions of the logically
combined queue and are associated with the rate and energy
parameters of server 1. The B2 positions of server 2 (the
second most energy efficient) are mapped to the following B2

positions of the logically combined queue and are associated
with the rate and energy parameters of server 2. This procedure
continues until positions of server K have been mapped.

Position mapping Θφ2 matches the sets T (n) defined by
(27). It also defines a particular assignment and jockeying
policy which induces an insensitive policy when new jobs join
each queue position with a symmetrical departure probability
as defined by (7) where φ is set to φ2.

Under the I-J-SSF policy, φ2, we have

µφ2(n) =
∑

k∈T (n)

µk

and it is straightforward to verify that the partial balance
equations of (8) are satisfied by the following stationary
distribution

πφ2(n) = πφ2(0)

n∏
i=1

λ

µφ2(i)
, 0 ≤ n ≤ B, (28)

where πφ2(0) is the normalization constant.
Note that for each k, µφ2(n) are fixed for each n ∈ {n :∑k−1
i=1 Bi < n ≤

∑k
i=1Bi}.

VIII. NUMERICAL RESULTS

This section provides extensive numerical results that
demonstrate the effectiveness of the various policies proposed
in this paper and their throughput versus energy savings
tradeoffs.

Figure 1 illustrates the performance of the I-SQEP policy
under a wide range of values of the parameter ω with the
I-SQP policy serving as the benchmark. In this set of exper-
iments, we consider a system with five servers, and set the
speed µk = k and the buffer size Bk = 10 for each server k.
The arrival rate is λ = 12. Recall that, with a higher value of
ω, I-SQEP assigns a job with a higher probability to a slower
server that consumes less energy. However, in this way, there
is also a higher probability that the job is assigned to a queue
with no vacancy and, therefore, the blocking probability of the
system is higher. The results in Fig. 1(a) and Fig. 1(b) confirm
that, as ω increases, both the job throughput and the energy
consumption of I-SQEP decrease. We observe in Fig. 1(c)
that the energy efficiency of I-SQEP monotonically increases
as ω increases. As expected, I-SQEP reduces to I-SQP when
ω = 0. Thus, I-SQEP can effectively trade off job throughput
for energy efficiency by tuning the parameter ω.

In Fig. 2 and Fig. 3, we compare the performance of the
various policies (with and without jockeying) under various
system parameters. Since the number of states in the class
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Fig. 1. Performance of the I-SQEP policy with respect to the parameter ω. (a) Job throughput. (b) Energy consumption. (c) Energy efficiency. The I-SQP
policy serves as the benchmark.
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Fig. 2. Performance comparison of various policies in small systems with respect to the arrival rate. (a) Job throughput. (b) Energy consumption. (c) Energy
efficiency.

of insensitive policies without jockeying is
∏K
k=1(1 + Bk),

computation of the stationary distribution under I-SQP and I-
SQEP is difficult and is limited to cases of small systems. In
this set of experiments, we set the parameter ω = 1 for I-
SQEP. We consider a system with five servers; the speed of
each server k is µk = k. The results in Fig. 2 are obtained
with the buffer size Bk = 10 for each server k and the arrival
rate λ varied from 1 to 20. For the results in Fig. 3, the arrival
rate is set at λ = 12 and all servers have the same buffer size
which is varied from 1 to 29.

We observe in Fig. 2 that, when the arrival rate is small,
all policies achieve almost the same job throughput. How-
ever, since the I-J-SSF policy is designed to make more use
of the energy conserving servers, it consumes significantly
less energy compared to I-SQP, I-SQEP and I-J-FISF. As a
result, I-J-SSF yields significantly higher energy efficiency
and performs over eight times better than the other policies,
especially the throughput-optimal I-J-FISF policy. On the other
hand, it is clear that, when the arrival rate increases, the
servers’ utilization also increases, and it is more likely that
all the servers are busy all the time regardless of the policy.
Accordingly, all policies converge to the same level of system
performance. In Fig. 3, we observe that both the job throughput

and the energy consumption increase because more jobs can
be admitted as the buffer size increases. Under the various
policies, the system performance converges to a certain level
at a point where the buffer size is sufficiently large, so that
almost all jobs can be admitted and the blocking probability
becomes negligible.

Among the various policies, as shown in Fig. 2 and Fig. 3,
the throughput-optimal I-J-FISF policy always yields the
highest job throughput, but consumes the largest amount
of energy and is the least energy efficient. In all cases, we
observe that the (optimal) I-J-OPT policy is indeed the
best with respect to the energy efficiency, and the energy
efficiency of I-J-SSF is very close to that of I-J-OPT,
especially in Fig. 2(c). Although it is observed in Fig. 3(b)
that I-SQEP consumes the smallest amount of energy when
the buffer size is small (i.e., 1, . . . , 6), it is achieved at the
expense of sacrificing the job throughput.

