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Abstract

We consider a model of overflow loss systems in which server groups are arranged into layers, and alternate
routing within each layer creates mutual overflow effects, increasing the amount of traffic that can be carried
by the system. Such a model has wide applications in communications and service systems. However, the
presence of both hierarchical inter-layer overflow and mutual intra-layer overflow makes accurate, robust, yet
scalable blocking probability evaluation of such systems a difficult challenge. To address this challenge, we
apply and extend the recently developed Information Exchange Surrogate Approximation (IESA) framework
to a multi-layer system, adding new surrogate models to the framework and incorporating moment-matching
techniques. In contrast to the conventional fixed-point approximation (FPA) approach, which directly
decomposes the overflow loss system into independent subsystems with inherent problems of convergence
and uniqueness, IESA performs decomposition on a carefully designed surrogate model with guaranteed
convergence and uniqueness. Extensive numerical results demonstrate that IESA is consistently more accurate
than the conventional FPA approach, showing an improvement in accuracy of several orders of magnitude
in many cases. Furthermore, the new extensions to IESA introduced in this paper provide consistent
improvements in accuracy relative to the current state-of-the-art of the IESA framework.
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1. Introduction

Overflow loss systems are characterized by one or more classes of requests served by a system comprised
of multiple server groups, with requests from each class following a prescribed overflow policy in seeking an
available server [1–4]. They arise naturally in a variety of communications and services systems, for example
wireless and cellular networks [5–7], video-on-demand systems [8–10], emergency vehicular dispatch [11–15],
and intensive care units [16–18]. Unfortunately, even the simplest overflow loss systems often have no
simple analytic expression for the blocking probability of requests [4], since the stationary distribution of an
overflow loss system is not of product form. The challenge in practice is thus to find accurate, robust, yet
computationally efficient approximation methods.

In particular, many applications of overflow loss systems naturally give rise to multi-layer architectures,
yet also allow non-hierarchical intra-layer overflow within each layer. Such a design is motivated by two
principles. Firstly, it is well known that in overflow loss systems, it is generally preferable for requests to
attempt servers with smaller skill sets before those with larger skill sets (in terms of the number of request
types able to be handled by each server) [19]. Secondly, system efficiency can generally be improved by
arranging server groups to form what is known as a closed chain [20]. Such closed chains allow temporary
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overcapacity in any part of the chain to be transferred to handle any temporary capacity shortages in any
other part of the chain. Closed chains thus improve the efficiency of each system layer by enhancing the
mutual sharing effect between server groups and are closely related to the concept of “entraide” or mutual
aid in telephone switching systems [21, 22].

The presence of closed chains leads to a phenomenon known as mutual overflow [23–25], where congestion
on a specific server causes overflow to the other servers, which in turn become congested and yield overflow
to the original server. While the classical Fixed Point Approximation (FPA) [26, 27] is generally sufficient
for approximating blocking in pure hierarchical systems, especially when enhanced with moment-matching
techniques [26, 28–31], such methods are generally inadequate when mutual overflow is present [32]. This is
because FPA does not capture the mutual dependencies between server groups.

1.1. Addressing mutual overflow
To address mutual overflow in overflow loss systems, the recently developed Information Exchange

Surrogate Approximation (IESA) framework [7, 33, 34] was proposed. IESA is based on applying the
underlying methodology of FPA, namely decoupling of a system into multiple independent queues with
Poisson input, to a surrogate model of the system that preserves some of the dependency information between
server groups when decoupling is applied. As a result, IESA has been shown to provide more accurate
and robust results compared to FPA for a number of cases [33]. In fact, IESA appears to be the first
approximation framework which accurately handles mutual overflow in a heterogeneous system environment,
thus addressing a well-known historical problem [35]. In addition, because the surrogate model creates a
pure hierarchical traffic structure within each layer of the overflow loss system, IESA as applied in this paper
does not require the use of fixed-point iteration (unlike FPA when mutual overflow is present), and therefore
can be completed in a finite number of steps with guaranteed convergence to a unique solution.

The advantage of IESA over simulation is that IESA provides new insight into and better understanding
of the nature of overflow loss systems, with particular focus on the mutual dependency effects between server
groups in the same system layer (which are ignored in FPA). In addition, IESA allows fast evaluation of a
large number of system configurations, allowing for the optimization of resource allocation in overflow loss
systems, including improvements in system design.

1.2. Contributions of this paper
The main contribution of this paper is the extension of the IESA framework to a multi-layer overflow loss

system model with intra-layer overflow. We shall use the term “IESA” to refer both to the IESA framework as
a whole and to its application in this paper to a multi-layer model. Extensive numerical results demonstrate
consistently better accuracy of IESA over FPA, with several orders of magnitude of improvement in many
cases.

In addition, we also propose improvements to IESA for capturing the intra-layer dependencies in the
overflow loss system. As our new surrogate model is closely related to the previous surrogate model, we shall
label the resulting approximation as IESA+. Although the congestion estimates are defined in the same way
in both the original and new IESA surrogate models, the way the surrogate model uses these estimates is
slightly different. While this paper focuses on the application of IESA to multi-layer overflow loss systems,
this improved version of IESA, i.e. IESA+, is equally as applicable to single-layer systems. We shall use the
term “true model” to refer to our original overflow loss system model as defined in Section 3, and “IESA
surrogate model” and “IESA+ surrogate model” (IESA model and IESA+ model for brevity) to refer to the
surrogate models for the IESA and IESA+ approximations, respectively.

Finally, we apply moment matching to FPA, IESA, and IESA+. The moment-matched versions of these
approximations are denoted FPAm, IESAm, and IESAm+, respectively. IESAm+ is demonstrated via
extensive numerical results to be the most accurate and robust approximation out of all those considered in
this paper.
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1.3. Applications of multi-layer systems
The multi-layer model in this paper has many applications. One example is cellular networks [7, 36, 37],

where cells can be classified into layers based on coverage area, for example, as macro-cells and micro-cells.
The cellular network model is similar to the one studied in this paper, but adds the concepts of call mobility
(i.e. handoff of calls between cells) and locality (overflow and handoffs can only occur between adjacent or
overlapping cells). Extensions to IESA regarding these two issues were presented in [7], but for a single-layer
system only.

Another example is that of content distribution networks (CDNs). For example, the single-layer version
[33] of the model considered in this paper is motivated by CDNs for video-on-demand [9]. In a multi-layered
CDN design, servers would be divided into origin servers and edge servers, with possible additional layers in
between. This allows most popular content in the network to be shifted as close to the end users as possible.
In addition, the edge layer of a CDN network may also incorporate peer-to-peer elements [10, 38]. As a
real-life example of the benefits of multi-layered CDNs, Facebook’s cold storage data centers are roughly six
times more energy efficient than its regular data centers [39]. The model in [34], to which IESA is applied, is
motivated by P2P networks for video-on-demand systems, but is restricted to a single layer.

