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Abstract—We study the problem of job assignment in a large-
scale realistically-dimensioned server farm comprising multiple
processor-sharing servers with different service rates, energy
consumption rates, and buffer sizes. Our aim is to optimize the
energy efficiency of such a server farm by effectively controlling
carried load on networked servers. To this end, we propose a job
assignment policy, called Most energy-efficient available server
first Accounting for Idle Power (MAIP), which is both scalable
and near optimal. MAIP focuses on reducing the productive
power used to support the processing service rate. Using the
framework of semi-Markov decision process we show that, with
exponentially distributed job sizes, MAIP is equivalent to the
well-known Whittle’s index policy. This equivalence and the
methodology of Weber and Weiss enable us to prove that, in
server farms where a loss of jobs happens if and only if all
buffers are full, MAIP is asymptotically optimal as the number
of servers tends to infinity under certain conditions associated
with the large number of servers as we have in a real server
farm. Through extensive numerical simulations, we demonstrate
the effectiveness of MAIP and its robustness to different job-
size distributions, and observe that significant improvement in
energy efficiency can be achieved by utilizing knowledge of energy
consumption rate of idle servers.

Index Terms—Energy efficiency, job assignment, bandit prob-
lem, processor sharing, server farm.

I. INTRODUCTION

THE data-center industry, with over 500 thousand data

centers worldwide [1], has been growing in parallel with

the dramatic increase in global Internet traffic. An estimated 91

billion kWh of electricity was consumed by U.S. data centers

in 2013, and this consumption rate continues to grow, resulting

in $13 billion annually for electricity bills and potentially

nearly 100 million metric tons of carbon pollution per year

by 2020 [2]. Servers account for the major portion of energy

consumption of data centers [3]. Our aim here is to describe

optimal scheduling/dispatching strategies for incoming job

requests in a server farm so as to improve energy efficiency.
This has been a topic of interest for some time, with ap-

proaches such as speed scaling to reduce energy consumption

This work was supported by CityU Strategic Research Grants Project
No. 7004434 and Project No. 7004611. Most of the work was done when
J. Fu and J. Guo were with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong.

J. Fu is with the School of Mathematics and Statistics, The University of
Melbourne, Melbourne, Australia (e-mail: jing.fu@unimelb.edu.au).

B. Moran is with the School of Engineering, RMIT University, Melbourne,
Australia (e-mail:bill.moran@rmit.edu.au).

J. Guo is with the College of Computer Science and Technology, Dongguan
University of Technology, Dongguan, China (e-mail: guojun@dgut.edu.cn).

E. W. M. Wong and M. Zukerman are with the Department of Elec-
tronic Engineering, City University of Hong Kong, Hong Kong (e-mail:
eeewong@cityu.edu.hk; m.zu@cityu.edu.hk).

by controlling server speed(s) [4]–[8]. Right-sizing of server

farms has been done by powering servers on/off according

to traffic load [9]–[12], and by switching servers between

active/sleep mode according to number of waiting jobs [13].

In [14], [15] resource allocation methodologies are used to

distribute the power budget for energy conservation.

Rapid improvements in computer hardware have resulted in

frequent upgrades of parts of the server farms. This, in turn,

has led to server farms with a range of different computer

resources (heterogeneous servers) being deployed [16]. Such

heterogeneity significantly complicates optimization, since

each server needs to be considered individually. Despite the

complexity, we are able to improve here the energy efficiency

of heterogeneous server farm via appropriate scalable job

assignment policies that are applicable to server farms with

tens of thousands of servers. For the purposes of this paper,

a server farm is postulated to have a fixed number of servers

with no possibility of powering off during the time period

under consideration; this, in practice, could apply to periods

during which no powering off takes place. In this way, the job

assignment policies described here can be combined with the

right-sizing techniques mentioned above, as appropriate. Note

that frequent powering off/on increases wear and tear and the

need for costly replacement and maintenance [17].

Here, we consider a system in which idle servers may have

non-negligible energy consumption rate [18]. In [6], [19], [20],

job assignment policies have been discussed without consider-

ation of idle power (energy consumption rate of idle servers),

and in [9], [11], [21], such policies have been considered

for a server pool with identical servers. In the server farms

considered, servers are not assumed to be identical. To the best

of our knowledge, there is no published work that considers

idle power in designing job assignment methodologies for a

given heterogeneous server pool.

Other job assignment policies in the literature (e.g., [22]–

[24]) have considered scenarios with infinite buffer size and

have sought to minimize delay. We consider a server farm

with parallel finite-buffer queues, and with heterogeneous

server speeds, energy consumption rates, and buffer sizes.

As in [19], the energy efficiency of a server farm is defined

as the ratio of the long-run expected job departure rate

divided by the expected energy consumption rate. It forms the

objective function of our optimization strategy. This objective

function represents the amount of useful work (e.g., data rate,

throughput, processes per second) per watt.

The processor sharing (PS) discipline is imposed on each

queue, so that all jobs on the same queue share the processing
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capacity and are served at the same rate. The PS discipline

avoids unfair delays for those jobs that are preceded by

extremely large jobs, making it an appropriate model for web

server farms [25], [26], where job-size distributions are highly

variable [27], [28]. The finite buffer size queuing model with

PS discipline can be applied in situations where a minimum

service rate is required for processing a job in the system [29].

In communication systems, broader applications of PS queues

have been studied; e.g., [30], [31].
A key feature of our approach is to model the problem

as an instance of the Restless Multi-Armed Bandit Problem

(RMABP) [32] in which, at each epoch, a policy chooses a

server to be tagged for a new job assignment (other servers are

said to be untagged). The general RMABP has been proved

SPACE-hard [33], and this has led to studies in scalable and

near-optimal approximations, such as index policies. An index

policy selects a set of tagged servers at any epoch according

to their state-dependent indices.
We consider a large-scale realistically-dimensioned server

farm that cannot reject a job if it has buffer space available.

Such a situation would occur, for instance, where a server farm

owner is unable to replace all older servers simultaneously, and

so legacy inefficient servers are needed to meet a service level

agreement. Buffering spill-over creates dependencies between

servers, and requires us to postulate uncontrollable states [34].