Since the class of insensitive policies with jockeying is com-
putationally scalable, we can further examine the effectiveness
of I-J-FISF, I-J-SSF and I-J-OPT using large system examples.
The energy efficiency results in Fig. 4 are obtained from exten-
sive experiments under a wide range of system parameters for
a system comprising 100 heterogeneous servers. In particular,
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Fig. 3. Performance comparison of various policies in small systems with respect to the buffer size. (a) Job throughput. (b) Energy consumption. (c) Energy
efficiency.
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Fig. 4. Energy efficiency comparison of policies with jockeying in large systems. (a) With respect to the arrival rate. (b) With respect to the buffer size. (c)
Cumulative distribution of the approximation ratio of the I-J-SSF policy to the I-J-OPT policy under various configurations of server speed.

we consider different choices of arrival rate, different choices
of buffer size, and various configurations of server speed.

In both Fig. 4(a) and Fig. 4(b), the speed of server k is fixed
at µk = 0.1k. In Fig. 4(a), we set the buffer size Bk = 100 for
each server k and vary the arrival rate λ from 1 to 500. In Fig.
4(b), the arrival rate is set at λ = 404, and all servers have the
same buffer size which is varied from 1 to 49. In both figures,
we have similar observations of the three policies to those
found in Fig. 2(c) and Fig. 3(c) for small system examples.

In Fig. 4(c), for each server k, we set the buffer size
Bk = 100 and randomly (uniformly) choose the speed of
server k from the range [0.1, 10]. For each such random
configuration of server speed, we set the arrival rate at
λ = 0.8

∑
k µk. We compare I-J-SSF and I-J-OPT in terms of

the approximation ratio, defined in this context as the ratio of
the energy efficiency of I-J-SSF to that of I-J-OPT. Results
are obtained from 1000 experiments, each with a random
configuration of server speed, and are plotted in Fig. 4(c) in
the form of cumulative distribution. We again observe that the
very simple heuristic I-J-SSF policy performs very close
to I-J-OPT in the scale of that figure. In all the 1000 random
experiments, the approximation ratio is smaller than 1.0015.
Up to 95% of the observations are smaller than 1.0004.

Figure 5 illustrates the price of insensitivity of the I-SQP
policy by comparing it to the JSQ policy. Recall that JSQ
always assigns an incoming job to the shortest queue, while
I-SQP assigns the job to a shorter queue with a higher
“preference” probability to achieve insensitivity. Since there
is no analytical solution of JSQ available in the literature,
we evaluate its performance by simulation, and we use the
deterministic job size distribution, for which JSQ is known to
achieve the best performance [11], [12]. All simulation results
of JSQ are obtained in the form of an observed mean from
multiple independent runs and its confidence interval at the
95% level based on the Student’s t-distribution. In this set of
experiments, we consider a system with ten servers. For each
server k, its speed is µk = k, and its buffer size is Bk = 10.
We vary the arrival rate λ from 1 to 55. We observe in Fig.
5 that, when the arrival rate is small, the throughput is almost
the same for the two policies. However, the energy efficiency
of I-SQP is significantly worse than that of JSQ. In fact, one
can expect that, when the buffer size is large and the arrival
rate is small, the preference probabilities of I-SQP are more
or less the same. In such cases, even the throughput of I-SQP
can be far worse than that of JSQ.

The price of insensitivity of the I-SQP policy can be
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Fig. 5. Performance comparison of various policies with respect to the arrival rate. (a) Job throughput. (b) Energy consumption. (c) Energy efficiency. The
results of the JSQ policy are obtained by simulation using a deterministic job size distribution.

mitigated by introducing jockeying to job assignment. As
shown in Fig. 5, compared to JSQ, the two insensitive policies
with jockeying achieve better performance in their respective
objectives, because they have the flexibility to choose the best
server at any moment. Although various jockeying models of
JSQ have been studied in the literature, they were not designed
to yield insensitive policies, which are the focus of the present
paper.

IX. CONCLUSIONS

We have studied job assignment policies in the popu-
lar server farm model comprising multiple heterogenous PS
servers with finite buffers. Since server farms are known for
their massive energy consumption, we focused on management
policies aiming at energy conservation.

