
1

Energy-Efficient Heuristics for Insensitive Job
Assignment in Processor-Sharing Server Farms

Jing Fu, Graduate Student Member, IEEE, Jun Guo, Member, IEEE, Eric W. M. Wong, Senior Member, IEEE,
and Moshe Zukerman, Fellow, IEEE

Abstract—Energy efficiency of server farms is an important
design consideration of the green datacenter initiative. One
effective approach is to optimize power consumption of server
farms by controlling the carried load on the networked servers.
In this paper, we propose a robust heuristic policy called E* for
stochastic job assignment in a server farm, aiming to improve
the energy efficiency by maximizing the ratio of job throughput
to power consumption. Our model of the server farm considers
a parallel system of finite-buffer processor-sharing queues with
heterogeneous server speeds and energy consumption rates.
We devise E* as an insensitive policy so that the stationary
distribution of the number of jobs in the system depends on the
job size distribution only through its mean. We provide a rigorous
analysis of E* and compare it with a baseline approach, known as
most energy-efficient server first (MEESF), that greedily chooses
the most energy-efficient servers for job assignment. We show
that E* has always a higher job throughput than that of MEESF,
and derive realistic conditions under which E* is guaranteed
to outperform MEESF in energy efficiency. Extensive numerical
results are presented and demonstrate that E* can improve the
energy efficiency by up to 100%.

Index Terms—Energy efficiency, insensitivity, job assignment,
processor sharing, server farm.

I. INTRODUCTION

DATA centers have become essential to the functioning
of virtually every sector of a modern economy [1].

Server farms in data centers are known for their massive
power consumption [2]. Energy efficiency of server farms
is important considering greenhouse gas emissions concerns.
Driven by the green datacenter initiative to facilitate a low-
carbon economy in the information age [3], there is a strong
incentive for managing power consumption of server farms
while maintaining acceptable levels of performance [4].

Various approaches have been proposed in the literature
aiming at energy conservation in server farms. These include
speed scaling methods for optimizing power consumption by
controlling server speeds based on their carried load [5]–[10],
right sizing techniques for dynamically activating/deactivating
servers [11], [12], and resource allocation solutions for perfor-
mance optimization in server farms [13], [14]. The approach
that we take in this paper is in line with [15] and investigates
the problem of stochastic job assignment in a server farm.
The objective is to maximize its energy efficiency, defined

This work was supported by City University of Hong Kong under Project
No. 9380044. A preliminary version of this paper was presented at IEEE
INFOCOM’15, Hong Kong, April 2015.

The authors are with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong (e-mail: jingfu6-c@my.cityu.edu.hk;
j.guo@cityu.edu.hk; eeewong@cityu.edu.hk; m.zu@cityu.edu.hk).

as the ratio of job throughput to power consumption. This
approach provides a way for optimizing power consumption of
server farms by controlling the carried load on the networked
servers as a function of the (fixed) server speeds and energy
consumption rates. It can also be combined with speed scaling
at each server for local fine-tuning.

Our model of the server farm considers a parallel system of
finite-buffer processor-sharing (PS) queues with heterogeneous
server speeds and energy consumption rates. PS queues are
suitable for modeling web-server systems [16]–[19]. Under
PS, all existing jobs at each server share the processing ca-
pacity and are served at equal rates. PS enables fair processing
of jobs, which is desirable in web-server systems where the file
size distribution is known to have high variability [20]. Note
that broader applications of PS queues can also be found in
communication systems (see e.g. [21], [22]).

In this paper, we focus on job assignment policies that allow
jockeying. When jockeying is permitted, jobs can be reassigned
to any server with buffer vacancies at any time before they
are completed. Assignment with jockeying has more freedom
and suits a server farm where the servers are collocated in a
single physical center and can use e.g. a shared DRAM-storage
[23] or flash-storage [24]. It may also suit a data center with
more advanced virtualization technologies that enable high-
speed live migration of jobs [25]. Jockeying policies in general
can significantly improve the system performance. In addition,
they are scalable in computation and hence make resource
optimization more tractable.

For such a problem, a straightforward heuristic approach is
by greedily choosing the most energy-efficient servers for job
assignment. It can be shown that, under certain conditions,
this approach, which we call most energy-efficient server first
(MEESF) in this paper, maximizes the ratio of instantaneous
job departure rate to instantaneous energy consumption rate.
In general, however, this is not the case, and we shall see that
MEESF does not necessarily maximize the ratio of long-run
average job departure rate (i.e., job throughput) to long-run
average energy consumption rate (i.e., power consumption).
This observation motivates us to design a more robust heuristic
policy for improving the energy efficiency of the system
and yet achieving a higher job throughput than what can be
achieved with MEESF.

A preliminary conference version of this paper was pre-
sented in [26]. Here, we extend [26] by providing a more
thorough understanding of the heuristic policy and a more
rigorous analysis of its properties, taking into consideration
servers with heterogeneous buffer sizes. Our main contribu-



2

tions in this paper are summarized as follows:
• We propose a robust heuristic policy for stochastic job

assignment in a finite-buffer PS server farm. Note that in
this paper we shall name this heuristic policy as E* to
reflect our goal of designing a “star” policy that can maxi-
mize the energy efficiency of the system. We demonstrate
the effectiveness of E* by comparing it to the baseline
MEESF policy. Unlike MEESF that greedily chooses
the most energy-efficient servers for job assignment, E*
aggregates an optimal number of K̂ ≥ 2 most energy-
efficient servers to form a virtual server. In our design, E*
always gives preference to this virtual server and utilizes
its service capacity in such a way that guarantees a higher
job throughput than what is achievable with MEESF and
yet can improve the energy efficiency of the system. The
decision variable K̂ provides a degree of freedom for E*
to fine-tune its performance.

• We discuss the insight gained from our design of E*,
based on which we propose a simple rule of thumb
for determining the optimal K̂ value that maximizes the
energy efficiency of the system under E*. The resulting
policy, referred to as rate matching (RM), simply chooses
the value of K̂ such that the aggregate service rate
of the virtual server matches the job arrival rate. We
provide extensive numerical results to demonstrate the
effectiveness of RM relative to E*.

• We devise E* as an insensitive job assignment policy.
That is, the stationary (steady-state) distribution of the
number of jobs in the system depends on the job size
distribution only through its mean. This insensitivity
property is useful for assuring robustness and predictabil-
ity of the performance of the server farm under a wide
range of job size distributions.

• We perform a rigorous analysis of E*. In particular, we
prove that E* has always a higher job throughput than
that of MEESF. We also prove that, under the realistic
scenario where at least two servers in a heterogeneous
server farm are equally most energy efficient, E* is
guaranteed to outperform MEESF in terms of the energy
efficiency of the system. Having at least two servers that
are equally energy efficient can be justified as a server
farm is likely to comprise multiple servers of the same
type purchased at a time.

The rest of this paper is organized as follows. In Section II,
we discuss the related work. In Section III, we describe
the server farm model. In Section IV, we provide details of
the job assignment policies. Insensitive conditions of the job
assignment policies are derived in Section V. In Section VI, we
provide a rigorous analysis of the E* policy. Numerical results
are presented in Section VII. Finally, we draw conclusions in
Section VIII.

II. RELATED WORK

Since the work of Haight [27] in 1958, various queueing
models for job assignment with or without jockeying among
multiple servers have been considered in the literature. Most
of the existing work is focused on job assignment policies that

aim to improve the system performance under the first-come-
first-served (FCFS) service discipline. Among them, join the
shortest queue (JSQ) is a classic policy.

The JSQ policy in the non-jockeying case has been studied
in [28]–[30] for FCFS queues and in [31]–[33] for PS queues.
Bonomi [31] proved the optimality of JSQ in a PS model
with homogeneous servers under general arrival process and
Markov departure process. Whitt [32] provided a counter-
example for showing the non-optimality of JSQ in the case of
non-exponential job size distribution. Gupta [33] presented an
approximate analysis of the performance of JSQ in a PS model
with general job size distribution, and intuitively explained
its optimality in terms of the average delay in a system with
heterogeneous servers.