In other words, the constraint on the number of tagged servers

in conventional RMABP has to be replaced by a constraint on

the number of tagged servers in controllable states. As far as

we are aware, there are no theoretical results on the asymptotic

optimality of an index policy for a multi-server system with

finite buffer size, where loss of jobs happens if and only if all

buffers are full. A further discussion on existing related work

is provided in Section II.
The contribution of this paper is listed as follows.

• We propose a new job assignment method to attempt

maximization of energy efficiency. The new proposed

policy is referred to as the Most energy-efficient available

server first Accounting for Idle Power (MAIP). MAIP

prioritizes the most energy-efficient servers that are avail-

able (that is, servers with at least one vacant slot in

their buffers) and requires the energy consumption rate

of idle servers as an input parameter for decision making.

This policy provides a model of a real system with

significant energy consumption rate in idle states. MAIP

is scalable and requires only binary state information

of servers, making it suitable for an environment with

frequently changing server states. Our server farm model

is centralized and is applicable to a local system with

frequently changing information, which for our case is the

binary information of server states. We note that Google

has built a centralized control mechanism for network

routing and management that monitors all link states and

is scalable for Google’s building-scale data center [35].

• We prove, remarkably, that when job sizes are exponen-

tially distributed, the Whittle’s index policy is equivalent

to MAIP, and that it is asymptotically optimal for our

server farm comprised of multiple groups of identical

servers as the numbers of servers in these groups tend

to infinity. It is reasonable to assume that if the total

number of servers in a server farm is very large, then

the number of servers bought in a single batch, or over a

short period of time during which the technology is not

improving, will also be large. In any case, there is cost

benefit in buying in bulk, so that the number of servers

purchased at once is likely to be large. More importantly,

the typical lifespan of a server is in the range of 3 years

[36], [37]. Accordingly, a modern server farm is likely to

be categorized into several server groups, each of which

contains a large number of servers of the same or similar

type and attributes that were bought at the same time, or

over a short time period.

The well-known Whittle’s index relaxation enables de-

composition of a complex RMABP problem into multiple

sub-problems, assumed computationally feasible [32].

Note that, in the general case, Whittle’s index does not

necessarily exist, and even if it does, a closed form

solution is often unavailable. As mentioned before and in

Section II, the buffer constraint in our case enforces the

need for uncontrollable states and, in turn, prevents direct

application of previous asymptotic optimality results on

RMABP to our problem.

• We demonstrate numerically the effectiveness of MAIP

by comparing it with a baseline policy that prioritizes

the most energy-efficient available serves but ignores

idle power. Although, as mentioned above, powering off

servers is not considered here, the performance of the

baseline policy can be significantly improved by taking

the idle power into consideration (MAIP) in terms of en-

ergy efficiency. MAIP is demonstrated numerically to be

almost insensitive to the shape of job-size distributions.

We also demonstrate the applicability of MAIP for a large

server farm with significant cost of job reassignment.

The remainder of this paper is organized as follows. In

Section II, we discuss the related work on job assignment

policies. In Section III, we describe the server farm model. In

Section IV, we propose the MAIP policy, and in Section V,

we give the proof for the asymptotic optimality of MAIP. We

present numerical results in Section VI and conclusions are

given in Section VII.

II. RELATED WORK

Queueing models associated with job assignment among

multiple servers with and without jockeying (reassignment

actions of incomplete jobs) have been studied since 1958 [38].

Most existing work has focused on job assignment policies that

aim to improve the system performance under a first-come-

first-served (FCFS) discipline such as Join-the-Shortest-Queue

(JSQ).

For the non-jockeying case, JSQ under PS has been ana-

lyzed in [22], [23], [25], [39]. Bonomi [22] proved optimality

of JSQ for the processor sharing case under a general ar-

rival process, a Markov departure process, and homogeneous

servers while, for a non-exponential job-size distribution, a

counter-example to optimality of JSQ has been given by Whitt

[39]. Gupta [23] provided an analysis for the approximation of



3

the state distribution of a system under JSQ with homogeneous

PS servers and general job-size distributions. Gupta also

showed the optimality of JSQ in terms of average delay for a

system comprising servers with two different service rates.

Server farm applications of JSQ with jockeying policies for

FCFS have been studied in [24], [40], [41]. In these papers,

when the difference between the longest and shortest queue

sizes achieves a threshold, a jockeying action is triggered.

Different values of the threshold clearly result in different JSQ

policies. These publications focus on the calculation of the

equilibrium distribution of the lengths of queues.

Energy efficiency for a multi-queue heterogeneous system

with infinite buffers and set-up delay has been studied in [42],

where the authors assume zero energy consumption rate when

a server is idle. Hyytiä et al. [42] have shown that the M/G/1-

LCFS is insensitive to the shape of the distribution of set-

up delay while this insensitivity is lost in the M/G/1-PS. In

[43], energy-efficient job assignment in a system with hetero-

geneous servers and homogeneous job has been considered,

where jobs were queued in an infinite public buffer without

waiting room on each server and no cost were consumed

for an idle server. The authors analyzed the coinciding of

individual optimality (minimizing the cost of one job) and

social optimality (minimize the sum of the cost of all jobs)

that were, both proved in this paper, threshold style in certain

situations.

Energy-aware PS multi-queue systems with jockeying have

been studied in [19], [20], where the optimization problem

is characterized as a semi-Markov decision process (SMDP)

[44]. In that paper, maximization of the ratio of job throughput

to power consumption (the ratio of the long-run average job

departure rate to the long-run average energy consumption

rate) is introduced as a measure of performance. The use of

long-run average reward per unit cost (e.g., time consumption,

energy consumption, etc.) as an objective function in [19]

generalizes long-run average service quality per unit time,

studied previously.

In this paper, we consider a large-scale realistically-

dimensioned server farm model with heterogeneous servers.

The jockeying case discussed in [19], [20] is more appropriate

for a localized server farm, in which the cost of jockeying

actions is negligible. For a server farm with significant jock-

eying costs, a simple scalable job assignment policy without

jockeying is more attractive. A similar dynamic programming

methodology in which the computational complexity increases

linearly in the number of states can be applied to our case.

Unfortunately, in the non-jockeying server farm the number

of states increases exponentially in the number of servers, so

that the optimal solution is limited to very small cases with a

few servers.