Unlike previous studies of management policies, where
server speeds are scaled as a function of their workload,
or servers are dynamically activated/deactivated for energy
conservation, the management policies considered in this study
are job assignments to multiple heterogeneous servers. We
believe that combining our approach with the server scalability
approach would enhance the energy management of server
farms. Additionally and differently from other studies, we have
designed our assignment policies to be insensitive, namely,
their stationary distributions depend on the job size distribu-
tions only through their means. We argue that insensitivity is
a very important aspect of performance evaluation and system
deployment, since it enhances commercial systems with the
properties of robustness and performance predictability.

We have considered two insensitive policies without jock-
eying and two insensitive policies with jockeying. We have
provided extensive numerical results that demonstrate the
effectiveness of the various policies and their throughput
versus energy savings tradeoffs. Our main observations are
summarized below:
• The two insensitive policies without jockeying, i.e., I-

SQP and I-SQEP, do not achieve their objectives as well
as their “with jockeying” counterparts because they do
not have the flexibility to choose the best server at any
moment, and because they involve probabilistic server
assignments to achieve insensitivity.

• Compared to the classic JSQ policy, there is a price of
insensitivity of the I-SQP policy. However, this price of
insensitivity of the I-SQP policy can be mitigated by
introducing jockeying to job assignment.

• The performance of the two insensitive policies with
jockeying is remarkable in their respective objectives.
I-J-FISF is throughput-optimal. I-J-SSF is very close
to optimal in the various cases with respect to energy
efficiency.

APPENDIX

A standard framework for proving the insensitivity property
of a stochastic process is the generalized semi-Markov process
(GSMP) originally derived in [44] and further extended in
various papers, e.g., [45], [46] and [47].

We follow the definitions of [46] and the extension of [47]
for GSMP with speeds. Let n(t), t ≥ 0, be a vector stochastic
process on a countable state space N and S = S0 ∪ S1 a
union of two countable set of indices of possible events that
can occur. Each set Si, i = 0, 1, represents different events
defined below. To each state n ∈ N corresponds a non-empty
finite subset of events S(n) ⊂ S. Each event s ∈ S(n) is
associated with a “clock” measuring the residual time until
event s will occur. The lifetime of a clock associated with
event s is a random variable drawn from a distribution with a
continuous CDF Fs(x) with Fs(0) = 0.

For s ∈ S0, Fs(x) is exponential with mean λ−1s and for
s ∈ S1, Fs(x) is general with mean µ−1s . A special case is
where S0 labels customer inter-arrival times and S1 labels
service lifetimes. In general, S labels possible point events.

The GSMP is constructed as follows. The process n(t)
evolves from any state n by having some event s ∈ S(n)
trigger a transition to another state n′. Let p(n′|s,n) be the
probability that the new state is n′ given that s triggers the
transition. The actual triggering event depends on the clocks
associated with the events of S(n) and the speeds at which
they run, c(n, s).

When the state of the process is n, c(n, s) = 0 (inactive)
for every s 6∈ S(n) and at least one c(n, s) > 0 (active) for
s ∈ S(n). A triggering event is also referred to as an expiration
of its corresponding clock. It is assumed that no two active
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clocks can expire simultaneously. However, an instantaneous
reactivation of a clock is possible.

At a transition from n to n′ triggered by event s, new clock
values are independently drawn for s′ ∈ S(n′)−

(
S(n)−{s}

)
.

The old active clocks’ reading is kept after transition. It should
be noted that the GSMP defined in [47] allows a clock lifetime
distribution that depends on the tuple (n, s,n′, s′) rather than
only on s′, i.e., a CDF Fn,s,n′,s′(x).

It has been shown, e.g., in [48], that if the GSMP n(t) has a
finite stationary distribution and the property of instantaneous
attention (i.e., generally distributed lifetime events {s} are
activated with a positive rate as soon as they are created),
then insensitivity is equivalent to stationary partial balance
of the Markovian version of n(t) (i.e., when all Fs(x) are
exponentially distributed). That is, the following condition is
necessary and sufficient for insensitivity.

Condition 1: With all event lifetimes set to exponential
distributions, the stationary probability flux out of each state
n due to a particular lifetime event clock expiration is equal
to the stationary influx probability into that state due to an
activation of that event clock.

It is worth noting that not every Markovian process sat-
isfying partial balance can be embedded into a GSMP. One
example which can be embedded is M/M/1 with processor
sharing (PS). On the other hand, as far as we are aware of,
the M/M/1 FIFO and LIFO queue cannot be embedded into
a GSMP. Nevertheless, using the symmetric queue framework
model of [37], it can be shown that M/G/1 LIFO queue is
insensitive. On the other hand, M/G/1 FIFO is not a GSMP
neither a symmetric queue and also known to be sensitive.
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