Server farm applications of the JSQ policy in the jockeying
case have been studied in [34]–[36] for FCFS queues. The
jockeying action is triggered when the difference between the
queue length of the shortest queue and that of the longest
queue reaches a threshold value. The focus of this existing
work is on the expression of the equilibrium distribution of the
queue length, and it has been shown that jockeying policies
can significantly improve the system performance.

Several energy-aware non-jockeying policies have been
studied in [14], [37] for a multi-queue heterogeneous system
with infinite buffer and setup delay, where exact expressions
of the value function for the Markov decision process (MDP)
are given. Hyytiä et al. [37] showed that M/G/1-LCFS is
only sensitive to the mean of the set-up delay, while M/G/1-
PS loses its insensitivity with consideration of the set-up
delay. Li et al. [38] proposed a heuristic approach which
aims to maximize the weighted probability of the combined
execution time (delay) and the energy consumption metric with
constraints on both the delay deadline and the energy budget
in a heterogeneous computing system. To the best of our
knowledge, PS multi-queue systems with jockeying have been
studied before only in [15], where the optimization problem
is characterized by the semi-Markov decision process (SMDP)
[39] and attempts to maximize the ratio of the job throughput
to the power consumption.

In the general context of MDP or SMDP, significant work
has been done to optimize the expected average reward (cost).
In [40], Lippman optimized the finite horizon discounted
reward in three models, namely, M/M/c finite capacity queue,
M/M/1 service rate control problem and M/M/c finite capac-
ity queue with policy-dependent arrival rates, by using the
concept of “uniformization” device which defines a virtual
exponential clock independent from both the policy and the
state of the stochastic process. The concept of g-revised reward
[41] provides a bridge between optimization problems of the
expected total reward and the expected average reward. In
addition, an optimal solution that maximizes the expected
average reward can be achieved by using a procedure proposed
in [41]. In particular, Stidham and Weber [42] considered
a service rate control problem of a single queue with left-
skip-free transition structure in both exponential and non-
exponential service time cases, where the decisions of the
policy depend on the number of customers (jobs) in the queue
and no discounting is considered. They provided a method



3

to prove the monotonicity of the optimal service rates, in
which the optimal service rates are increasing in queue length,
and some of their resulted optimal policies are shown to be
insensitive to the shape of the service time distribution. George
and Harrison [43] studied the service rate control problem of a
single queue evolving a birth-and-death Markov process, and
proved the existence of monotonic optimal service rates with
weaker assumption than those of [42].

The objective function, defined as the long-run average
reward per unit cost (e.g. time consumption, energy consump-
tion, etc.), in [15] is a generalized version of the long-run
average service quality per unit time that has been studied
previously. Rosberg et al. [15], using similar techniques of
[40]–[43], proposed an algorithm for optimal stationary job
assignment that maximizes the energy efficiency of the system
by exploring server heterogeneity. However, the optimal policy
is not scalable in computation. Rosberg et al. [15] further
proposed the scalable slowest server first (SSF) policy which
aims to approximate this optimality. SSF was numerically
demonstrated to be near-optimal under certain relationship
between the energy consumption rate and the service rate of
a server. Our approach in this paper gives rise to a class of
scalable job assignment policies that are provably more robust
than SSF and can significantly improve the energy efficiency
of the system under a variety of cases.

III. SYSTEM MODEL

For the reader’s convenience, Table I provides a list of major
symbols that we shall define and use in this paper. Our model
of a server farm considers K independent servers, each having
a finite buffer for queuing jobs. For j = 1, 2, . . . ,K, we denote
by Bj the buffer size of server j where Bj > 1 for all j. For
notational convenience, we denote by B̃i the aggregate buffer
size of the first i servers in the system, given by

B̃i =

i∑
j=1

Bj , i = 0, 1, . . . ,K (1)

where B̃0 = 0 by definition.
We denote by µj the service rate of server j, defined as the

units of jobs that can be processed per time unit, and by εj
the energy consumption rate of server j. Note that, in the
literature, the energy consumption rate of a server is usually
related to the server speed by a convex function of the form

ε(µ) ∝ µβ , β > 0 (2)

with β = 3 being the most commonly used value [5], [6], [44].
However, some researchers suggest that ε(µ) is not necessarily
convex [7], [8]. The job assignment policies that we propose
in this paper do not require such an assumption.

We refer to the ratio µj/εj as the energy efficiency of
server j. Accordingly, server i is defined to be more energy-
efficient than server j if and only if µi/εi > µj/εj . Since
our focus in this paper is on developing energy-efficient job
assignment policies, for convenience of description, we label
the servers according to their energy efficiency. That is, for
any pair of servers i and j, if i < j, we have µi/εi ≥ µj/εj .

TABLE I
SUMMARY OF MAJOR SYMBOLS

Symbol Definition

K Number of servers in the system

Bj Buffer size of server j

B̃i Aggregate buffer size of the first i servers in the system

µj Service rate of server j

εj Energy consumption rate of server j

µj/εj Energy efficiency of server j

λ Job arrival rate

K̂ Number of energy-efficient servers forming a virtual server

µ̃
K̂

Aggregate service rate of the virtual server

ε̃
K̂

Aggregate energy consumption rate of the virtual server

µ̃
K̂
/ε̃
K̂

Energy efficiency of the virtual server

K̂∗ Optimal value of K̂ chosen by the E* policy

K̂RM Empirical value of K̂ chosen by the RM policy

Lφ Job throughput of the system under policy φ

Eφ Power consumption of the system under policy φ

Lφ/Eφ Energy efficiency of the system under policy φ

Remark 1. In our context, for i < j, we have µiεj−εiµj ≥ 0
since µi/εi ≥ µj/εj .

We consider that jobs arrive at the system according to a
Poisson process with mean rate λ. An arriving job is assigned
to one of the servers with at least one vacant slot in its buffer,
subject to the control of an assignment policy. If all buffers
are full, the arriving job is lost.

We assume that job sizes (in units) are independent and
identically distributed with an absolutely continuous cumula-
tive distribution function (CDF) F (x), x ≥ 0. Without loss
of generality, we normalize the average size of jobs to one.
Each server j serves its jobs at a total rate of µj using the PS
service discipline.

IV. ENERGY-EFFICIENT JOB ASSIGNMENT

In this section, we provide details of the job assignment
policies. Section IV-A briefly describes the MEESF policy.
Section IV-B presents the E* policy. Section IV-C discusses
and describes the RM policy.

A. MEESF

MEESF is a straightforward heuristic approach that works
by greedily choosing the most energy-efficient servers for job
assignment. With jockeying, at any point in time, MEESF is
required to satisfy the condition that no server in the system is
busy if a more energy-efficient server has at least one vacant
slot in its buffer. A rearrangement of the existing jobs is
always required whenever it becomes necessary to satisfy the
condition of the policy.

The SSF policy proposed in [15] is a special case of MEESF,
assuming for each server j that its energy consumption rate
satisfies εj = µ3

j . It can be shown that, under the condition
where all servers in the system have the same buffer size,



4

2 4 6 8 10
−40

−20

0

20

K̂

R
e
la

ti
v
e
 d

if
fe

re
n
c
e
 (

%
)

(a)

2 4 6 8 10
0

0.5

1

1.5

1.8
x 10

−3

K̂

R
e
la

ti
v
e
 d

if
fe

re
n
c
e
 (

%
)

(b)

2 4 6 8 10
−20

0

20

40

60

K̂

R
e
la

ti
v
e
 d

if
fe

re
n
c
e
 (

%
)

(c)

Fig. 1. Illustration of optimizing K̂ for the E* policy. (a) Relative difference of E* to MEESF in the energy efficiency of the system. (b) Relative difference
of E* to MEESF in the job throughput. (c) Relative difference of E* to MEESF in the power consumption.

i.e., B1 = B2 = . . . = BK , SSF maximizes the ratio
of instantaneous job departure rate to instantaneous energy
consumption rate [45]. In general, however, this is not the
case. We shall see that MEESF does not necessarily maximize
the ratio of long-run average job departure rate to long-run
average energy consumption rate. This observation motivates
us to design the more robust E* policy.