The multi-layer model can also be applied to Infrastructure as a Service in cloud computing platforms.
For example, Amazon Web Services subdivides each of its regions into multiple availability zones, each
containing multiple data centers. If a user does not select an availability zone when deploying a virtual
machine (VM), Amazon may deploy the VM at any data center in the region. Alternatively, a user may
choose to launch a new compute instance in a specific availability zone based on the location of existing
storage instances.

Multi-layered models also arise naturally in call centers [30, 40], where cross-training costs give rise to
differentiation among call center agents. Whereas Franx et al. [30] only considered purely hierarchical call
center architectures, the ability of IESA to accurately model mutual overflow within each call center layer
allows us to more fully utilize each layer of the call center. Although delay forms a major aspect of call
centers in reality, Chevalier and Van den Schrieck [40, 41] argue that results obtained with a loss model can
be a good proxy for models with waiting.

Finally, layered architectures can be found in hospital management systems. For example, the Hong Kong
Hospital Authority currently manages (as of June 2016) 41 public hospitals organized into seven clusters [42].
While it is preferable to serve each patient in his or her preferred cluster, patients may also be referred
between clusters for load-balancing reasons or if specialist services are required.

1.4. Organization
The rest of this paper is organized as follows. In Section 2, we discuss existing related work in more detail.

In Section 3, we describe the model of multi-layer overflow loss systems considered in this paper. Section 4
illustrates the benefits of layering and mutual overflow that motivate our chosen model. Section 5 gives details
of how we apply FPA, IESA, and IESA+ to our chosen model, as well as the corresponding moment-matched
versions of these three approximations. The performance of each approximation is compared numerically in
Section 6. In Section 6.10, we demonstrate near insensitivity of the blocking probability to the service time
distribution, allowing our IESA framework to be applied to a wide range of systems. Finally, concluding
remarks are made in Section 7.

2. Further Related Work

2.1. Related system models
2.1.1. Gradings

Gradings [35, 43, 44] form the most classical application of the overflow loss system model. It has been
known for almost a century that arranging servers in a grading into a layered structure can increase the
throughput of the grading. In particular, it was suggested in [19] that the best grading is the one in which
there is a smooth progression “from individuals to commons”, i.e. from servers with smaller skill sets to
those with larger skill sets, if service time distributions are assumed to be identical for all request-server
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combinations. Here, we demonstrate this effect on the throughput of a more general overflow loss system
model in which servers with the same skill set are combined into a server group.

The classic grading model [3, 35, 43, 44] allows for arbitrary overflow policies exhibiting both inter-layer
and intra-layer overflow with no spatial considerations, and is the closest model to that we consider, but
permits only one server per group. Despite this restriction, accurate blocking probability evaluation remains
an open problem for gradings when mutual overflow and unbalanced traffic are both present [35]. Although the
exact blocking probability of an overflow loss system can be obtained in principle, by solving the underlying
set of steady-state equations [25], such an approach is not scalable due to the curse of dimensionality: the
number of dimensions of the state space is equal to the number of server groups in the system.

2.1.2. Cellular networks
The cellular network model considered in [36] is close to that considered in this paper, featuring both

inter-layer and intra-layer overflow. However, their model is motivated by mobile cellular networks and
contains strong spatial considerations, whereas in this paper we allow arbitrarily predetermined overflow
policies. We also ignore the concept of handover, which is unique to wireless and cellular networks. An
application of the IESA framework to cellular networks is available in [7], but this does not consider inter-layer
overflow. Another model, considered in [30, 31], is also similar to the one considered here, but does not allow
intra-layer overflow.

2.1.3. Call centers
Avramidis et al. [45] consider a call center model with delay. As a further level of approximation, the

pooling of queued requests in a common buffer is replaced with a wait-at-last-choice policy in which each
server group has is own buffer for queued requests. The algorithm is used as a tool to facilitate optimization
of call center staffing by reducing the amount of simulation required, and a separate analysis of its accuracy
as a stand-alone performance evaluation tool is not provided.

Call centers have also been modeled in the literature using blocking models without waiting [40, 46, 47].
It is argued that results obtained with a loss model can be a good proxy for models with waiting [40, 41].
The call center model in [46] is close to ours but does not include the concept of layering.

2.2. FPA
FPA is based on the decoupling of a given system into independent full-accessibility subsystems, for

example M/M/k/k [46], in which each request offered to the subsystem may attempt every server in the
subsystem. In this way, the computational time and memory requirement is greatly reduced compared to
direct analysis of the entire system. Note that adoption of the Poisson assumption is equivalent to introducing
an exponentially distributed delay of arbitrary mean for each overflow of a request [48, p. 157].

Such a direct decomposition approach, when applied to systems with mutual overflow, inherently gives
rise to a set of interdependent non-linear equations with one or more fixed points. Higher moments
(such as the variance and skewness) of overflow traffic can also be considered for obtaining more accurate
approximations [30, 37, 49]; we shall use the term FPAm to denote FPA with moment matching.

Unfortunately, while FPAm is effective in modeling inter-layer overflow, it cannot capture the mutual
dependency effects created by intra-layer overflow [32], resulting in large approximation errors in many
cases [32, 33]. It is demonstrated in [32] that for most systems with mutual overflow, the errors caused by
the independence assumption in FPA dominates those caused by the Poisson assumption, rendering FPAm
inadequate for such systems. For a thorough discussion of non-Poisson and dependence effects in overflow
loss systems, see [50].

While methods of countering the effect of FPA’s independence assumption appear in [11–14, 51], in which
correction factors are incorporated into FPA, such methods are restricted to the case of full accessibility,
meaning that each request may attempt all of the servers in the system. An approximate method in [15, 52]
allows for both mutual overflow and limited accessibility, but only for a specific overflow policy (requests
may only attempt the closest two server groups in a ring).
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Figure 1: Graphical depiction of the IESA framework.

Finally, although FPA is guaranteed to result in at least one fixed point [53], no guarantee of convergence
or uniqueness is known for FPA. Koole and Talim [46] prove convergence of FPA to a fixed point for a special
case with two server groups, but do not prove uniqueness of the solution.

2.3. IESA
The IESA framework was established in [7, 33, 34] as a more accurate, robust and computationally

efficient approximation approach to blocking probability evaluation in overflow loss systems. The framework
is based on developing a surrogate model with a similar blocking probability to the true model and then, in a
similar manner to FPA, decoupling the surrogate model into independent subsystems with Poisson input in
order to deal with the curse of dimensionality.

The IESA model is based on the application of an information exchange mechanism to capture the
overflow traffic dependence and hence reduce the errors caused by decoupling the surrogate model into
independent subsystems with Poisson input.

In IESA, each request holds a congestion estimate of the number of busy server groups in its current
layer, based on congestion information received by a request as it overflows from one server group to the
next. This congestion information is used to identify requests with a high probability of being overflowed
from the current system layer. Such requests may be preemptively promoted to the next system layer without
attempting the remaining server groups in the current layer, or blocked if there are no more layers.