The asymptotic optimality analysis in [45]–[49] is appli-

cable for job assignment policies in a multi-queue system

with infinite buffer size on each queue. In particular, Weber

and Weiss [45] proved, under certain conditions, the asymp-

totic optimality of Whittle’s index policies, as conjectured

by Whittle [32]. Mandelbaum and Stolyar [46] considered a

similar model in continuous time, and proved that a simple

generalized rule, called the cµ-rule, asymptotically minimizes

instantaneous and cumulative holding costs in a queueing

system with multiple-parallel flexible servers and multi-class

jobs when the system has heavy traffic, and a stability

condition is satisfied. Also, the holding cost rate in [46] is

assumed to be increasing and convex while, in our problem,

the holding cost rate is not necessarily even increasing in the

workload of a server. Nazarathy and Weiss [47] proposed a

method for the control problem of a multi-server queueing

network over a finite time horizon. They proved that the

method is asymptotically optimal in the minimization of the

total inventory cost over a finite time horizon. Ayesta et al.

[48] have studied a preemptive queue with infinite buffer

and multiple users as a model for the flow-level behavior

of end-users in a narrowband HDR wireless channel (CDMA

1xEV-DO). They discussed conditions for the stability and the

asymptotic optimality of policies under which users (channels)

are selected. Verloop [49] extended the proof of asymptotic

optimality for the Whittle’s index in [45] to cases with several

classes of bandits, with arrivals of new bandits, and with

multiple actions per bandit.

Other publications on asymptotic optimality in job assign-

ment include [50], [51]. Atar and Shifrin [50] analyzed a

G/G/1 queue with finite buffer and multiple classes of arriving

jobs, where all jobs share the finite buffer capacity of the

queue. They also prove asymptotic optimality of their method

under some buffer size constraints, and under a throughput

time (delay) constraint in the presence of further restrictions.

Larrañaga et al. [51] analyzed a system with multiple users

(modeled as multiple bandits), aiming at minimizing the

average cost: a combination of convex (also non-decreasing)

holding costs and user impatience. This work contains uncon-

trollable states as a bandit cannot be played when the number

of corresponding users is zero, but the non-decreasing holding

cost constraint, which simplifies the asymptotic optimality

argument, cannot be guaranteed in our problem.

This large, but by no means complete, collection of related

work, contains no asymptotic optimality result directly ap-

plicable to our problem of a multi-server queue system with

a buffer constraint on each queue, requiring the presence of

uncontrollable states as mentioned in Section I. As far as we

are aware, there is no result on the asymptotic optimality of

an index policy in this context.

III. MODEL

We consider a heterogeneous server farm modeled as a

multi-queue system where reassignment of incomplete jobs

is not allowed. For the reader’s convenience, Table I provides

a list of symbols that are frequently used in this paper.

The server farm has a total of K ≥ 2 servers, forming the

set K = {1, 2, . . . ,K}. These servers are characterized by

their service rates, energy consumption rates, and buffer sizes.

For j ∈ K, we denote by µj the service rate of server j and

by Bj its buffer size. The energy consumption rate of server

j is εj when it is busy and ε0j when it is idle, respectively,

where εj > ε0j ≥ 0. We refer to the ratio µj/(εj − ε0j) as the

effective energy efficiency of server j. Note that this definition

of energy efficiency for each server in the system that takes
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TABLE I
SUMMARY OF FREQUENTLY USED SYMBOLS

Symbol Definition

K Set of servers in the system

K Number of servers in the system

Bj Buffer size of server j

µj Service rate of server j

εj Energy consumption rate of server j when it is busy

ε0j Energy consumption rate of server j when it is idle

µj/(εj − ε0j ) Effective energy efficiency of server j

λ Job arrival rate

Lφ Job throughput of the system under policy φ

Eφ Power consumption of the system under policy φ

Lφ/Eφ Energy efficiency of the system under policy φ

into account the effect of idle power is key to the design of

the MAIP policy proposed in this paper.

Job arrivals follow a Poisson process with rate λ, indicating

the average number of arrivals per time unit. An arriving job

is assigned to one of the servers with at least one vacant slot

in its buffer, subject to the control of an assignment policy φ.

If all buffers are full, the arriving job is lost.

We assume that job sizes (in units) are independent and

identically distributed, and normalize without loss of general-

ity the average size of jobs to one. Each server j serves its

jobs at a total rate of µj using the PS service discipline.

Our considerations are limited to realistic cases, and assume

that the ratio of the arrival rate to the total service rate, i.e.,

ρ
def
= λ/

∑K
j=1 µj , is sufficiently large to be economically

justifiable but not too large to violate the required quality of

service. We refer to ρ as the normalized offered traffic.

The job throughput of the system under policy φ, which

is equivalent to the long-run average job departure rate, is

denoted by Lφ. The power consumption of the system under

policy φ, which is equivalent to the long-run average energy

consumption rate, is denoted by Eφ. By definition, Lφ/Eφ is

the energy efficiency of the system under policy φ.

IV. JOB ASSIGNMENT POLICY: MAIP

Here we provide details of the MAIP policy. Note that,

with a non-jockeying policy, the server farm scheduler makes

assignment decisions only at arrival events and assigns a new

job to one of the available servers in the system. MAIP is

designed in such a way that takes into account the effect of idle

power. The key idea of MAIP can be conveniently explained

by using a simple example.

Consider a system with two servers only, where µ1 = µ2 =
1, ε1 = 2, ε01 = 1, ε2 = 2.5, and ε02 = 2. It is clear that in

this example ε1 < ε2 and ε01 < ε02. If a job arrives when both

servers are idle, the scheduler has two choices:

1) Assigning the job to server 1 makes server 1 busy. The

energy consumption rate of the whole system becomes

ε1 + ε02 = 4.

2) Assigning the job to server 2 makes server 2 busy. The

energy consumption rate of the whole system becomes

instead ε2 + ε01 = 3.5.

Since (ε1+ε02) > (ε2+ε01), which is equivalently (ε1−ε01) >
(ε2 − ε02), and since both servers have the same service rate,

choosing server 2 for serving the job in this particular example

turns out to be better in terms of the energy efficiency of the

system, despite the fact that server 2 consumes more power

when busy than server 1 does.