B. E*

The E* policy is devised in such a way that it aggregates
K̂ ≥ 2 most energy-efficient servers to form a virtual server.
Let µ̃K̂ denote the aggregate service rate of this virtual server,
given by

µ̃K̂ =

K̂∑
j=1

µj . (3)

Let ε̃K̂ denote the aggregate energy consumption rate of the
virtual server, given by

ε̃K̂ =

K̂∑
j=1

εj . (4)

Similar to the way that we specify the energy efficiency of a
server, we refer to the ratio µ̃K̂/ε̃K̂ as the energy efficiency
of the virtual server.

Proposition 1. The virtual server formed by aggregating K̂
most energy-efficient servers in the system is not worse than
any server k, k ≥ K̂ + 1, in terms of energy efficiency. That
is,

µ̃K̂
ε̃K̂
≥ µk
εk
, k = K̂ + 1, K̂ + 2, . . . ,K. (5)

Proof: We have

µ̃K̂
ε̃K̂
− µk
εk

=

∑K̂
j=1(µjεk − εjµk)∑K̂

j=1 εjεk
≥ 0 (6)

where the final inequality follows from Remark 1.
Accordingly, in our design, E* always gives preference to

the virtual server and utilizes its service capacity in such a way

that guarantees a higher job throughput than what is achievable
with MEESF and yet can improve the energy efficiency of the
system. In particular, with jockeying, E* is required to satisfy
the following two conditions at any point in time:

1) Among the K̂ servers that form the virtual server, no
server is idle if a less energy-efficient server is busy, and
no server has more than one job if another server is idle.

2) None of the other K − K̂ servers in the system is busy
if a more energy-efficient server has at least one vacant
slot in its buffer.

One property of the E* policy as a result of this design is that
it maximizes the instantaneous job departure rate of the virtual
server at any point in time under the condition that it greedily
chooses the most energy-efficient servers for job assignment
among the K̂ servers that form the virtual server.

Note that the decision variable K̂ provides a degree of free-
dom for E* to fine-tune its performance. Thus, an important
objective in the context of the E* policy is to determine within
the range [2,K] an optimal K̂ value, denoted by K̂∗, such that
the energy efficiency of the system can be maximized.

C. RM

Our proposed rule of thumb, RM, for determining the K̂∗

value of the E* policy simply chooses a number K̂RM so that
the aggregate service rate of the virtual server matches the job
arrival rate. More specifically, K̂RM is chosen to be the largest
K̂ satisfying µ̃K̂ ≤ λ. Intuitively, this is to consider the fact
that the maximum job throughput of the system is no more
than the job arrival rate. As a result, one may expect that the
servers chosen by the RM policy are (roughly) sufficient to
support the maximum job throughput.

We provide below an intuitive explanation of why this
simple rule of thumb may work, using the numerical results
presented in Fig. 1. In this example, we have a system of
ten servers. The server speeds and the energy consumption
rates are randomly generated. The job arrival rate is set to be
the sum of the service rates of the six most energy-efficient
servers. The results in Fig. 1 are presented in the form of
the relative difference of E* to MEESF in terms of each



5

corresponding performance measure. Note that in this paper,
given two numerical quantities x and y, we define the relative
difference of x to y as (x− y)/y.

Based on the results of Fig. 1, we argue that choosing a
different value of K̂ other than K̂RM is likely to decrease the
energy efficiency of the system. This is because:
• On one hand, if we choose a value of K̂ larger than
K̂RM, the excessive service capacity made available with
the virtual server can increase the job throughput only
marginally. However, it can substantially increase the
power consumption since it now uses more of those
less energy-efficient servers. As a result, the energy
efficiency of the system (defined in our context as the
ratio of job throughput to power consumption) is likely
to decrease with an increasing value of K̂ within the
range [K̂RM,K].

• On the other hand, if we choose a value of K̂ smaller
than K̂RM, the aggregate service rate of the virtual server
is not sufficient to support the input traffic in a long
run. As a result, incoming jobs will be queued up and
we are forced to use more of those less energy-efficient
servers for serving the backlog. This will again increase
the power consumption. Since it can be shown that the
job throughput decreases with decreasing K̂, the energy
efficiency is also likely to decrease with a decreasing
value of K̂ within the range [K̂RM, 2].

V. INSENSITIVE CONDITIONS WITH JOCKEYING

Zvi et al. [15] developed a class of stationary policies for
insensitive job assignment with jockeying based on the concept
of symmetric queue introduced in [46]. As in [15], we adapt
here the symmetric queue model with state-dependent service
rates defined in [46] to our system that allows jockeying among
multiple queues. We begin by providing in Section V-A an
explanation based on [15] of this adaptation to make the paper
self-contained. Then, we derive the insensitive MEESF policy
in Section V-B and the insensitive E* policy in Section V-C,
respectively.

A. Adaptation of symmetric queue

A symmetric queue is defined in [46] as a queue that has a
symmetry between the service rate allocated to each position in
the queue and the probability that a newly arrived job will join
the queue in the corresponding position. In particular, when
there are n jobs in the queue, the ordered jobs are contained
at positions 1, 2, . . . , n, and the total service rate is µ(n). A
proportion γ(l, n) of µ(n) is directed to the job at position l,
l = 1, 2, . . . , n.
• When the job at position l completes its service and

leaves the queue, the jobs at positions l+ 1, l+ 2, . . . , n
move to positions l, l + 1, . . . , n− 1, respectively.

• When a job arrives at the queue, it moves into position l
with probability γ(l, n+ 1). The jobs previously at posi-
tions l, l+1, . . . , n move to positions l+1, l+2, . . . , n+1,
respectively.

Kelly [46] showed that a stationary symmetric queue is
insensitive to the service time distribution, given that it can

be represented as a mixture of Erlang distributions. This
result was extended by Barbour [47] to arbitrarily distributed
service times. Taylor [48] showed that the canonical insensitive
queueing model, the Erlang loss system, can be described as
a symmetric queue.

Now consider the system of multiple queues in our context.
Let the number of existing jobs at server j be denoted by nj .
Let the total number of existing jobs in the system be denoted
by n; by definition, n =

∑K
j=1 nj . As in [15], we define a

feasible group of server sets {T φ(n) : 1 ≤ n ≤ B̃K} for
each policy φ, where T φ(n) is the set of servers designated
for serving the existing jobs in the system at state n. For
stationary policies, the assignment decisions are made only
upon arrivals and departures.

Let the buffer position in the multi-queue system be defined
using a 2-tuple notation (j, k) for position k of server j, where
1 ≤ j ≤ K and 1 ≤ k ≤ Bj . For each policy φ, a one-to-
one mapping Θφ from the buffer positions in the multi-queue
system, defined as Qm = {(j, k) : 1 ≤ j ≤ K, 1 ≤ k ≤ Bj},
to the buffer positions in the logically-combined queue, defined
as Qs = {l : 1 ≤ l ≤ B̃K}, matches the server sets included
in {T φ(n)}. Note that there could be more than one such
mapping Θφ that matches {T φ(n)}. Since the service disci-
pline at each server is PS, all the relevant mappings associated
with the positions of a given server are equivalent. Moreover,
because of the insensitivity property of the logically-combined
queue, following the symmetric queue construction of [46]
that we shall show below, all these mappings give the same
stationary distribution of the underlying stochastic process
{nφ(t), t ≥ 0}.

For any mapping Θφ of policy φ, the multi-queue system
can be implemented as a symmetric queue on the Qs domain.
To show this, we begin by deriving the state-dependent service
rates of Qs. With the logically-combined queue, each server j
serves only the jobs located at its associated positions using
the PS discipline. For policy φ at state n, the total service rate
µφ(n) is given by

µφ(n)
def
=

∑
j∈T φ(n)

µj . (7)

Under the PS discipline, the proportion of µφ(n) allocated
to the job at position l

def
= Θφ(j, k) on the Qs domain is

equivalent to that allocated to the job at its corresponding
position k of server j on the Qm domain, and is given by

γφ(l, n) =
µj

njµφ(n)
. (8)

To complete the construction of the logically-combined
queue as a symmetric queue, it remains to enforce a symmetry
in the same manner as [46] between the service rate allocated
to each position in the logically-combined queue and the
probability that a newly arrived job will join the queue in
the corresponding position. That is:
• When the job at position l = Θφ(j, k) with (j, k) being

its corresponding position in the multi-queue system
completes its service and leaves the logically-combined
queue, the jobs at positions l + 1, l + 2, . . . , n move to
positions l, l + 1, . . . , n− 1, respectively.