A request seeking service exchanges its congestion estimate with a request in service if and only if the
request in service has a higher congestion estimate. In other words, information exchange can only increase
but not decrease the congestion estimate of a request seeking service. IESA thus replaces the non-hierarchical
traffic structure within each layer of the original overflow loss system with a hierarchical traffic structure based
on this congestion estimate. Due to this hierarchical traffic structure, IESA yields a solution with guaranteed
convergence and uniqueness within a finite number of iterations, whereas FPA requires a fixed-point solution.
For the sake of clarity, we will use the term level to describe the IESA sub-hierarchy within each layer of the
IESA model.

The concept of IESA is depicted in Fig. 1, showing the two main features of the IESA model: a similar
but slightly higher blocking probability than the true model, and a reduction in error when decoupling
is applied to the surrogate model. These two features combined result in a more accurate and robust
blocking probability approximation for the true model than FPA applied directly to the true model. Intuition
supporting these two features are presented at the end of this subsection.
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Two IESA approximations are presented in [33] for overflow loss systems, denoted IESA1 and IESA2. IESA1
is numerically equivalent to an earlier approximation, the Overflow Priority Classification Approximation
(OPCA) [32], but replaces the preemptive priority mechanism of OPCA with an equivalent information
exchange mechanism. IESA2, which uses a new surrogate model, is generally more accurate and robust than
IESA1 [33]. As an extension of IESA1, IESA2 is equivalent to IESA1 in the case where each request has full
access to each server in the system [54]. We shall use “IESA” from now on to refer specifically to IESA2 as
appropriate.

More details of the IESA model are provided in Section 5.3.

2.3.1. Intuition supporting Fig. 1
Overflowing requests in the IESA model are preemptively promoted to the next system layer with a

certain probability dependent on the system congestion estimate for the current layer, as provided by the
information exchange mechanism (to be described in detail in Section 5.3). These preempted requests thus
do not attempt all accessible server groups in the current system layer. As there is a non-zero probability
that one of the skipped-over server groups could have served the preempted request, the blocking probability
of the IESA model is slightly higher than that of the true model, i.e. 3 ≥ 1 . On the other hand, the
preempted requests are carefully chosen so that this probability is relatively low; i.e. preempted requests
have a high probability of being overflowed from the layer anyway if allowed to attempt the remaining server
groups in that layer. Therefore, we argue that the inequality is generally quite tight and 3 ≈ 1 . Equality
is achieved when the true model itself is purely hierarchical and there is no intra-layer overflow.

Furthermore, preemptive promotion of requests in IESA increases the proportion of the total traffic offered
to a server group formed by fresh requests, whereas the proportion formed by overflowed requests is decreased
(a proof of this was provided in [32, Cor. 1] for a special case). This reapportionment of the traffic offered to
a server is effective in combating the errors caused by the Poisson and independence assumptions, as fresh
requests to each layer have the least non-Poisson and dependency effects. In this sense, the gap between the
IESA estimate and the exact blocking probability of the IESA model is narrower than that between the FPA
estimate and the exact blocking probability of the true model, i.e. | 3 − 4 | ≤ | 1 − 2 |. In addition, the gap
3 − 4 is somewhat offset by the positive difference of 3 over 1 . Therefore, IESA produces results closer
to the real blocking probabilities than those by direct application of FPA, i.e. | 1 − 4 | ≤ | 1 − 2 |.

Proven theoretical bounds for IESA have been shown for a special case of overflow loss systems [32, 48]
in which each request may attempt all servers in a system in fully random order. In particular, IESA1
was shown for this case to always lie between FPA and the true blocking probability. IESA in this paper,
equivalent to IESA2 in [33], can be shown to be equivalent to IESA1 in this special case [54]. In addition,
in the case of critical loading where the total offered load in Erlangs is equivalent to the total number of
servers, the ratio Bexact/BIESA between IESA and the exact blocking probability is bounded above by

√
2,

whereas Bexact/BFPA tends to infinity as the system size increases [48].

3. Loss System Model

Let L denote the number of layers in the overflow loss system and L = {1, 2, . . . , L} denote the set of
layers. Each layer ` ∈ L contains a set G` = {(`, 1) , (`, 2) . . . , (`,G`)} of server groups. Each server group
(`, g) consists of N`,g servers, thus forming an M/M/N`,g/N`,g queue. Let M = {1, 2, . . . ,M} denote the set
of request types. Type-m requests, m ∈M, arrive to the system according to a Poisson process with rate λm.

Typical values of M range from 3 or 4 for an emergency care network [16, 55], to several dozen for a large
call center [45], to several hundred for video-on-demand networks [10, 56]. In this paper, we generally use
values of

∑
`G` and M of around 100 and 500, respectively, consistent with Wong et al. [33].

Let (`, γm,`,n) ∈ G` denote the chosen server group for type-m requests in layer `, having overflowed
n times so far in layer `. Let km,` denote the number of accessible server groups for type-m requests in
layer `, and Γm,` =

(
(`, γm,`,0) , . . . ,

(
`, γm,`,k`,s

))
denote the sequence of these server groups. Finally, let

Γm = Γm,1 ⊕ Γm,2 ⊕ . . .⊕ Γm,L denote the entire sequence of server groups accessible to type-m requests,
where ⊕ denotes concatenation. A type-m request will attempt each server group in Γm in order until an
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Table 1: Table of notations

Symbol Definition
L Number of layers in the system
L Set of layers in the system
G` Number of server groups in layer `
G` Set of server groups in layer `
N`,g Number of servers in server group (`, g)
M Number of request types
M Set of request types
λm Arrival rate of type-m requests

(`, γm,`,n) Server group in layer ` receiving type-m requests which have
overflowed n times in layer `

km,` Number of server groups in layer ` accessible to type-m
requests

Γm,` Set of server groups in layer ` accessible to type-m requests
Γm Set of all server groups accessible to type-m requests

Am,` Offered load of type-m requests to layer `, in Erlangs
A′m,` Variance of offered load of type-m requests to layer `
Wm,` Mean overflow of type-m requests from layer `, in Erlangs
W ′m,` Overflow variance of type-m requests from layer `

attempted server group has at least one free server, upon which the request is then served by that server. If
all server groups in Γm are fully occupied, the request is blocked and cleared. The probability of such an
event, known as the blocking probability, is an important performance measure of overflow loss systems.

All requests to the system are assumed to have an exponential service time distribution with unit mean.
Numerical experiments in Section 6.10 suggest that the effect of assuming an exponential service time
distribution is small.

Let Am,` denote the offered load in Erlangs composed of type-m requests to layer `, and Wm,` denote the
mean overflow traffic of the type-m requests from layer `. Thus

Am,` =
{
λm, ` = 1
Wm,`−1, ` = 2, 3, . . . , L.

The blocking probability of type-m requests is Bm = Wm,L/λm, and the overall system blocking probability
is

B =
∑
m∈M Wm,L∑
m∈M Am,1

.

The challenge of approximating Bm and B is thus reduced to that of approximating Wm,` from Am,` for
each layer ` ∈ L.

If moment-matching techniques are used, then more notations are required. The corresponding variances
of the offered and overflow traffic for type-m requests in layer ` are denoted A′m,` and W ′m,`, respectively,
where

A′m,` =
{
λm, ` = 1
W ′m,`−1, ` = 2, 3, . . . , L.