Intuitively, in the situation where power consumption of

idle servers in a system is not necessarily negligible, the

energy used by the system can be categorized into two parts:

productive and unproductive. The productive part contributes

to job throughput, whereas the unproductive part is a waste

of energy. For a server j, when it is idle, the service rate is 0
accompanied by an energy consumption rate of ε0j ; when it is

busy, the service rate becomes µj and the energy consumption

rate increases to εj . We regard the additional service rate µj−0
as a reward at the cost of an additional energy consumption

rate εj − ε0j . In other words, if jobs are assigned to server j,

the productive power used to support the service rate µj is

effectively εj−ε0j . Accordingly, productive power is our main

concern in the design of MAIP.

Since MAIP aims for energy-efficient job assignment, for

convenience of description, we label the servers according to

their effective energy efficiency. In particular, in the context

of MAIP, server i is defined to be more energy-efficient than

server j if and only if µi/(εi − ε0i ) > µj/(εj − ε0j). That is,

for any pair of servers i and j, if i < j, we have µi/(εi −
ε0i ) ≥ µj/(εj − ε0j). Then, MAIP works by always selecting a

server with the highest effective energy efficiency among all

servers that contain at least one vacant slot in their buffers,

where ties are broken arbitrarily. As a result of this design,

MAIP is a simple approach that requires only binary state

information (i.e., available or unavailable) from each server

for its implementation.

V. ANALYSIS

Here we give a precise definition of our optimization prob-

lem as described informally in Section V-A. In Section V-B,

the Whittle’s index policy for our problem is described, and in

Section V-C, with exponentially distributed job sizes, we prove

the indexability of our server farm model and present a closed-

form expression of Whittle’s index, producing the equivalence

of Whittle’s index policy and MAIP. In Section V-D, the proof

of asymptotic optimality of Whittle’s index policy is presented,

leading to the asymptotic optimality of MAIP.

As mentioned in Section I, MAIP is asymptotically optimal

for our server farm comprised of multiple groups of identical

servers as the numbers of servers in these groups tend to

infinity, which is appropriate for a modern server farm that

always buys and upgrades a large number of servers of the

same type and attributes at the same time.

A. Stochastic Process

Let Nj denote the set of all states of server j, where the

state, nj is the number of jobs queueing or being served at

server j. Thus, Nj = {0, 1, . . . , Bj}, where Bj ≥ 2 is the

buffer size for server j. For server j, states 0, 1, . . . , Bj−1 are

called controllable, and the state Bj is called uncontrollable.
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The set of controllable states for server j, in which the

server is available to be tagged, is denoted by N
{0,1}
j =

{0, 1, . . . , Bj − 1} while, for the uncontrollable state in the

set N
{0}
j = {Bj}, the server is forced to be untagged because

it cannot accept jobs. Recall that a tagged server has been

defined in Section IV as a server selected to accept new jobs.

The vector n = (n1, n2, . . . , nK) represents the state of the

multi-queue system, nj ∈ Nj , j ∈ K. The set of all such states

n is denoted by N, the sets of uncontrollable and controllable

states in N are, respectively,

N
{0} =

{

n ∈ N | nj ∈ N
{0}
j , ∀j ∈ K

}

,

N
{0,1} =

{

n ∈ N | n /∈ N
{0}
}

.
(1)

We define X
φ(t) = (Xφ

1 (t), X
φ
2 (t), . . . , X

φ
K(t)) to be a

vector of random variables representing the state at time t
under policy φ of the stochastic process of the multi-queue

system. We set without loss of generality the initial state

X
φ(0) = x(0), x(0) ∈ N.

Decisions made on job arrivals rely on the values of X(t)
just before an arrival occurs. We use aφj (t), j ∈ K as

an indicator of activity at time t under policy φ, so that

aφj (t) = 1 if server j is tagged, and aφj (t) = 0, otherwise.

Then
∑K

j=1 a
φ
j (t) ≤ 1 for all t > 0. All job assignment

policies considered are stationary, so that we also use aφj (n),
n ∈ N, to represent the action we take on the stochastic

process when the system is in state n. A policy φ comprises

those a
φ(n) = (aφ1 (n), a

φ
2 (n), . . . , a

φ
K(n)), for all n ∈ N.

For clarity of presentation, we define a mapping Rj : Nj →
R, where Rj(nj) (nj ∈ Nj) is the reward rate of server j in

state nj . Let Rj be the set of all such mappings Rj . Then,

for a given vector of mappings R = (R1, R2, . . . , RK), we

define the long-run average reward under policy φ to be

γφ(R) = lim
t→+∞

1

t
E







∫ t

0

∑

j∈K

Rj(X
φ
j (u))du







. (2)

We refer to R as the reward rate function. Along similar

lines, we consider µj(nj) and εj(nj), the service rate and

energy consumption rate of server j in state nj , respectively,

as rewards; that is, µj , εj ∈ Rj . As defined in Section III,

µj(nj) = µj , εj(nj) = εj for nj > 0, µj(0) = 0 and

εj(0) = ε0j , where µj > 0, εj > ε0j ≥ 0, j ∈ K. For

the vectors µ = (µ1, µ2, . . . , µK) and ε = (ε1, ε2, . . . , εK),
the long-run average job service rate of the entire system is,

then, γφ(µ), and the long-run average energy consumption rate

of the system is γφ(ε). The problem of maximizing energy

efficiency is then encapsulated in

max
φ

γφ(µ)

γφ(ε)
. (3)

Based on the definition given above, we formally define MAIP

as follows.

aMAIP
j (n) =











1, n ∈ N{0,1},
j = min argmax

j∈K:nj∈N
{0,1}
j

µj

εj−ε0
j

,

0, otherwise.
(4)

As mentioned before, to show the asymptotic optimality of

MAIP in Section V-D, we will introduce necessary knowledge

about the Whittle’s index in Sections V-B and will obtain its

equivalence to MAIP in Section V-C.

B. Whittle’s Index

In 1979, Gittins [52] produced the optimal solution for the

general multi-armed bandit problem (MABP); the so-called

Gittins’ index policy. Relaxing the constraint that only one

machine (project/bandit/process) is played at a time, and only

the played machine changes state, Whittle [32] published a

more general model, the restless multi-armed bandit problem

(RMABP) and proposed as an index the so-called Whittle’s

index as an approximation for optimality.