6

Fig. 2. State transition diagram of the logically-combined queue under any
insensitive jockeying policy φ.

• When a job arrives at the logically-combined queue, it
is assigned to position l, which corresponds to position
(j, k) in the multi-queue system where l = Θφ(j, k), with
probability γφ(l, n+ 1). The jobs previously at positions
l, l + 1, . . . , n move to positions l + 1, l + 2, . . . , n + 1,
respectively.

In general, based on the one-to-one position mapping Θφ from
Qm to Qs, the movements of jobs in the multi-queue system
match the movements of jobs in the logically-combined queue.

Due to the insensitivity property of the symmetric queue, the
state transition process of the logically-combined queue in this
context can be modeled as a birth-death process with birth rate
λ and death rate µφ(n), n = 1, 2, . . . , B̃K , as shown in Fig. 2.
Accordingly, the stationary distribution πφ(n) of the process
{nφ(t), t ≥ 0}, under any insensitive jockeying policy φ, can
be obtained by solving the steady-state equations:

λπφ(n) = µφ(n+ 1)πφ(n+ 1), n = 0, 1, . . . , B̃K − 1. (9)

Then, the job throughput of the system under policy φ,
which is equivalent to the long-run average job departure rate,
can be obtained as

Lφ =

B̃K∑
n=1

µφ(n)πφ(n). (10)

Alternatively, we can obtain Lφ by

Lφ = λ
[
1− πφ(B̃K)

]
. (11)

The power consumption of the system under policy φ, which
is equivalent to the long-run average energy consumption rate,
can be obtained as

Eφ =

B̃K∑
n=1

εφ(n)πφ(n) (12)

where εφ(n) is the total energy consumption rate at state n,
given by

εφ(n)
def
=

∑
j∈T φ(n)

εj . (13)

By definition, Lφ/Eφ is the energy efficiency of the system
under policy φ.

B. Insensitive MEESF

The insensitive MEESF policy is derived by specifying the
set of servers T MEESF(n) designated for serving the existing
jobs in the system at state n as

T MEESF(n) = {1, . . . , i}, 1 ≤ n ≤ B̃K (14)

where i ≤ K is the smallest integer satisfying
∑i
j=1Bj ≥ n.

The server sets specified in (14) indeed define the MEESF
policy, in which the available servers that are most energy
efficient are designated for service at each state n.

The position mapping ΘMEESF of MEESF is defined it-
eratively as follows. The B1 positions of server 1 (the most
energy-efficient server) are mapped to the first B1 positions of
the logically-combined queue that are associated with server 1.
The B2 positions of server 2 (the second most energy-efficient
server) are mapped to the following B2 positions of the
logically-combined queue that are associated with server 2.
The procedure continues until the BK positions of server K
have been mapped.

C. Insensitive E*

The insensitive E* policy is derived by specifying the set
of servers T E∗(n) designated for serving the existing jobs in
the system at state n as

T E∗(n) = {1, . . . ,min(n, K̂)}, 1 ≤ n ≤ B̃K̂ − 1 (15)

and
T E∗(n) = {1, . . . , i}, B̃K̂ ≤ n ≤ B̃K (16)

where i ≤ K is the smallest integer satisfying
∑i
j=1Bj ≥ n.

The server sets specified in (15) and (16) indeed define the
E* policy, in which preference is always given to the virtual
server at any state n.

The position mapping ΘE∗ of E* is defined iteratively
as follows. In the first iteration, the first buffer positions
of servers 1, 2, . . . , K̂ are mapped to the first K̂ positions
of the logically-combined queue in the order of the server
labels 1, 2, . . . , K̂, inheriting their original server speeds and
energy consumption rates. In every subsequent iteration until
all the positions of the first K̂ servers have been mapped, the
next remaining position levels from the remaining buffers, say
m ≤ K̂ positions, are mapped to the next m positions of
the logically-combined queue in the order of the server labels.
Then, the BK̂+1 positions of server K̂ + 1 are mapped to the
following BK̂+1 positions of the logically-combined queue
that are associated with server K̂+ 1. The BK̂+2 positions of
server K̂ + 2 are mapped to the following BK̂+2 positions of
the logically-combined queue that are associated with server
K̂ + 2. The iterations terminate when all the positions of all
server buffers have been mapped.

VI. ANALYSIS

Here, we provide a rigorous analysis of the E* policy. First,
we show that E* has always a higher job throughput than
that of MEESF. Then, we derive conditions under which E*
is guaranteed to outperform MEESF in terms of the energy
efficiency of the system.

For convenience, let

P (n) =
πE∗(n)

πE∗(B̃K)
, 0 ≤ n ≤ B̃K . (17)



7

Then, from (9), we derive for the E* policy that

P (n) =


B̃K∏

i=n+1

µE∗(i)

λ
, 0 ≤ n ≤ B̃K − 1

1, n = B̃K .

(18)

Similarly, let

P ′(n) =
πMEESF(n)

πMEESF(B̃K)
, 0 ≤ n ≤ B̃K (19)

and we obtain from (9) for the MEESF policy that

P ′(n) =


B̃K∏

i=n+1

µMEESF(i)

λ
, 0 ≤ n ≤ B̃K − 1

1, n = B̃K .

(20)

Remark 2. Because of the nature of the two policies, we have{
µE∗(n) > µMEESF(n), 2 ≤ n ≤ B̃K̂−1
µE∗(n) = µMEESF(n), elsewhere.

(21)

Lemma 1. For P (n) defined in the form of (18) and P ′(n)
defined in the form of (20), we have P (n) > P ′(n), 0 ≤ n ≤ B̃K̂−1 − 1

P (n) = P ′(n), B̃K̂−1 ≤ n ≤ B̃K .
(22)

Proof: The result follows from Remark 2.

Proposition 2. For the stochastic job assignment problem
studied in this paper, we have

LE∗ > LMEESF. (23)

Proof: Using (11), we obtain the job throughput of the
system under the E* policy and that under the MEESF policy,
respectively, as

LE∗ = λ
[
1− πE∗(B̃K)

]
(24)

and
LMEESF = λ

[
1− πMEESF(B̃K)

]
. (25)

From (17), we have for the E* policy that

πE∗(n) = P (n)πE∗(B̃K), 0 ≤ n ≤ B̃K − 1. (26)

By normalization, we have

B̃K−1∑
n=0

P (n)πE∗(B̃K) + πE∗(B̃K) = 1 (27)

and hence

πE∗(B̃K) =
1∑B̃K−1

n=0 P (n) + 1
. (28)

Likewise, from (19), we have for the MEESF policy that

πMEESF(n) = P ′(n)πMEESF(B̃K), 0 ≤ n ≤ B̃K − 1 (29)

and hence obtain

πMEESF(B̃K) =
1∑B̃K−1

n=0 P ′(n) + 1
. (30)

It follows from Lemma 1 that
B̃K−1∑
n=0

P (n) >

B̃K−1∑
n=0

P ′(n). (31)

Therefore, we have

πE∗(B̃K) < πMEESF(B̃K) (32)

and hence (23).

Lemma 2. Given P (n) defined in the form of (18) and P ′(n)
defined in the form of (20), for any two integers x and y where
x < y ≤ K, we have

B̃K∑
n=B̃x−1+1

P (n)

B̃K∑
n′=B̃y−1+1

P ′(n′)

−
B̃K∑

n=B̃y−1+1

P (n)

B̃K∑
n′=B̃x−1+1

P ′(n′)

{
> 0, 1 ≤ x ≤ K̂ − 1

= 0, x ≥ K̂.
(33)

Proof: Note that

B̃K∑
n=B̃x−1+1

P (n) =

B̃y−1∑
n=B̃x−1+1

P (n) +

B̃K∑
n=B̃y−1+1

P (n) (34)

and

B̃K∑
n′=B̃x−1+1

P ′(n′) =

B̃y−1∑
n′=B̃x−1+1

P ′(n′) +

B̃K∑
n′=B̃y−1+1

P ′(n′).