A summary of the notations described in this section is provided in Table 1.

3.1. Example
An example loss system is shown in Fig. 2. In this example, there are L = 3 layers, with G1 = 3, G2 = 4,

and G3 = 1 server groups in layers 1, 2, and 3, respectively. The number of request types is M = 4. The
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Figure 2: Example of a three-layer overflow loss system.

number N`,g of servers in each server group (`, g) and the arrival rate λm of traffic for each request type m is
given in Fig. 2. The overflow policy is as follows: Γ1,1 = (1, 1), Γ1,2 = ((2, 1) , (2, 2)), and Γ1,3 = (3, 1); thus
Γ1 = ((1, 1) , (2, 1) , (2, 2) , (3, 1)). Similarly,

Γ2 = ((1, 2) , (2, 2) , (2, 3) , (3, 1))
Γ3 = ((1, 3) , (2, 3) , (2, 4) , (3, 1))
Γ4 = ((2, 4) , (2, 1) , (3, 1)) .

From this we deduce k1,1 = 1, k1,2 = 2, k1,3 = 1, k2,1 = 1, etc. Note that k4,1 = 0 and Γ4,1 = () (a zero-length
sequence). In general, if km,` = 0 for any layer ` ∈ L, or equivalently if Γm,` = (), then type-m requests
in layer ` simply bypass the layer without seeking service in that layer, in which case Wm,` = Am,` and
W ′m,` = A′m,`.

4. Motivations

This section explains the motivations behind our chosen overflow loss system model, which facilitates
both intra-layer mutual overflow and inter-layer hierarchical overflow.

4.1. Benefits of mutual overflow
Our loss system model permits requests to attempt multiple server groups in the same system layer in an

arbitrary order. This allows for the presence of mutual overflow within each system layer. To demonstrate
the benefit of mutual overflow, consider an overflow loss system with M = 5 request types and L = 1 layer
containing G1 = 5 server groups with N1,g = 10 servers each. The arrival rate for each request type is λm = 5
for all m ∈M. The overflow policies are as follows, with each subsequent configuration increasing

∑
m km,1

by one:

• Configuration 0: Γm = ((1,m)) for m = 1, 2, 3, 4, 5.

• Configuration i, i = 1, 2, 3, 4, 5: Γm = ((1,m) , (1, (m mod 5) + 1)) for m = 1, . . . , i; Γm = ((1,m)) for
m = i+ 1, . . . , 5.

This is depicted graphically in Fig. 3. Configuration 5 thus “completes the chain” [20] and introduces
mutual overflow into the system. The overall blocking probability of each scenario, as evaluated via simulation,
is shown in Table 2, along with the 95% confidence interval as obtained using Student’s t-distribution. The
results demonstrate the benefits of allowing mutual overflow, as Configuration 5 has a considerably lower
blocking probability than any other configuration. Note that while each configuration in Table 2 exhibits less
blocking than the previous one, the improvement is limited compared to Configuration 5 over Configuration
4, in which increasing

∑
m km,1 by one suddenly results in over four times improvement.
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Figure 3: Graphical depiction of Configurations 0 to 5 in Section 4.1.

Table 2: Blocking probabilities for Section 4.1.

Config. Blocking prob. 95% C.I. Ratio to previous
0 0.018 369 ±2.93× 10−5 —
1 0.015 329 ±3.66× 10−5 1.198
2 0.011 920 ±2.47× 10−5 1.286
3 0.008 442 ±4.36× 10−5 1.412
4 0.004 995 ±1.59× 10−5 1.690
5 0.001 054 ±4.05× 10−6 4.740

4.2. Benefits of layering
To demonstrate the benefits of separating an overflow loss system into layers, we consider two overflow

loss systems. The first system consists of a single layer (L = 1) of G1 = 100 server groups, and the second
consists of two layers (L = 2) with G1 = G2 = 50 server groups in each layer. All server groups in both
system contain ten servers, so that each system contains a total of 1000 servers. There are M = 500 request
types in each system, each with an arrival rate of λm = 1.92, so that each system receives a total offered
load of 960 Erlangs or 96% loading. In the first system, each type-m request is served by km,1 = k̂ server
groups. In the second system, each type-m request is served by km,1 = k̂/2 + 5 server groups in layer 1 and
km,2 = k̂/2− 5 in layer 2 (we consider even values of k̂ only).

For each value of k̂ in {20, 30, . . . , 80}, twenty random routing configurations are generated for both the
one-layer and two-layer system, and the overall blocking probability of each configuration evaluated via
simulation. The results, shown in Table 3, demonstrate consistently better performance of the two-layer
system over the one-layer system. This is consistent with earlier results for gradings [19] where it is found
that by creating a progression from more specialized to more generic server groups, in terms of the number
of request types served, the blocking probability of an overflow loss system can be reduced.

Table 3: Blocking probabilities for Section 4.2.

one layer two layers relative
k̂ mean st. dev. mean st. dev. difference
20 0.009 970 3.35× 10−5 0.009 429 3.88× 10−5 -5.42%
30 0.007 810 3.02× 10−5 0.007 519 3.04× 10−5 -3.72%
40 0.007 024 2.31× 10−5 0.006 879 2.68× 10−5 -2.07%
50 0.006 643 3.03× 10−5 0.006 566 1.69× 10−5 -1.16%
60 0.006 439 2.42× 10−5 0.006 378 2.09× 10−5 -0.96%
70 0.006 309 2.06× 10−5 0.006 290 2.23× 10−5 -0.30%
80 0.006 230 2.36× 10−5 0.006 209 2.56× 10−5 -0.35%

9



5. Approximation

5.1. FPA
FPA makes two major simplifying assumptions: that the traffic offered to each server group in the system

is Poisson and independent of the traffic offered to the other server groups. However, since the traffic offered
to each server group still depends on the offered traffic to and blocking probability of the other server groups,
fixed-point iteration [53] is required to find the traffic offered to each group.

Consider layer ` on its own. Define:

• am,`,n — Offered traffic composed of type-m requests, having overflowed n times so far in layer `, for
all m ∈M, 0 ≤ n < km,`. These requests are always offered to server group (`, γm,`,n).

• a`,g — Total offered traffic to group (`, g), for all g ∈ G`.

• b`,g — Congestion probability of group (`, g), for all g ∈ G`, namely the probability that all servers in
group (`, g) are occupied.

Summing over all eligible m ∈M, we obtain

a`,g =
∑
m∈M

km,`−1∑
n=0

1 {γm,`,n = g} am,`,n,

where 1 {·} denotes the indicator function. From the Poisson assumption, the blocking probability of group
(`, g) is estimated via the Erlang B formula: b`,g = E (a`,g, N`,g). From the independence assumption,

am,`,n =
{
Am,`, n = 0;
am,`,n−1b`,γm,`,n−1 , n = 1, 2, . . . , km,` − 1.