The general definition of Whittle’s index for our problem

is given here; a closed-form expression will be provided in

Section V-C for the case when job sizes are exponentially

distributed.

According to [19, Theorem 1], there exists a value e∗ > 0,

given by

e∗ = max
φ

{

γφ(µ)

γφ(ε)

}

, (5)

so that our optimization problem (3) can be written as

sup
φ



















γφ(R) :
∑

j∈{1,2,...,K}:

Xφ
j
(t)∈N

{0,1}
j

aφj (t) = 1, ∀t ≥ 0



















(6)

where the reward rate function R = (R1, R2, . . . , RK), Rj ∈
Rj , Rj(nj) = µj(nj)− e∗εj(nj), j ∈ K.

Following the Whittle’s index approach, we relax our prob-

lem (6) as

sup
φ

lim
t→+∞

1

t
E







∫ t

0

∑

j∈K

Rj(X
φ
j (u))du







,

s.t. E











∑

j∈K:Xφ
j
(t)∈N

{0,1}
j

aφj (t)











= 1.

(7)

Seldom in the literature is it well explained that this means

that the aφj (t) become random variables, so that sometimes

more than one server will be tagged simultaneously. This is

not consistent with the framework of our original problem and

is also unrealistic.

The linear constraint in (7) is covered by the introduction

of a Lagrange multiplier ν.

inf
ν
sup
φ

lim
t→+∞

1

t
E







∫ t

0





∑

j∈K

Rj(X
φ
j (u))

−ν
∑

j∈K:Xφ
j
(t)∈N

{0,1}
j

aφj (u)






du











+ ν. (8)
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For a given ν, we can now decompose (8) into K sub-

problems:

sup
φ

lim
t→+∞

1

t
E

{
∫ t

0

[

Rj(X
φ
j (u))− νaφj (u)

]

du

}

, (9)

where aφj (u) = 0 when Xφ
j (u) ∈ N

{0}
j , for 0 < u < t, j ∈ K.

In [32], Whittle defined a ν-subsidy policy for a project

(server) as an optimal solution for (9), which provides the set

of states where the given project will be passive (untagged),

and introduced the following definition.

Definition 1. Let D(ν) be the set of passive states of a project

under a ν-subsidy policy. The project is indexable if D(ν)
increases monotonically from ∅ to the set of all possible states

for the project as ν increases from −∞ to +∞.

In particular, if a project (server) j is indexable and there

is a ν∗ satisfying nj /∈ D(ν) for ν ≤ ν∗ and nj ∈ D(ν)
otherwise then this ν∗ is the value of Whittle’s index for

project (server) j at state nj . Whittle’s index policy for the

multi-queue system chooses a controllable server (a server in

controllable states) with highest Whittle’s index to be tagged

(with others untagged) at each decision making epoch.

C. Indexability

We give the closed form of the optimal solution for Prob-

lem (9); that is, the Whittle’s index policy, for the case with

exponentially distributed job sizes. Our approach uses the

theory of semi-Markov decision processes and the Hamilton-

Jacobi-Bellman equation. Formulation in this way requires the

exponential job size assumption.

Let V
φj ,ν
j (nj , Rj) be, for policy φj , the expected value of

the cumulative reward of a process for server j ∈ K that

starts from state nj ∈ Nj and ends when it first goes into an

absorbing state n0
j ∈ Nj with reward rate Rj(nj)− νa

φj

j (nj).

In particular, V
φj ,ν
j (n0

j) = 0 for any φj . Here, φj is a

stationary policy for server j, which determines whether it is

tagged or not according to its current state X
φj

j (t). Because

state 0 is reachable from all other states, we can assume

without loss of generality that n0
j = 0 for all j ∈ K. For

this section, we define Rj(nj) = µj(nj) − e∗εj(nj), j ∈ K,

where e∗ is defined as in (5).

Now, let PH
j , j ∈ K, represent a process for server j that

starts from state 0 until it reaches state 0 again, where φj is

constrained to those policies satisfying a
φj

j (0) = 1. The set

of all such policies is denoted by ΦH
j . It follows from [53,

Corollary 6.20 and Theorem 7.5] that the average reward of

process PH
j is equivalent to the long-run average reward of

the system.

Now an application of the g-revised criterion [53, Theorem

7.6, Theorem 7.7], yields the followed corollary to these two

theorems.

Corollary 1. For a server j as defined in Section III and a

given ν < +∞, let Rj(nj) = µj(nj)−e∗εj(nj) < +∞, there

exists a real g, with Rg
j (nj) = Rj(nj)− g such that if policy

φ∗
j ∈ ΦH

j maximizes V
φj ,ν
j (nj , R

g
j ) then, φ∗

j also maximizes

the long-run average reward of server j with reward rate

Rj(nj) − a
φ∗
j

j (nj)ν, nj ∈ Nj , among all policies in ΦH
j . In

particular, this value of g, denoted by g∗, is equivalent to the

maximized long-run average reward.

In other words, if we compare the maximized average

reward of process PH
j under policy φ∗

j and policy φ0
j with

a
φ0
j

j (0) = 0 (and all the actions for non-zero states are the

same as φ∗
j ), then the one with higher average reward is the

optimal policy for (9). Note that, in our server farm model, if

a
φ0
j

j (0) = 0, the actions for non-zero states are meaningless

since the corresponding server (queue) will never leave state

0.

We start by finding φ∗
j . Let V ν

j (nj , R
g
j ) =

supφj
V

φj ,ν
j (nj , R

g
j ). The maximization of V

φj ,ν
j (nj , R

g
j )

can be written using the Hamilton-Jacobi-Bellman equation

as

V ν
j (nj , R

g
j )

= max







(

Rg
j (nj)− ν

)

τ1j (nj) +
∑

n∈Nj

P 1
j (nj , n)V

ν
j (n,Rg

j ),

Rg
j (nj)τ

0
j (nj) +

∑

n∈Nj

P 0
j (nj , n)V

ν
j (n,Rg

j )







, (10)

where τ1j (nj) and τ0j (nj), are the expected sojourn time in

state nj for a
φj

j (nj) = 1, and a
φj

j (nj) = 0, respectively,

and P 1(nj , n) and P 0(nj , n), nj , n ∈ Nj , are the transition

probability for a
φj

j (nj) = 1 and a
φj

j (nj) = 0, respectively.