(35)
Thus, proving (33) is equivalent to proving

B̃y−1∑
n=B̃x−1+1

P (n)

B̃K∑
n′=B̃y−1+1

P ′(n′)

−
B̃K∑

n=B̃y−1+1

P (n)

B̃y−1∑
n′=B̃x−1+1

P ′(n′)

{
> 0, 1 ≤ x ≤ K̂ − 1

= 0, x ≥ K̂.
(36)

It suffices to show that, for any two integers l and m where
B̃x−1 + 1 ≤ l ≤ B̃y−1 and B̃y−1 + 1 ≤ m ≤ B̃K , we have

P (l)P ′(m)− P (m)P ′(l) > 0 (37)

or, equivalently,

P (l)

P (m)
=

m∏
i=l+1

µE∗(i)

λ
>

P ′(l)

P ′(m)
=

m∏
i=l+1

µMEESF(i)

λ
(38)

if l ≤ B̃K̂−1 − 1, and we have

P (l)P ′(m)− P (m)P ′(l) = 0 (39)

or, equivalently,

P (l)

P (m)
=

m∏
i=l+1

µE∗(i)

λ
=

P ′(l)

P ′(m)
=

m∏
i=l+1

µMEESF(i)

λ
(40)

if l ≥ B̃K̂−1. The inequality in (38) and the equality in (40)
for all l in the defined range follow from Remark 2.



8

Proposition 3. A sufficient condition for

LE∗

EE∗
>
LMEESF

EMEESF
(41)

to hold is that
µj
εj

=
µ1

ε1
, j = 2, 3, . . . , K̂ (42)

and there exists at least one pair of servers x and y, where
1 ≤ x ≤ K̂ and x < y ≤ K, such that µx/εx > µy/εy .

Proof: From (12), we derive for E* that

EE∗ =

B̃K∑
n=1

εE
∗
(n)πE∗(n)

=

K̂∑
n=1

πE∗(n)

n∑
j=1

εj +

B̃
K̂∑

n=K̂+1

πE∗(n)

K̂∑
j=1

εj

+

K∑
i=K̂+1

B̃i∑
n=B̃i−1+1

πE∗(n)

i∑
j=1

εj .

(43)

Interchanging the summations in (43), we obtain

EE∗ =

K̂∑
j=1

εj

K̂∑
n=j

πE∗(n) +

K̂∑
j=1

εj

B̃
K̂∑

n=K̂+1

πE∗(n)

+

 K̂∑
j=1

εj

K∑
i=K̂+1

+

K∑
j=K̂+1

εj

K∑
i=j

 B̃i∑
n=B̃i−1+1

πE∗(n)

=

K̂∑
j=1

εj

B̃K∑
n=j

πE∗(n) +

K∑
j=K̂+1

εj

B̃K∑
n=B̃j−1+1

πE∗(n).

(44)
Note that, since Bj > 1 for all j, we have B̃j−1 + 1 ≥ j for
1 ≤ j ≤ K̂. Thus, we can rewrite the elements of EE∗ in (44)
as

EE∗ =

K̂∑
j=1

εj

B̃j−1∑
n=j

πE∗(n) +

K̂∑
j=1

εj

B̃K∑
n=B̃j−1+1

πE∗(n)

+

K∑
j=K̂+1

εj

B̃K∑
n=B̃j−1+1

πE∗(n)

=

K̂∑
j=1

εj

B̃j−1∑
n=j

πE∗(n) +

K∑
j=1

εj

B̃K∑
n=B̃j−1+1

πE∗(n).

(45)

Similar to the way we derive the expression of EE∗ in (45),
we obtain LE∗ as

LE∗ =

B̃K∑
n=1

µE∗(n)πE∗(n)

=

K̂∑
j=1

µj

B̃j−1∑
n=j

πE∗(n) +

K∑
j=1

µj

B̃K∑
n=B̃j−1+1

πE∗(n).

(46)

Then, using (17), we have

LE∗

EE∗
=
LE∗/πE∗(B̃K)

EE∗/πE∗(B̃K)

=

∑K̂
j=1 µj

∑B̃j−1

n=j P (n) +
∑K
j=1 µj

∑B̃K
n=B̃j−1+1

P (n)∑K̂
j=1 εj

∑B̃j−1

n=j P (n) +
∑K
j=1 εj

∑B̃K
n=B̃j−1+1

P (n)
.

(47)

On the other hand, from (12), we derive for MEESF that

EMEESF =

B̃K∑
n′=1

εMEESF(n′)πMEESF(n′)

=

K∑
i′=1

B̃i′∑
n′=B̃i′−1+1

πMEESF(n′)

i′∑
j′=1

εj′ .

(48)

Interchanging the summations in (48), we obtain

EMEESF =

K∑
j′=1

εj′
K∑

i′=j′

B̃i′∑
n′=B̃i′−1+1

πMEESF(n′)

=

K∑
j′=1

εj′
B̃K∑

n′=B̃j′−1+1

πMEESF(n′).

(49)

Similar to the way we derive the expression of EMEESF in
(49), we obtain LMEESF as

LMEESF =

B̃K∑
n′=1

µMEESF(n′)πMEESF(n′)

=

K∑
j′=1

µj′
B̃K∑

n′=B̃j′−1+1

πMEESF(n′).

(50)

Then, using (19), we have

LMEESF

EMEESF
=
LMEESF/πMEESF(B̃K)

EMEESF/πMEESF(B̃K)

=

∑K
j′=1 µj′

∑B̃K
n′=B̃j′−1+1

P ′(n′)∑K
j′=1 εj′

∑B̃K
n′=B̃j′−1+1

P ′(n′)
.

(51)

Clearly, given LE∗/EE∗ in the form of (47) and
LMEESF/EMEESF in the form of (51), for the inequality in



9

(41) to hold, it requires

K̂∑
j=1

K∑
j′=1

µjεj′

B̃j−1∑
n=j

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

+

K∑
j=1

K∑
j′=1

µjεj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

>

K̂∑
j=1

K∑
j′=1

εjµj′

B̃j−1∑
n=j

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

+

K∑
j=1

K∑
j′=1

εjµj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′).

(52)

First, we show that
K∑
j=1

K∑
j′=1

µjεj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

>

K∑
j=1

K∑
j′=1

εjµj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′).

(53)

In particular, we observe in (53) that:
• For j = j′, we have

µjεj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

= εjµj′
B̃K∑

n=B̃j−1+1

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′).

(54)

• For any two integers x and y where 1 ≤ x < y ≤ K, we
have

µxεy

B̃K∑
n=B̃x−1+1

P (n)

B̃K∑
n′=B̃y−1+1

P ′(n′)

+ µyεx

B̃K∑
n=B̃y−1+1

P (n)

B̃K∑
n′=B̃x−1+1

P ′(n′)

− εxµy
B̃K∑

n=B̃x−1+1

P (n)

B̃K∑
n′=B̃y−1+1

P ′(n′)

− εyµx
B̃K∑

n=B̃y−1+1

P (n)

B̃K∑
n′=B̃x−1+1

P ′(n′)

= (µxεy − εxµy)

[
B̃K∑

n=B̃x−1+1

P (n)

B̃K∑
n′=B̃y−1+1

P ′(n′)

−
B̃K∑

n=B̃y−1+1

P (n)

B̃K∑
n′=B̃x−1+1

P ′(n′)

]
.

(55)

Then, it follows from Lemma 2 that the right-hand side
of (55) {

> 0, 1 ≤ x ≤ K̂ − 1

= 0, x ≥ K̂.

where the inequality holds if µx/εx > µy/εy .
Now, for the inequality in (52) to hold, it is sufficient to have

K̂∑
j=1

K∑
j′=1

µjεj′

B̃j−1∑
n=j

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′)

≥
K̂∑
j=1

K∑
j′=1

εjµj′

B̃j−1∑
n=j

P (n)

B̃K∑
n′=B̃j′−1+1

P ′(n′).