The above equations form a fixed-point system which may be solved iteratively. The overflow traffic of
type-m requests from layer ` is

Wm,` = Am,`

km,`−1∏
n=0

b`,γm,`,n
= am,`,km,`−1b`,ω (1)

where ω = γm,`,km,`−1. Equation (1) can be interpreted simply as follows: the overflow traffic of type m
requests from a layer is equal to the offered load of type-m requests to that layer, reduced by the congestion
probabilities of all accessible server groups in that layer, namely those in Γm,`.

In this paper, we set a stopping criterion for FPA as follows: Let b(n)
`,g represent the nth-iteration estimate

of b`,g. If |b(n)
`,g − b

(n−1)
`,g | < 10−8 for all server groups (`, g) in the system, then FPA is concluded and the

nth-iteration estimates are used as the final estimates.

5.2. FPAm
We eliminate the Poisson assumption of FPA, but assume that overflow traffic can be adequately

characterized by its mean and variance only. Consider layer ` on its own. Define am,`,n, a`,g, and b`,g as for
FPA, and a′m,`,n and a′`,g as the corresponding variances. Summing over all eligible m ∈M, we obtain

a`,g =
∑
m∈M

km,`−1∑
n=0

1 {γm,`,n = g} am,`,n

a′`,g =
∑
m∈M

km,`−1∑
n=0

1 {γm,`,n = g} a′m,`,n.
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The blocking probability of group (`, g) is estimated via Hayward’s approximation:

b = E
(
a`,g, a

′
`,g, N`,g

)
= E

(
a`,g
z`,g

,
N`,g
z`,g

)
where z`,g = a′`,g/a`,g. For details on extending the Erlang B formula to non-integer number of servers, see
[57]. From the independence assumption,

am,`,n =
{
Am,`, n = 0;
am,`,n−1b`,γm,`,n−1 , n = 1, 2, . . . , km,` − 1.

a′m,`,n =
{
A′m,`, n = 0;
M
(
am,`,n−1, a

′
m,`,n−1, b`,γm,`,n−1

)
, n = 1, 2, . . . , km,` − 1,

whereM depends on the chosen moment-matching method. In this paper, we choose a moment-matching
method proposed by Huang et al. [31], which we describe in detail in Section 5.7.

The above equations form a fixed-point system which may be solved iteratively. The overflow traffic of
type-m requests from layer ` is

Wm,` = Am,`

km,`−1∏
n=0

b`,γm,`,n
= am,`,km,`−1b`,ω

with corresponding variance

W ′m,` =M
(
am,`,km,`−1, a

′
m,`,km,`−1, b`,ω

)
,

where ω = γm,`,km,`−1.

5.3. IESA — Basic description
IESA involves applying the same methodology as FPA, namely decoupling of a system into full-accessibility

subsystems with Poisson input, but while FPA applies decoupling to the true model as defined in Section 3,
IESA applies decoupling to a surrogate model instead. This surrogate model, which we call the IESA model,
is designed so that the non-hierarchical dependencies inherent in the true model are captured within the
hierarchy of the IESA model. As a result, IESA exhibits much smaller errors than FPA in many cases.

In the IESA model, each request has three parameters: m, its type, ∆, its set of previously attempted
server groups in the current layer, and Ω, its congestion estimate (a scalar) of the number of fully occupied
server groups in the current layer. A high Ω value means high system congestion and hence high system
interdependence, meaning that if a request finds that a server group to be full, that request is likely to
find that other server groups are also full. Classification of requests within each system layer by their Ω
value creates a sub-hierarchy within each system layer where the jth level of the sub-hierarchy includes
incoming requests for which Ω ≤ j. In other words, Ω forms the mechanism by which IESA captures mutual
dependencies between server groups in a hierarchical manner.

Consider layer ` on its own. All incoming requests to layer ` start with ∆ = ∅ and Ω = 0. When an
incoming (m1,∆1,Ω1)-request encounters a fully occupied server group (`, g), it compares itself to the most
senior (highest Ω value) request in service, which we denote as an (m2,∆2,Ω2)-request. Ties are broken
arbitrarily. If Ω1 ≥ Ω2, then no information exchange occurs and the incoming request overflows as an
(m1,∆1 ∪ {(`, g)} ,Ω1 + 1)-request. On the other hand, if Ω1 < Ω2, then the incoming request exchanges its
Ω value with the request in service and overflows as an (m1,∆1 ∪ {(`, g)} ,Ω2 + 1)-request, while the request
in service becomes an (m2,∆2,Ω1)-request. In this way, |∆| ≤ Ω for all incoming calls. A graphical depiction
of this information exchange mechanism is given in Fig. 4.

For overflowing (m,∆, j)-requests in layer `, |∆| = n, there is a certain probability Pm,`,n,j that the
km,` − n unvisited server groups in Γm,` \ ∆ are all fully occupied. We estimate Pm,`,n,j by considering

11



Figure 4: Graphical depiction of the information exchange mechanism in the IESA model. In this figure, Ω2 represents the
highest Ω value of all requests in service at server group (`, g), with Ω1 < Ω2.

Erlang’s Ideal grading [58] with G` − n individual servers, of which km,` − n servers may be attempted at
random and j − n servers are currently occupied. Thus

Pm,`,n,j =


(

j−n
km,`−n

)(
G`−n
km,`−n

) , j ≥ km,`;

0, otherwise.
(2)

This estimate is used by the IESA model to control overflow in the system. With probability 1− Pm,`,n,j ,
the request is offered as normal to the next server group in its overflow policy, namely (`, γm,`,n). With
probability Pm,`,n,j , the request immediately overflows to the next system layer without attempting any server
groups in Γm,` \∆. If there are no more layers, the request is blocked and cleared. Note that Pm,`,n,j = 1
when n = km,` (each server group in Γm,` has been visited) or when j = G` (all server groups in G` are
believed to be fully occupied). Also, as n ≤ j for all incoming requests, 0 ≤ Pm,`,n,j ≤ 1, confirming that our
definition of Pm,`,n,j is a valid one.

In summary, IESA transforms each layer of the true model from a non-hierarchical traffic dependency
structure to a purely hierarchical traffic dependency structure based on Ω, resulting in provable convergence
of IESA to a unique solution, which FPA does not provide. The hierarchical dependency structure created
by the IESA model (i.e. the IESA2 model in [33]) is superior to that created by the IESA1 model, where the
identity of a request is also exchanged in addition to the congestion estimate, creating a surrogate model
that is further from reality than the IESA2 model.

5.4. IESA — Detailed description
Consider layer ` on its own and define em,`,n,j , ẽm,`,n,j , xm,`,n,j , wm,`,n,j , a`,g,n,j , ã`,g,n,j , a`,g,j , and b`,g,j

as in Table 4. For recursion purposes, all values above are assumed to be zero outside of the allowed indices.
By definition:

wm,`,n,j = xm,`,n,jPm,`,n,j

em,`,n,j = xm,`,n,j (1− Pm,`,n,j) , n > 0

ẽm,`,n,j =
j∑
i=n

em,`,n,i

ã`,g,n,j =
j∑
i=n

a`,g,n,i.