For (10), there is a specific ν, referred to as ν∗j (nj , R
g
j ),

satisfying

ν∗j (nj , R
g
j )τ

1
j (nj)

=
∑

n∈Nj

P 1
j (nj , n)V

ν
j (n,Rg

j )−
∑

n∈Nj

P 0
j (nj , n)V

ν
j (n,Rg

j )

+Rg
j (nj)(τ

1
j (nj)− τ0j (nj)). (11)

For an indexable server j, we define a policy as follows:

if ν < ν∗j (nj , R
g
j ), j will be tagged

if ν > ν∗j (nj , R
g
j ), j will be untagged, and

if ν = ν∗j (nj , R
g
j ), j can be either tagged or untagged.

(12)

The ν∗(nj , R
g
j ), nj ∈ Nj , j ∈ K, constitute Whittle’s index

[32] in this context, and (12) defines the optimal solution

for Problem (9). According to (11), although the value of

ν∗j (nj , R
g
j ) may appear to rely on ν, we will prove later that,

in our case, the value of ν∗j (nj , R
g
j ) can be expressed in close

form and is independent of ν, and that the server farm in our

context is indexable according to the definition in [32].

Proposition 1. For the system defined in Section III, j ∈ K,

ν∗j (nj , R
g
j ) =

λ(µj − e∗εj − g)

µj
, nj = 1, 2, . . . , Bj − 1.

(13)

Proof. The proof is given in Appendix A. �
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The optimal policy, denoted by φ∗
j , that maximizes

V
φj ,ν
j (nj , R

g
j ) also maximizes the average reward of process

P
H
j with the value of g specified in Corollary 1 among all

policies in ΦH
j . For the optimal ν-subsidy policy, it remains

to compare φ∗
j with a

φ∗
j

j (0) = 1 and φ0
j with a

φ0
j

j (0) = 0.

Proposition 2. For the system defined in Section III, j ∈ K,

ν∗j (0, R
g
j ) =

λ

µj

(

µj − e∗εj + e∗ε0j
)

. (14)

Proof. The proof is given in Appendix B. �

Now Proposition 3 is a consequence of Propositions 1 and

2.

Proposition 3. For the system defined in Section III, if job-

sizes are exponentially distributed then the Whittle’s index of

server j at state nj is:

ν∗j (nj , R
g
j ) = λ(1 − e∗

εj − ε0j
µj

), nj = 0, 1, . . . , Bj − 1.

Evidently then, the system is indexable.

Proof. The proof is given in Appendix C. �

It is clear that the Whittle’s index policy, which prioritizes

server(s) with the highest index value at each decision making

epoch, is equivalent to our MAIP policy defined in (4), when

job sizes are exponentially distributed. Note that the form of

Whittle’s index in the case for general job-size distributions

remains unclear. In Section VI, we demonstrate numerically

the sensitivity of MAIP to highly varying job sizes.

D. Asymptotic Optimality

We will prove the asymptotic optimality of MAIP as the

number of servers becomes large when job sizes are expo-

nentially distributes and the number of servers is scaled under

appropriate and reasonable conditions for large server farms

(as discussed in Section I).

We will apply the proof methodology of Weber and Weiss

[45] for the asymptotic optimality of index policies to our

problem though, as we have already stated in Section II, this

proof cannot be directly applied to our problem because of the

presence of uncontrollable states. We define an additional (vir-

tual) server, designated as server K+1, to handle the blocking

case when all actual servers are full; this server has only one

state (server K+1 never changes state) with zero reward rate.

This virtual server is only used in the proof of asymptotic

optimality in this section. For this server, |N
{0,1}
K+1 | = 1 and

N{0} = ∅. In addition, we define K+ = K ∪ {K + 1} as

the set of servers including this extra zero-reward server. The

set of controllable states of these K + 1 servers is defined as

Ñ
{0,1} =

⋃

j∈K+ N
{0,1}
j , and the set of uncontrollable states

is Ñ
{0} =

⋃

j∈K+ N
{0}
j .

In this section, those servers with identical buffer size,

service rate, and energy consumption rate are grouped as

a server group, and we label these server groups as server

groups 1, 2, . . . , K̃. For servers i, j of the same server group,

N
{0,1}
i = N

{0,1}
j and N

{0}
i = N

{0}
j . For clarity of presentation,

we define Ñ
{0,1}
i and Ñ

{0}
i , i = 1, 2, . . . , K̃ as, respectively,

the sets of controllable and uncontrollable states of servers in

server group i. We regard states for different server groups as

different states; that is, Ñ
{0,1}
j ∩Ñ

{0,1}
i = ∅ and Ñ

{0}
j ∩Ñ

{0}
i =

∅ for different server groups i and j, i, j = 1, 2, . . . , K̃. Let

Zφ
i (t) be the random variable representing the proportion of

servers in state i ∈ Ñ
{0,1}∪ Ñ

{0} at time t under policy φ. As

previously, we label states i ∈ Ñ{0,1} ∪ Ñ{0} as 1, 2, . . . , I ,

where I = |Ñ{0,1} ∪ Ñ{0}|, and use Z
φ(t) to denote the

random vector (Zφ
1 (t), Z

φ
2 (t), . . . , Z

φ
I (t)). Correspondingly,

actions aφj (nj), nj ∈ Nj , j ∈ K+, correspond to actions

aφ(i), i ∈ Ñ{0,1} ∪ Ñ{0}.

Let z, z′ ∈ RI be instantiations of Z
φ(t), t > 0, φ ∈ Φ.