(56)

We observe in (56) that:
• For j = j′, we have µjεj′ = εjµj′ .
• For j = 1, 2, . . . , K̂ and j′ = j + 1, j + 2, . . . ,K, we

have µjεj′ − εjµj′ ≥ 0.
• For j = 2, 3, . . . , K̂ and j′ = 1, 2, . . . , j − 1, we have
µjεj′ − εjµj′ ≤ 0.

Therefore, for the inequality in (56) to hold, it is sufficient to
have (42), which enforces

µjεj′−εjµj′ = 0, j = 2, 3, . . . , K̂, j′ = 1, 2, . . . , j−1. (57)

This completes the proof.
From Proposition 3, we can obtain the following corollary.

Corollary 1. If µj/εj = c for j = 1, 2, . . . ,K, we have

LE∗

EE∗
=
LMEESF

EMEESF
. (58)

Corollary 1 suggests that, if all servers in the system are
equally energy efficient, the energy efficiency of the system
under the E* policy is equivalent to that under the MEESF
policy. Nevertheless, even in such case of a homogeneous
server farm, E* is guaranteed to yield a higher job throughput
than that of MEESF. On the other hand, Proposition 3 suggests
that, if at least two servers in a heterogeneous server farm are
equally most energy efficient, E* is guaranteed to outperform
MEESF in terms of the energy efficiency of the system. We
argue that the latter is a realistic scenario since in practice a
server farm is likely to comprise multiple servers of the same
type purchased at a time.

VII. NUMERICAL RESULTS

In this section, we provide extensive numerical results to
demonstrate the effectiveness of the E* policy and the RM
policy proposed in this paper. For convenience of describing
the experiment setting, we denote by ρ = λ/

∑K
j=1 µj the

offered traffic per server in the system.

A. Verification of the exact analysis

In this experiment, we consider a system with four servers.
We set ρ = 0.8, and for each server j we set its buffer
size Bj = 3. We generate a sequence of K random deviates
according to a Pareto distribution with unit mean and arrange



10

0 2 4 6 8 10 12
0

3

6

9

12

15

State

P
ro

b
a

b
ili

ty
 (

%
)

 

 

Simulation

Analysis

Fig. 3. Verification of the exact analysis of the stationary distribution.

them in a non-increasing order of values. The energy efficiency
µj/εj of server j is set as the j-th value in the ordered
sequence. The energy consumption rate of server j is chosen
to be εj = 10 + j2, from which we obtain the service rate µj
of server j using the corresponding energy efficiency value.

Fig. 3 provides both simulation results and exact analytical
results for the stationary distribution of the number of jobs in
the system under the MEESF policy. The simulation results
are obtained from the multi-queue system with exponential
job size distribution, and presented in the form of an observed
mean from ten independent runs of the experiment. The
confidence intervals at the 95% level based on the Student’s
t-distribution are found to be within ±0.4% of the observed
mean. The analytical results are obtained from the logically-
combined queue by solving the steady-state equations of the
Markov chain presented in Fig. 2. We observe in Fig. 3 that
the analytical results are all within the simulation confidence
intervals, demonstrating a clear agreement between the simu-
lation and the exact analysis.

B. Effectiveness of E*

Here, we demonstrate the effectiveness of the E* policy by
comparing it with the baseline MEESF policy as well as the
optimal policy [15] under various system parameters. First,
we consider the special case where the energy consumption
rate of each server j is related to its service rate by εj = µ3

j .
Recall that, with this setting, MEESF is equivalent to the SSF
policy proposed in [15].

For the set of experiments in Fig. 4 and Fig. 5, we have a
system with 100 servers; the service rate of each server j is
µj = 0.1j. Fig. 4 is obtained with the buffer size Bj = 10
for each server j and the job arrival rate λ varied from µ1

to µ1 + · · · + µ100. In Fig. 5, we set ρ = 0.8 and all servers
have the same buffer size which is varied from 3 to 49 at
a step of 2. We observe in Fig. 4(a) and Fig. 5(a) that both
MEESF and E* are close to the optimal policy in terms of the

0 100 200 300 400 500
0

0.4

0.8

1.2

Arrival rate

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 (
%

) (a)

 

 

0 100 200 300 400 500
0

0.4

0.8

1.2

Arrival rate

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 (
%

) (b)

E*

MEESF

Fig. 4. Performance comparison in terms of the energy efficiency of the
system in the special case with respect to the job arrival rate. (a) Relative
difference of LE∗/EE∗ and LMEESF/EMEESF to that of the optimal policy.
(b) Relative difference of LE∗/EE∗ to LMEESF/EMEESF.

0 10 20 30 40 50
0

0.2

0.4

0.6

Buffer size

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 (
%

) (a)

 

 

0 10 20 30 40 50
0

0.2

0.4

0.6

Buffer size

R
e

la
ti
v
e

 d
if
fe

re
n

c
e

 (
%

) (b)

E*

MEESF

Fig. 5. Performance comparison in terms of the energy efficiency of
the system in the special case with respect to the buffer size. (a) Relative
difference of LE∗/EE∗ and LMEESF/EMEESF to that of the optimal policy.
(b) Relative difference of LE∗/EE∗ to LMEESF/EMEESF.

energy efficiency of the system, with relative difference less
than 1.2% and 0.3%, respectively. We also observe in Fig. 4(b)
and Fig. 5(b) that E* outperforms MEESF in all experiments,
although the improvement is only up to 1% in this special
case. These observations are consistent with the argument of
[15] and our analysis in this paper.

For the set of experiments in Fig. 6, we have a system
with 50 servers. For each server j, its buffer size Bj is
randomly chosen from the set {10, 11, . . . , 15}, and its service
rate µj is randomly generated from the range [0.1, 10] and
arranged in a non-decreasing order. For each such random
configuration of server speed, we set the job arrival rate such



11

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

(a)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

(b)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

(c)

Fig. 6. Cumulative distribution of the relative difference of LE∗/EE∗ to LMEESF/EMEESF in the special case. (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)
C

u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(c)

Fig. 7. Cumulative distribution of the relative difference of LE∗/EE∗ to LMEESF/EMEESF in the general case. (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

that ρ = 0.4, 0.6, 0.8. We compare E* and MEESF in terms of
the energy efficiency of the system. Results are obtained from
1000 experiments and are plotted in Fig. 6 in the form of
cumulative distribution of the relative difference. From these
results, we have similar observations of the two policies to
those found in Fig. 4 and Fig. 5 for this special case.

Next, we consider the more general case where the energy
consumption rate of each server and its service rate do not
necessarily follow the assumption of (2). We shall see that,
although the improvement of E* over MEESF in terms of
the energy efficiency of the system is very limited in the
special case, it can be significantly improved in the general
case with independently and randomly generated service rates
and energy consumption rates.

In this set of experiments, we have a system with 50 servers
that are categorized into ten server groups. Each server group i,
i = 1, 2, . . . , 10, consists of five servers that have the same
service rate, energy consumption rate and buffer size, denoted
by µ̄i, ε̄i and B̄i, respectively. We randomly generate a set
of ratios ri, i = 2, 3, . . . , 10, from the range [0.1, 1]. With
µ̄1/ε̄1 = 100, the energy efficiency of each server in server
group i is set to be µ̄i/ε̄i = rαi µ̄i−1/ε̄i−1, i = 2, 3, . . . , 10,
where we consider three cases for the α value, i.e., α = 1 for

case 1, α = 1.2 for case 2, and α = 1.4 for case 3. Note that
different values of α in this context represent different levels
of server heterogeneity. The set of service rates µ̄i is randomly
generated from the range [0.1, 10] and is arranged in a non-
increasing order. The set of buffer sizes B̄i is also randomly
chosen from {10, 11, . . . , 15}. Such a setting can be justified
in a way that a more recently purchased server is likely to
have a higher service rate and a higher energy efficiency. In
practice, a server farm is likely to comprise multiple servers
of the same type purchased at a time.