As only fresh calls can have |∆| = 0, we obtain

em,`,0,j =
{
Am,`, j = 0
0, j = 1, 2, . . . , G` − 1.
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Summing over all eligible m ∈M,

a`,g,n,j =
∑
m∈M

1 {γm,`,n = g} em,`,n,g.

Let k?`,g = maxm:(`,g)∈Γm,`
km,` denote the largest value of km,` for all request types with access to server

group (`, g). Then

a`,g,j =
min(j,k?

`,g−1)∑
n=0

ã`,g,n,j .

From the Poisson assumption, the blocking probability of group (`, g) is estimated via the Erlang B formula:
b`,g,j = E (a`,g,j , N`,g,j).

Consider the server group (`, g) = (`, γm,`,n−1) for some m ∈M and 1 ≤ n ≤ km,`. In our IESA model,
there are two ways for a request to overflow from (`, g) with a congestion estimate of j:

1. A request with congestion estimate j− 1 arriving at (`, g) finds with probability b`,g,j−1 that all servers
are busy serving requests with congestion estimates of j − 1 or less, meaning that no information
exchange occurs and the incoming request simply overflows with congestion estimate j.

2. A request with a congestion estimate of i ≤ j−2 finds with probability b`,g,j−1−b`,g,j−2 that all servers
are busy, with the most senior request in service having a congestion estimate of exactly j − 1. Since
the incoming request is junior (smaller congestion estimate) to this request, the congestion estimates of
the two requests are exchanged. The request in service obtains a new congestion estimate of i, while
the incoming request overflows with a congestion estimate of j.

Combining these two possibilities, we obtain

xm,`,n,j = em,`,n−1,j−1b`,γm,`,n−1,j−1

+ ẽm,`,n−1,j−2
(
b`,γm,`,n−1,j−1 − b`,γm,`,n−1,j−2

)
.

The above values can be obtained iteratively for j = 0, 1, . . . , G`−1. The overflow traffic of type-m requests
from layer ` is

Wm,` =
km,`∑
n=1

G∑̀
j=km,`

wm,`,n,j .

To further explain the derivation of the IESA algorithm for our overflow loss system model, the relation
between a`,g,j , b`,g,j , and the IESA hierarchy is illustrated in Fig. 5. The proportion of requests at each level
which are immediately overflowed to the next layer depends on the ∆ values of the individual requests.

5.5. IESAm
Assume that overflow traffic can be adequately characterized by its mean and variance only. Consider

layer ` on its own. Define em,`,n,j , ẽm,`,n,j , xm,`,n,j , wm,`,n,j , a`,g,n,j , ã`,g,n,j , a`,g,j , and b`,g,j as for IESA and
e′m,`,n,j , ẽ′m,`,n,j , x′m,`,n,j , w′m,`,n,j , a′`,g,n,j , ã′`,g,n,j , and a′`,g,j as the corresponding variances. By definition:
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Figure 5: Graphical depiction of the IESA hierarchy, showing the offered load to and overflow from server group (`, g) at each
level Ω of the IESA hierarchy.

wm,`,n,j = xm,`,n,jPm,`,n,j

w′m,`,n,j = x′m,`,n,jPm,`,n,j

em,`,n,j = xm,`,n,j (1− Pm,`,n,j) , n > 0
e′m,`,n,j = x′m,`,n,j (1− Pm,`,n,j) , n > 0

ẽm,`,n,j =
j∑
i=n

em,`,n,i

ẽ′m,`,n,j =
j∑
i=n

e′m,`,n,i

ã`,g,n,j =
j∑
i=n

a`,g,n,i

ã′`,g,n,j =
j∑
i=n

a′`,g,n,i.

As only fresh calls can have |∆| = 0, we obtain

em,`,0,j =
{
Am,`, j = 0
0, j = 1, 2, . . . , G` − 1

e′m,`,0,j =
{
A′m,`, j = 0
0, j = 1, 2, . . . , G` − 1
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Furthermore,

a`,g,n,j =
∑
m∈M

1 {γm,`,n = g} em,`,n,g

a′`,g,n,j =
∑
m∈M

1 {γm,`,n = g} e′m,`,n,g

a`,g,j =
min(j,k?

`,g−1)∑
n=0

ã`,g,n,j

a′`,g,j =
min(j,k?

`,g−1)∑
n=0

ã′`,g,n,j .

The blocking probability of group (`, g) is estimated via Hayward’s approximation:

b`,g,j = E

(
a`,g,j
z`,g,j

,
N`,g,j
z`,g,j

)
.

where z`,g,j = a′`,g,j/a`,g,j . Then

xm,`,n,j = em,`,n−1,j−1b`,γm,`,n−1,j−1

+ ẽm,`,n−1,j−2
(
b`,γm,`,n−1,j−1 − b`,γm,`,n−1,j−2

)
x′m,`,n,j =M

(
em,`,n−1,j−1, e

′
m,`,n−1,j−1, b`,γm,`,n−1,j−1

)
+M

(
ẽm,`,n−1,j−2, ẽ

′
m,`,n−1,j−2, b`,γm,`,n−1,j−1 − b`,γm,`,n−1,j−2

)
whereM depends on the chosen moment-matching method. In this paper, we choose a moment-matching
method proposed by Huang et al. [31], which we describe in detail in Section 5.7.

The above values can be obtained iteratively for j = 0, 1, . . . , G`−1. The overflow traffic of type-m requests
from layer ` is

Wm,` =
km,`∑
n=1

G∑̀
j=km,`

wm,`,n,j

with corresponding variance

W ′m,` =
km,`∑
n=1

G∑̀
j=km,`

w′m,`,n,j .

5.6. IESA+ and IESAm+

Equation (2) relies on the implicit assumption that Ω and ∆ are perfectly correlated: all server groups in
∆ are accounted for in the value of Ω. Due to information exchange, this is not necessarily the case. We
therefore propose a new IESA surrogate model where Pm,`,n,j is replaced by P+

m,`,n,j , in which Ω and ∆
are assumed to be independent. While Pm,`,n,j is based on an Erlang’s Ideal Grading (EIG) in which the n
visited server groups are excluded, P+

m,`,n,j is based on an EIG which does include the n visited groups. The
EIG on which P+

m,`,n,j is based includes G` individual servers, of which km,` − n servers may be attempted
at random and Ω servers are currently occupied. Thus

P+
m,`,n,j =


(

j
km,`−n

)(
G`

km,`−n
) , j ≥ km,`;

0, otherwise.
(3)

We shall use the term “IESA+ model” to refer to the new surrogate model, and IESA+ and IESAm+ to refer
to the resulting approximations with and without moment matching.
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Figure 6: Graphical depiction of the moment matching method used in this paper.

5.7. Moment matching
In this paper, we use the moment matching method of Huang et al. [31]. As we do not consider request

requiring multiple service units, we present a simplified version of the original method here. The method of
[31] computes the overflow mean and variance of separate traffic substreams offered to a server group by
modeling the server group as a collection of imaginary M/M/n/n server groups, one for each substream of
the combined offered traffic.