Transitions of the random vector Z
φ(t) from z to z

′ can be

written as z
′ = z + ei,i′ , where ei,i′ is a vector of which the

ith element is + 1
K+1 , the i′th element is − 1

K+1 and otherwise

is zero, i, i′ ∈ Ñ{0,1}∪ Ñ{0}. In particular, for the server farm

defined in Section III, servers in server group j only appear

in state i ∈ Ñ
{0,1}
j ∪ Ñ

{0}
j ; that is, the transition from z to

z
′ = z+ ei,i′ , i ∈ Ñ

{0,1}
j ∪ Ñ

{0}
j , i′ ∈ Ñ

{0,1}
j′ ∪ Ñ

{0}
j′ , j, j′ =

1, 2, . . . , K̃ , j 6= j′ never occur. We address such impossible

transitions by setting the corresponding transition probabilities

to zero. The states i ∈ Ñ{0,1} are ordered according to

descending index values, where all states i ∈ Ñ{0} follow

the controllable states in the ordering, with aφ(i) = 0 for

i ∈ Ñ
{0}. Then, we set the state i ∈ N

{0,1}
K+1 of the zero-reward

server, which is also a controllable state, to come after all

the other controllable states but to precede the uncontrollable

states. Because of the existence of the zero-reward server

K+1, the number of servers in controllable states can always

meet the constraint (7). Note here that we artificially move the

state of server K+1 and the uncontrollable states to places in

the ordering that do not accord with their indices, which are

zero. We will show later that such movements do not affect the

long-run average performance of Whittle’s index policy, which

exists and is equivalent to MAIP in our context. The position

of a state in the ordering i = 1, 2, . . . , I is also defined as its

label.

Let γOR(φ) be the long-run average reward of the original

problem (6) (that is, without relaxation) under policy φ, and

γLR(φ) the long-run average reward of the relaxed problem

(7) under policy φ. In addition, let γOR = maxφ
{

γOR(φ)
}

,

the maximal long-run average reward of the original problem,

and γLR = maxφ
{

γLR(φ)
}

, the maximal long-run average

reward of the relaxed problem. From the definition of our

system, γLR(φ)/K, γOR(φ)/K ≤ maxj∈K,nj∈Nj
Rj(nj) <

+∞, where Rj(nj) is the reward rate of server j in state

nj as defined before. Let index denote the Whittle’s index

policy, then, we obtain γOR(index)/K ≤ γOR/K ≤ γLR/K .

Following the idea of [45], we prove, under Whittle’s index

policy, that γOR(index)/K− γLR/K → 0 when K is scaled

in a certain way.

To demonstrate asymptotic optimality, we now describe the

stationary policies, including Whittle’s index policy, in another

way. Let uφ
i (z) ∈ [0, 1], z ∈ RI , i = 1, 2, . . . , I , be the

probability for a server in state i ∈ Ñ{0,1}∪Ñ{0} to be tagged

(aφ(i) = 1) when Z
φ(t) = z. Then, 1−uφ

i (z) is the probability
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for a server in state i to be untagged (aφ(i) = 0).

Define N
+
i , i ∈ Ñ{0,1} ∪ Ñ{0} to be the set of states

that precede state i in the ordering. Then, for Whittle’s index

policy, we obtain

uindex
i (z) =

1

zi
min







zi,max







0,
1

K + 1
−
∑

i′∈N
+

i

zi′













.

(15)

Our multi-queue system is stable, since any stationary policy

will lead to an irreducible Markov chain for the associated

process and the number of states is finite. Then, for a policy

φ ∈ Φ, the vector Xφ(t) converges as t → ∞ in distribution

to a random vector X
φ. In the equilibrium region, let πφ

j be

the steady state distribution of Xφ
j for server j, j ∈ K

+,

under policy φ ∈ Φ, where πφ
j (i), i ∈ Nj , is the steady state

probability of state i. For clarity of presentation, we extend

vector πφ
j to a vector of length I , written π̃φ

j , of which the ith

element is πφ
j (i), if i ∈ Nj , and otherwise, 0. The long-run

expected value of Zφ(t) is
∑K+1

j=1 π̃φ
j /(K + 1). In the server

farm defined in Section III, the long-run expected value of

Z
φ(t) will be a member of the set

Z =







z ∈ RI |
∑

i∈Ñ{0,1}∪Ñ{0}

zi ≡ 1,

∀i ∈ Ñ
{0,1} ∪ Ñ

{0}, zi ≥ 0







. (16)

Write q1(z, zi, z
′
i) and q0(z, zi, z

′
i), z ∈ Z, i ∈ Ñ{0,1} ∪

Ñ{0}, as the average transition rate of the ith element in vector

z from zi to z′i, under tagged and untagged actions, respec-

tively. Then, the average transition rate of the ith element of

z under policy φ is given by

qφ(z, zi, z
′
i) = uφ

i (z)q
1(z, zi, z

′
i) + (1− uφ

i (z))q
0(z, zi, z

′
i).

We consider the following differential equation for a stochastic

process, denoted by z
φ(t) = (zφ1 (t), z

φ
2 (t), . . . , z

φ
I (t)),

dzφi (t)

dt
=
∑

z′
i

[

z′i(t)q
φ(zφ(t), z′i, z

φ
i (t))

−zφi (t)q
φ(zφ(t), zφi (t), z

′
i)
]

. (17)

Because of the global balance at an equilibrium point

of limt→+∞

∫ t

0
z
φ(u)du/t, if exists, denoted by z

φ,

dzφ(t)/dt|
z
φ(t)=z

φ = 0. Let OPT represent the optimal

solution of the relaxed problem (7) and recall that index
represents the Whittle’s index policy. Since uindex

i (zindex) =
uOPT
i (zindex), following the proof of [45, Theorem 2], we

obtain dzOPT (t)/dt|
z
OPT (t)=z

index = 0 and z
index = z

OPT ,

if both z
index and z

OPT exist. The existence of z
index and

z
OPT will be discussed later.

For a small δ > 0, we define R
δ,φ

as the average re-

ward rates during the time period that |Zφ(t) − z
φ(t)| ≤

δ under policy φ with Z
φ(0) = z

φ(0), and Rm/K =

supφ lim supt→+∞ |R(Xφ(t))/K| < +∞ is an upper bound

of the absolute value of the reward rate divided by K . Then,

γLR

K
−

γOR(index)

K

≤ lim
δ→0

lim
t→+∞

1

t

∫ t

0

[

Rm

K
P
{

|ZOPT (u)− z
OPT (t)| > δ

}

+
Rm

K
P
{

|Zindex(u)− z
index(t)| > δ

}

+
R

δ,OPT

K
P
{

|ZOPT (u)− z
OPT (t)| ≤ δ

}

−
R

δ,index

K
P
{

|Zindex(u)− z
index(t)| ≤ δ

}

]

du. (18)