Results in Fig. 7 are again obtained from 1000 experiments
and are plotted in the form of cumulative distribution of the
relative difference of E* to MEESF in terms of the energy
efficiency of the system. We observe in Fig. 7 that, in such a
general case, E* significantly outperforms MEESF by up to
100%, which is a substantial improvement of the performance
compared to merely 2% in Fig. 6 for the special case. It can
also be observed from Fig. 7(c) that E* outperforms MEESF
by more than 10% in nearly 27% of the experiments for case 3.
In addition, we observe in Fig. 7 that, as the level of server
heterogeneity becomes higher, the performance improvement
of E* over MEESF becomes larger.



12

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(b)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

Relative difference (%)

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti
o
n

 

 

Case 1

Case 2

Case 3

(c)

Fig. 8. Cumulative distribution of the relative difference of LE∗/EE∗ to LRM/ERM in the general case. (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Difference

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

Case 1
Case 2
Case 3

(a)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Difference

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

Case 1
Case 2
Case 3

(b)

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Difference
R

e
la

ti
v
e
 f
re

q
u
e
n
c
y

 

 

Case 1
Case 2
Case 3

(c)

Fig. 9. Histogram of the difference between K̂∗ and K̂RM. (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

C. Effectiveness of RM

Here, we demonstrate the effectiveness of the RM policy
by comparing it with the E* policy using the same experiment
settings for the general case in Fig. 7. Results are plotted in
Fig. 8 in the form of cumulative distribution of the relative
difference of E* to RM in terms of the energy efficiency of the
system. We observe that, in all cases, the relative difference
is less than 5% in nearly 80% of the experiments. We also
observe that the relative difference is not very sensitive to the
value of ρ and the level of server heterogeneity.

In Fig. 9, we present the histogram of the difference between
K̂∗ and K̂RM, i,e., K̂∗−K̂RM, obtained from the correspond-
ing experiments for each value of ρ and each level of server
heterogeneity. We observe in Fig. 9 that the difference between
K̂∗ and K̂RM varies within a small range of {−3,−2, . . . , 1}.
In addition, in Fig. 9, as the value of ρ grows from 0.6 to 0.8,
the variance of the distribution of K̂∗− K̂RM decreases. This
demonstrates that the optimal value K̂∗ is likely to be within
a small range of K̂ values defined by the empirical value
K̂RM. Therefore, the performance of the RM policy can be
further improved by attempting each value of K̂ within such
a significantly reduced range.

VIII. CONCLUSION

We have proposed a new approach that gives rise to an
insensitive job-assignment policy for the popular server farm
model comprising a parallel system of finite-buffer PS queues
with heterogeneous server speeds and energy consumption
rates. Unlike the straightforward MEESF approach that greed-
ily chooses the most energy-efficient servers for job assign-
ment, one important feature of the more robust E* policy
is to aggregate an optimal number of most energy-efficient
servers as a virtual server. E* is designed to give preference
to this virtual server and utilize its service capacity in such
a way that both the job throughput and the energy efficiency
of the system can be improved. We have provided a rigorous
analysis of the E* policy where it is shown that E* has always
a higher job throughput than that of MEESF and there exist
realistic and sufficient conditions under which E* is guaranteed
to outperform MEESF in terms of the energy efficiency of the
system. We have further proposed a rule of thumb to form the
virtual server by simply matching its aggregate service rate to
the job arrival rate. Extensive experiments based on random
settings have confirmed the effectiveness of the resulting RM
policy. Noting that the fundamentally important model of
parallel PS queues has broader applications in communication



13

systems, our proposed solution for insensitive energy-efficient
job assignment has potentially wider applicability to green
communications and networking.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
valuable comments that contributed to the improved quality of
this paper.

REFERENCES

[1] M. Arregoces and M. Portolani, Data center fundamentals. Cisco Press,
2003.

[2] US Environmental Protection Agency, Washington, DC, USA, “EPA
report on server and data center energy efficiency,” Tech. Rep., 2007.

[3] The Climate Group, “SMART 2020: Enabling the low carbon economy
in the information age,” Tech. Rep., 2008.

[4] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A taxonomy and
survey of energy-efficient data centers and cloud computing systems,”
Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[5] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced
CPU energy,” in Proc. IEEE FOCS, Milwaukee, WI, USA, Oct. 1995,
pp. 374–382.

[6] N. Bansal, K. Pruhs, and C. Stein, “Speed scaling for weighted flow
time,” in Proc. ACM-SIAM SODA, New Orleans, LA, USA, Jan. 2007,
pp. 805–813.

[7] N. Bansal, H.-L. Chan, and K. Pruhs, “Speed scaling with an arbitrary
power function,” in Proc. ACM-SIAM SODA, New York, NY, USA, Jan.
2009, pp. 693–701.

[8] A. Wierman, L. L. H. Andrew, and A. Tang, “Power-aware speed scaling
in processor sharing systems,” in Proc. IEEE INFOCOM, Rio de Janeiro,
Brazil, Apr. 2009, pp. 2007–2015.

[9] L. L. H. Andrew, M. Lin, and A. Wierman, “Optimality, fairness and
robustness in speed scaling designs,” in Proc. ACM SIGMETRICS, New
York, NY, USA, Jun. 2010, pp. 37–48.

[10] M. Andrews, S. Antonakopoulos, and L. Zhang, “Energy-aware schedul-
ing algorithms for network stability,” in Proc. IEEE INFOCOM, Shang-
hai, China, Apr. 2011, pp. 1359–1367.

[11] I. Mitrani, “Managing performance and power consumption in a server
farm,” Ann. Oper. Res., vol. 202, no. 1, pp. 121–134, Jan. 2013.

[12] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” IEEE/ACM Trans. Netw.,
vol. 21, no. 5, pp. 1378–1391, Oct. 2013.

[13] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Optimal power
allocation in server farms,” in Proc. ACM SIGMETRICS, Seattle, USA,
Jun. 2009, pp. 157–168.

[14] E. Hyytiä, R. Righter, and S. Aalto, “Task assignment in a heteroge-
neous server farm with switching delays and general energy-aware cost
structure,” Performance Evaluation, vol. 75-76, pp. 17–35, May-Jun.
2014.

[15] Z. Rosberg, Y. Peng, J. Fu, J. Guo, E. W. M. Wong, and M. Zukerman,
“Insensitive job assignment with throughput and energy criteria for
processor-sharing server farms,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1257–1270, Aug. 2014.

[16] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu, “The state
of the art in locally distributed web-server systems,” ACM Computing
Surveys, vol. 34, no. 2, pp. 263–311, Jun. 2002.

[17] V. Gupta, K. Sigman, M. Harchol-Balter, and W. Whitt, “Insensitivity
for PS server farms with JSQ routing,” ACM SIGMETRICS PER, vol. 35,
no. 2, pp. 24–26, Sep. 2007.

[18] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt, “Analysis
of join-the-shortest-queue routing for web server farms,” Performance
Evaluation, vol. 64, no. 9-12, pp. 1062–1081, Oct. 2007.

[19] E. Altman, U. Ayesta, and B. Prabhu, “Load balancing in processor
sharing systems,” Telecommun. Syst., vol. 47, no. 1-2, pp. 35–48, Jun.
2011.

[20] M. E. Crovella and A. Bestavros, “Self-similarity in World Wide Web
traffic: Evidence and possible causes,” IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, Dec. 1997.

[21] S. Gunawardena and W. Zhuang, “Service response time of elastic data
traffic in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 31,
no. 3, pp. 559–570, Mar. 2013.

[22] F. Liu, K. Zheng, W. Xiang, and H. Zhao, “Design and performance
analysis of an energy-efficient uplink carrier aggregation scheme,” IEEE
J. Sel. Areas Commun., vol. 32, no. 2, pp. 197–207, Feb. 2014.

[23] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman, “The case for RAMClouds:
Scalable high-performance storage entirely in DRAM,” SIGOPS Oper-
ating Systems Review, vol. 43, no. 4, pp. 92–105, Dec. 2009.