Consider a server group with N servers offered traffic with a mean of A and a variance of A′, with
Z = A′/A. The blocking probability of the server group is estimated using Hayward’s approximation as
B = E (A/Z,N/Z). We are interested in the overflow process of a particular substream with an offered mean
of a and an offered variance of a′. The overflow mean of the substream is w = aB. Let z = a′/a.

To calculate the overflow variance w′, we construct an imaginary M/M/n/n server group with an offered
load of ϕ = a/z and n servers such that E (ϕ, n) = B. The overflow mean of this imaginary group is χ = ϕB,
while the overflow variance is computed via Riordan’s formula [28, Appx. I]:

χ′ = χ

[
1− χ+ ϕ

n+ 1 + χ− ϕ

]
.

Finally, w′ is estimated as χ′z. We shall write w′ =M (a, a′, B). Note that if the substream consists of the
entire offered load, i.e. a = A and a′ = A′, then the method becomes equivalent to that of Fredericks [29]. A
graphical representation of our method is given in Fig. 6.

6. Numerical Results

This section examines the performance of FPA, FPAm, IESA, IESAm, IESA+, and IESAm+ as applied
to the overflow loss model described in Section 3. We consider systems with two or more layers, with
the skill set of servers in each layer being, on average, at least as large as those in the previous layer,
consistent with the design principles of [19]. For each data point in each graph in this section, twenty (unless
otherwise stated) random routing configurations are generated. For each configuration, the overall blocking
probability of the system is evaluated via each approximation and compared against simulation results. In
Section 6.9, individual request blocking probabilities are also considered. The simulation values for each
routing configuration are obtained by conducting the following:

• A minimum of five simulation runs of 50 million request arrivals each.

• Additional simulation runs until the 95% confidence interval, as obtained using Student’s t-distribution,
is less than one percent of the simulation mean, or until fifteen runs have been completed.
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Figure 7: Logarithmic errors for the scenarios described in Section 6.1.

Each data point shows the mean logarithmic error of each approximation, with error bars representing one
standard deviation. Logarithmic error is defined as

log10

(
approximation blocking probability
simulation blocking probability

)
.

6.1. Varying the number of layers
We construct an overflow loss system with 96 server groups split evenly across L = 1, 2, 3, 4, 6, or 8 layers,

with N`,g = 10 for all server groups (`, g). Each request may attempt half of the server groups in each layer:
km,` = G`/2 for all m and `. There are M = 500 request types, each with an arrival rate of λm = 920/M
Erlangs. The results are shown in Fig. 7.

All IESA approximations are demonstrated to be several orders of magnitude more accurate than FPA
and FPAm, with the largest benefits when L is small. The convergence of the IESA approximations to FPA
as L increases makes intuitive sense as in the extreme case of L = 48, km,` = 1 for all request types k and
layers ` and thus IESA and FPA must be equal. Furthermore, IESA+ produces a notably higher estimate
than IESA, with the difference increasing in L (although IESA and IESA+ must eventually converge when
L = 48). IESAm+ is demonstrated to be the most accurate approximation for all values of L.

Moment matching is demonstrated to have a small but consistent effect on the accuracy of FPA, IESA,
and IESA+. Nevertheless, the accuracy of IESAm and IESAm+ is decreasing in L.

The blocking probabilities of the IESA and IESA+ models, as evaluated via simulation, are shown in
Fig. 8. It is demonstrated that the two surrogate models have blocking probabilities slightly higher than but
similar to that of the true model, with the difference decreasing as the number of layers increases (i.e. as the
number of server groups in each layer decreases).

6.2. Varying the accessibility
We consider a case with L = 2 layers, G1 = 60, G2 = 40, N`,g = 10 for all server groups (`, g), M = 500,

and λm = 960/M for all request types m. Each request of type m may attempt km,1 server groups in layer 1
and km,2 server groups in layer 2. We set km,1 = km,2 = k for various values of k. The results are shown in
Fig. 9.

The results demonstrate a rapid deterioration of FPA and FPAm as k increases. This is because as k
increases, the number of request types served by each server group also increases, in turn increasing the
interdependencies between server groups in each layer. In addition, the effect of the Poisson assumption is
amplified both due to the increased peakedness of overflow traffic and due to the cascading effect: any error
in estimating the overflow traffic of a request type after a given number of overflows affects the offered traffic
of all subsequent server group attempts.

All four IESA approximations shown demonstrate a vast improvement in accuracy over FPA and FPAm,
with an improvement of roughly ten orders of magnitude for k = 40. Moment matching is demonstrated
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Figure 8: Simulated blocking probabilites of the three surrogate models for the scenarios described in Section 6.1.

Figure 9: Logarithmic errors for the scenarios described in Section 6.2.

to provide a small additional benefit, with IESAm+ the most accurate of approximation for all values of k
shown.

Finally, Fig. 10 shows the mean running time for FPAm and each IESA approximation for each value of
k, with the standard deviation shown as error bars. FPA is not shown as the running time of FPA is less
than the resolution of the system clock on the machine on which these configurations were evaluated. It is
demonstrated that IESA and IESA+ have nearly identical running times, as do IESAm and IESAm+. The
running times of IESAm and FPAm are similar, with FPAm faster for small k and IESAm faster for large k.

The results in Fig. 10 were obtained on an IBM server with two Intel Xeon CPUs running at 2.6GHz
with 96GB of RAM. For comparison, Markov-chain simulation consistently required at least 6000 seconds for
each configuration, a difference of over two orders of magnitude more than FPAm and IESAm.

6.3. Varying the accessibility of each layer
In this subsection, we maintain L = 2 and G1 = G2 = 50 but varying the values of km,1 and km,2 so that

km,1 = 20− x and km,2 = 20 + x for all request types m. We also maintain M = 500, λm = 960/M for all
request types m, and N`,g = 10 for all server groups (`, g). The results are shown in Fig. 11.

The results demonstrate a deterioration of FPA and FPAm as x increases, except for large x where the
higher blocking probability of the system becomes a factor. Moment matching is shown to have a small
positive effect, slightly reducing the error of IESAm and IESAm+ compared to IESA and IESA+, respectively.
IESAm+ is demonstrated to be the most accurate approximation for all values of G2 shown.

6.4. Varying the number of server groups in each layer
In this subsection, we consider a two-layer (L = 2) overflow loss system with G1 + G2 = 100 server

groups in total, G1 ≥ G2, and examine the effect of assigning different numbers of groups to each layer while
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Figure 10: Running time per configuration for the scenarios described in Section 6.2. The running time of FPA is less than the
resolution of the system clock on the machine on which these configurations were evaluated.
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Figure 11: Logarithmic errors for the scenarios described in Section 6.3. Each request may attempt 20 − x server groups in layer
1 and 20 + x groups in layer 2.
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Figure 13: Logarithmic errors for the scenarios described in Section 6.5.

keeping the number of groups accessible to each request in each layer the same. Each server group consists
of N`,g = 10 identical servers. There are M = 500 request types with an arrival rate of λm = 960/M Erlangs
each, and requests of each type m may attempt km,1 = km,2 = 20 server groups in each layer. The results
are shown in Fig. 12.

The results demonstrate a sharp deterioration of FPA and FPAm as G2 decreases, with the IESA
approximations outperforming FPA by roughly seven orders of magnitude for G2 = 20. This is because as
G2 decreases, the number of request types served by each server group in layer 2 increases, which in turn
increases the interdependencies between server groups in the layer. Moment matching is shown to have a
small positive effect, slightly reducing the error of IESAm and IESAm+ compared to IESA and IESA+,
respectively. IESAm+ is demonstrated to be the most accurate approximation for all values of G2 shown.

6.5. Varying the number of request types
We consider a case with L = 2 layers, with G1 = 60 and G2 = 40. Each server group contains N`,g = 10

servers. We vary the number of request types M , each with an arrival rate of λm = 960/M . Each request
may attempt km,1 = km,2 = 20 server groups in each layer. The results are shown in Fig. 13.

The IESA approximations are consistently more accurate than FPA and FPAm by several orders of
magnitude. Moment matching is shown to have a small positive effect, slightly reducing the error of IESAm
and IESAm+ compared to IESA and IESA+, respectively. On the other hand, the effect of moment matching
decreases in M as the offered traffic is more finely divided into a larger number of request types. IESAm+ is
demonstrated to be the most accurate approximation for all values of λ shown.

6.6. Varying the total number of server groups
We consider a case with L = 2 layers, with G1 = 3n server groups in layer 1 and G2 = 2n servers in layer

2, for various values of n. We maintain M = 500, km,1 = km,2 = n for all request types m, and N`,g = 10 for
all server groups (`, g). The arrival rate is set so that the blocking probability is approximately 0.5% in all
cases. The results are shown in Fig. 14.

The results demonstrate a rapid deterioration of FPA and FPAm as n (and thus km,1 and km,2) increases,
due to the cascading effect in which approximation errors at lower-order overflows affect all higher-order
overflow traffic. All four IESA approximations shown demonstrate a vast improvement in accuracy over FPA
and FPAm, with an improvement of roughly seven orders of magnitude for n = 50. Moment matching is
demonstrated to provide an additional small benefit, with IESAm+ the most accurate of approximation for
all values of n shown.

6.7. Varying the number of servers per group
We consider a case with L = 2 layers, G1 = 60, and G2 = 40for all server groups (`, g), M = 500, and

km,1 = km,2 = 20 for all request types m. We set N`,g = N for various values of N for all server groups (`, g).
The arrival rate is set so that the blocking probability is approximately 0.5% in all cases.The results are
shown in Fig. 15.
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Figure 15: Logarithmic errors for the scenarios described in Section 6.7.

The results demonstrate that while FPA and FPAm become less accurate as N increases, the IESA
approximations become more accurate. Moment matching is demonstrated to provide an additional small
benefit, with IESAm+ the most accurate of approximation for all values of N shown. The effect of moment
matching is largest when there is only one server per group.

6.8. Varying the arrival rate
In this subsection, we maintain L = 2, G1 = 60, G2 = 40, N`,g = 10 for all server groups (`, g), M = 500,

and km,1 = km,2 = 20, while varying the arrival rate. Let λ denote the total arrival rate to the system, which
is distributed evenly among all M request types. The results are shown in Fig. 16.

The results demonstrate a deterioration in accuracy of all the approximations as λ decreases. To explain
this effect, we consider a simple M/M/k/k queue and note that for sufficiently loaded queues, the derivative
of the Erlang B formula increases as λ decreases, as shown in Fig. 17. As a result, the estimate of the overflow
probability of each server group becomes more sensitive to errors in estimating the offered load.

The IESA approximations are consistently more accurate than FPA and FPAm by several orders of
magnitude. Moment matching is shown to have a small positive effect, slightly reducing the error of IESAm
and IESAm+ compared to IESA and IESA+, respectively. IESAm+ is demonstrated to be the most accurate
approximation for all values of λ shown.

6.9. Unbalanced traffic
We consider a case with L = 2 layers, G1 = 60, G2 = 40, N`,g = 10 for all server groups (`, g), M = 500,

and km,2 = 20 for all request types m. On the other hand, km,1 is set to be proportional to λm with a mean
of 20, subject to 1 ≤ km,1 ≤ G1. The total arrival rate is set to

∑
m λm = 960, with λm ∝ m−0.6.

For each approximation, we post the distribution of the logarithmic error of each request type across
twenty routing configurations. The results are shown in Fig. 18. For the sake of comparison, all bin widths
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Figure 18: Logarithmic errors for individual request types for an unbalanced system.
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Figure 19: Sensitivity of blocking probability to the service time distribution.

are equal and are plotted on the same horizontal scale. The IESA approximations are demonstrated to
reduce not only the approximation error for the mean blocking probability of the system, but also the spread
of the error for individual request types.

6.10. Sensitivity to the service time distribution
We consider the k = 20 case from Section 6.2, while changing the service time distribution of requests.

Four distributions are considered, all with unit mean: exponential with a variance of 1.0, deterministic with
a variance of 0.0, and lognormal with variances of 0.04, 0.36, and 2.0. The blocking probabilities for 100
randomly generated routing configurations are evaluated for each of the five distributions and denoted BE ,
BD, BL0.04 , BL0.36 , and BL2.0 , respectively. The results, shown in Fig. 19, demonstrate less than 3% difference
in BD, BL0.04 , BL0.36 , and BL2.0 to BE for all 100 configurations, suggesting that blocking probability in our
overflow loss system model is not very sensitive to the service time distribution except through its mean.
Whiskers show the maximum and minimum values within 1.5 times the interquartile range.

7. Concluding remarks

We have extended FPA and the IESA framework to a multi-layer loss system architecture with both
hierarchical inter-layer overflow and non-hierarchical intra-layer overflow. We have proposed a new IESA
approximation, IESA+, which differs slightly from IESA on its handling of overflowing requests, based on the
overflow history ∆ and the congestion estimate Ω. We have strengthened FPA, IESA, and IESA+ through
the application of moment matching, generating FPAm, IESAm, and IESAm+. Extensive numerical results
demonstrate that IESA is consistently more accurate than FPA and FPAm, with improvements of several
orders of magnitude in many cases. Furthermore, IESAm, IESA+, and IESAm+ provide an additional small
but consistent improvement over IESA, with IESAm+ providing the best results out of all the approximations
considered. The IESA framework is shown to be most accurate when the number of layers is small, the
number of accessible server groups per request is small, and the arrival rate is high.

Despite consistent improvement over conventional approximations such as FPA and FPAm, with several
orders of magnitude in many cases, there are still cases where the IESA framework can be improved. Further
work may be required to develop new IESA surrogates with increased accuracy and robustness, as well as
moment matching techniques specifically tailored for IESA.

Finally, numerical results demonstrate near insensitivity of the blocking probability to the service time
distribution except through its mean, allowing the IESA framework to be used in a wide range of overflow
loss systems.
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