[24] A. M. Caulfield, L. M. Grupp, and S. Swanson, “Gordon: Using
flash memory to build fast, power-efficient clusters for data-intensive
applications,” ACM SIGPLAN Notices, vol. 44, no. 3, pp. 217–228, Mar.
2009.

[25] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2, pp. 909–928,
Second Quarter 2013.

[26] J. Fu, J. Guo, E. W. M. Wong, and M. Zukerman, “Energy-efficient
heuristics for job assignment in processor-sharing server farms,” in Proc.
IEEE INFOCOM, Hong Kong SAR, China, Apr. 2015.

[27] F. A. Haight, “Two queues in parallel,” Biometrika, vol. 45, no. 3/4, pp.
401–410, Dec. 1958.

[28] W. Winston, “Optimality of the shortest line discipline,” J. Appl. Probab.,
vol. 14, no. 1, pp. 181–189, Mar. 1977.

[29] R. R. Weber, “On the optimal assignment of customers to parallel
servers,” J. Appl. Probab., vol. 15, no. 2, pp. 406–413, Jun. 1978.

[30] A. Ephremides, P. Varaiya, and J. Walrand, “A simple dynamic routing
problem,” IEEE Trans. Autom. Control, vol. 25, no. 4, pp. 690–693,
Aug. 1980.

[31] F. Bonomi, “On job assignment for a parallel system of processor sharing
queues,” IEEE Trans. Comput., vol. 39, no. 7, pp. 858–869, Jul. 1990.

[32] W. Whitt, “Deciding which queue to join: some counterexamples,” Oper.
Res., vol. 34, no. 1, pp. 55–62, Feb. 1986.

[33] V. Gupta, “Stochastic models and analysis for resource management in
server farms,” Ph.D. dissertation, School of Computer Science, Carnegie
Mellon University, 2011.

[34] Y. Zhao and W. K. Grassmann, “Queueing analysis of a jockeying
model,” Oper. Res., vol. 43, no. 3, pp. 520–529, May–Jun. 1995.

[35] I. J. B. F. Adan, J. Wessels, and W. H. M. Zijm, “Matrix-geometric
analysis of the shortest queue problem with threshold jockeying,” Oper.
Res. Lett., vol. 13, no. 2, pp. 107–112, Mar. 1993.

[36] Y. Sakuma, “Asymptotic behavior for MAP/PH/c queue with shortest
queue discipline and jockeying,” Oper. Res. Lett., vol. 38, no. 1, pp.
7–10, Jan. 2010.

[37] E. Hyytiä, R. Righter, and S. Aalto, “Energy-aware job assignment in
server farms with setup delays under LCFS and PS,” in Proc. ITC 26,
Karlskrona, Sweden, Sep. 2014.

[38] K. Li, X. Tang, and K. Li, “Energy-efficient stochastic task scheduling
on heterogeneous computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 11, pp. 2867–2876, Nov. 2014.

[39] D. Bertsekas, Dynamic programming and optimal control. Athena
Scientific Belmont, MA, 1995.

[40] S. A. Lippman, “Applying a new device in the optimization of exponen-
tial queuing systems,” Oper. Res., vol. 23, no. 4, pp. 687–710, Jul.–Aug.
1975.

[41] J. Wijngaard and S. Stidham, “Forward recursion for Markov decision
processes with skip-free-to-the-right transitions, part I: theory and algo-
rithm,” Math. Oper. Res., vol. 11, no. 2, pp. 295–308, May 1986.

[42] S. Stidham and R. R. Weber, “Monotonic and insensitive optimal policies
for control of queues with undiscounted costs,” Oper. Res., vol. 37, no. 4,
pp. 611–625, Jul.–Aug. 1989.

[43] J. M. George and J. M. Harrison, “Dynamic control of a queue with
adjustable service rate,” Oper. Res., vol. 49, no. 5, pp. 720–731, Sep.–
Oct. 2001.

[44] S. Albers and H. Fujiwara, “Energy-efficient algorithms for flow time
minimization,” ACM Transactions on Algorithms, vol. 3, no. 4, Nov.
2007, Article No. 49.

[45] J. Fu, “Energy-efficient job assignment in server farms,” Ph.D. disserta-
tion, City University of Hong Kong, Hong Kong SAR, China, 2016.

[46] F. P. Kelly, “Networks of queues,” Adv. Appl. Probab., vol. 8, no. 2, pp.
416–432, Jun. 1976.

[47] A. D. Barbour, “Networks of queues and the method of stages,” Adv.
Appl. Probab., vol. 8, no. 3, pp. 584–591, Sep. 1976.

[48] P. G. Taylor, “Insensitivity in stochastic models,” in Queueing Networks,
R. J. Boucherie and N. M. van Dijk, Eds. New York, NY: Springer,
2011, ch. 3, pp. 121–140.



14

Jing Fu (S’15) received the B.Eng. degree in com-
puter science from Shanghai Jiao Tong University,
Shanghai, China, in 2011, and is currently pursuing
the Ph.D. degree in electronic engineering at City
University of Hong Kong, Hong Kong.

Her research interest is now focused on energy
efficiency in server farms.

Jun Guo (S’01–M’06) received the B.E. degree
in automatic control engineering from Shanghai
University of Science and Technology, Shanghai,
China, in 1992, and the M.E. degree in telecommu-
nications engineering and Ph.D. degree in electrical
and electronic engineering from the University of
Melbourne, Melbourne, Australia, in 2001 and 2006,
respectively.

He was with the School of Computer Science and
Engineering, The University of New South Wales,
Kensington, Australia, as a Senior Research Asso-

ciate from 2006 to 2008 and on an Australian Postdoctoral Fellowship (APD)
supported by the Australian Research Council (ARC) from 2009 to 2011.
Since 2012, he has been with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong, where he is now a Visiting Assistant
Professor. His research is currently focused on green communications and
networking, teletraffic theory and its applications in service sectors, and
survivable network topology design.

Eric W. M. Wong (S’87–M’90–SM’00) received
the B.Sc. and M.Phil. degrees in electronic engi-
neering from the Chinese University of Hong Kong,
Hong Kong, in 1988 and 1990, respectively, and the
Ph.D. degree in electrical and computer engineering
from the University of Massachusetts, Amherst, MA,
USA, in 1994.

He is an Associate Professor with the Department
of Electronic Engineering, City University of Hong
Kong, Hong Kong. His research interests include
analysis and design of telecommunications and com-

puter networks, energy-efficient data center design, green cellular networks
and optical switching.

Moshe Zukerman (M’87–SM’91–F’07) received
the B.Sc. degree in industrial engineering and man-
agement and the M.Sc. degree in operations research
from the Technion—Israel Institute of Technology,
Haifa, Israel, in 1976 and 1979, respectively, and the
Ph.D. degree in engineering from the University of
California, Los Angeles, CA, USA, in 1985.

He was an independent consultant with the IRI
Corporation and a Postdoctoral Fellow with the
University of California, Los Angeles, from 1985 to
1986. He was with the Telstra Research Laboratories

(TRL), Melbourne, Australia, first as a Research Engineer from 1986 to 1988,
and as a Project Leader from 1988 to 1997. He also taught and supervised
graduate students with Monash University, Melbourne, Australia, from 1990
to 2001. From 1997 to 2008, he was with The University of Melbourne,
Melbourne, Australia. In 2008, he joined City University of Hong Kong, Hong
Kong, as a Chair Professor of Information Engineering and a team leader.

Prof. Zukerman has served on various editorial boards such as Computer
Networks, IEEE Communications Magazine, IEEE Journal of Selected Areas
in Communications, IEEE/ACM Transactions on Networking, and the Inter-
national Journal of Communication Systems.


	Introduction
	Related Work
	System Model
	Energy-Efficient Job Assignment
	MEESF
	E*
	RM

	Insensitive Conditions With Jockeying
	Adaptation of symmetric queue
	Insensitive MEESF
	Insensitive E*

	Analysis
	Numerical Results
	Verification of the exact analysis
	Effectiveness of E*
	Effectiveness of RM

	Conclusion
	References
	Biographies
	Jing Fu
	Jun Guo
	Eric W. M. Wong
	Moshe Zukerman