The server farm is decomposed into K̃ server groups,

with number of servers in the ith group denoted by Ki,

i = 1, 2, . . . , K̃ . Then, K =
∑K̃

i=1 Ki. Following the proof

of [45, Proposition], for any Ki = K0
i n, K0

i = 1, 2, . . .,
i = 1, 2, . . . , K̃, n = 1, 2, . . ., δ > 0 and φ is set to be either

index or OPT ,

lim
n→+∞

lim
t→+∞

1

t

∫ t

0

P{|Zφ(u)− z
φ(u)| > δ}du = 0. (19)

We provide a justification of (19) in Appendix D, following

[54, Chapter 7]. Then, as n → +∞, the existence of an

equilibrium point of limt→+∞

∫ t

0 Z
φ(u)du/t leads to the

existence of zφ = limt→+∞

∫ t

0
z
φ(u)du/t (using the Lipschitz

continuity of the right side of Equation (17) as a function of

z
φ(t)). We obtain

lim
n→+∞

lim
δ→0

(

R
δ,OPT

K
−

R
δ,index

K

)

= 0,

and

lim
n→+∞

(

γLR

K
−

γOR(index)

K

)

= 0. (20)

Finally, γOR(index)/K − γOR/K → 0 as n → +∞; that is,

MAIP (Whittle’s index policy) approaches the optimal solution

in terms of energy efficiency as the number of servers in each

server group tends to infinity at the appropriate rate.

VI. NUMERICAL RESULTS

In this section, we provide extensive numerical results ob-

tained by simulation to evaluate the performance of the MAIP

policy. All results are presented in the form of an observed

mean from multiple independent runs of the corresponding

experiment. The confidence intervals at the 95% level based

on the Student’s t-distribution are maintained within ±5% of

the observed mean. For convenience of describing the results,

given two numerical quantities x > 0 and y > 0, we define

the relative difference of x to y as (x− y)/y.

In all experiments, we have a system of servers that are

divided into three server groups. Servers in each server group

i, i = 1, 2, 3, have the same buffer size, service rate and energy

consumption rate, denoted by B̄i, µ̄i, ε̄i and ε̄0i , respectively.

We consider this to be a realistic setting since in practice a

server farm is likely to comprise multiple servers of the same
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Fig. 1. Performance comparison with respect to the normalized offered traffic ρ. (a) Relative difference of LMAIP/EMAIP to LMNIP/EMNIP. (b) Relative
difference of LMAIP to LMNIP. (c) Relative difference of EMAIP to EMNIP.
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Fig. 2. Performance comparison with respect to the number of servers K . (a) Energy efficiency. (b) Job throughput. (c) Power consumption.

type purchased at a time. If not otherwise specified, we assume

that job sizes are exponentially distributed.

Recall that, as defined in Section III, the job throughput is

the average job departure rate (jobs per second), the power

consumption is the average energy consumption rate (Watt),

and the energy efficiency is the ratio of job throughput to

power consumption (jobs per Watt second). Also, we have

normalized the average job size to one (Byte) in Section III.

A. Effect of Idle Power

Recall that MAIP is designed to take into account the effect

of idle power. To demonstrate the effect of idle power on job

assignment, here we consider a baseline policy, called Most

energy-efficient available server first Neglecting Idle Power

(MNIP). As its name suggests, MNIP is a straightforward

variant of MAIP that neglects idle power and hence treats

ε0j = 0 for all j ∈ K in the process of selecting servers

for job assignment. We compare MAIP with MNIP in terms

of energy efficiency, job throughput and power consumption

under various system parameters.

For the set of experiments in Fig. 1, each server group has

15 servers, where we set B̄i = 10 and ε̄0i /ε̄i = 0.4i− 0.3 for

i = 1, 2, 3, and randomly generate µ̄i and ε̄i as µ̄1 = 6.86,

ε̄1 = 6.86, µ̄2 = 3.64, ε̄2 = 3.72, µ̄3 = 2.87, ε̄3 = 3.15. The

normalized offered traffic ρ is varied from 0.01 to 0.9.

The results in Fig. 1 are presented in the form of the relative

difference of MAIP to MNIP in terms of each corresponding

performance measure. We observe in Fig. 1(b) that, in all

cases, both policies have almost the same performance in job

throughput. We also observe in Fig. 1(a) and Fig. 1(c) that, in

the case where ρ → 0 or ρ → 1, the two policies are close

to each other in terms of both energy efficiency and power

consumption. This is because in such trivial and extreme cases

the system is at all times either almost empty or almost fully

occupied. However, in the realistic cases where ρ is not too

large and not too small, MAIP significantly outperforms MNIP

with a gain of over 45% in energy efficiency at ρ = 0.4, 0.5.

In Fig. 2, we use the same settings as in Fig. 1, except

that we fix the normalized offered traffic ρ at 0.6 and vary

the number of servers K from 3 to 690. Note that here we

increase K by increasing the number of servers in each of

the three server groups. We observe in Fig. 2(b) that, under

such a medium traffic load, the service capacity is sufficiently

large, so that with both MAIP and MNIP almost all jobs

can be admitted and hence the job throughput is almost

identical to the arrival rate for all values of K . As a result,
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Fig. 3. Cumulative distribution of the relative difference of LMAIP/EMAIP to LMNIP/EMNIP . (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

0 30 60 90 120 150 180 210 240 270
0.3

0.6

0.9

1.2

1.5

1.8

2.1

Number of servers

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

 

 

MAIP

MEESF

(a)

0 30 60 90 120 150 180 210 240 270
0.3

0.6

0.9

1.2

1.5

1.8

2.1

Number of servers

E
n
e
rg

y
 e

ff
ic

ie
n
c
y

 

 

MAIP

MEESF

(b)

0 30 60 90 120 150 180 210 240 270
0.3

0.6

0.9

1.2

1.5

1.8

2.1

Number of servers
E

n
e
rg

y
 e

ff
ic

ie
n
c
y

 

 

MAIP

MEESF

(c)

Fig. 4. Performance comparison in terms of the energy efficiency with respect to the number of servers K . (a) ∆ = 0. (b) ∆ = 0.0005. (c) ∆ = 0.01.

the job throughput increases almost linearly with respect to

the number of servers K . We observe in Fig. 2(c) that, for

both policies, the power consumption also increases almost

linearly with respect to the number of servers K . However, it

is clear that the power consumption of MAIP increases at a

significantly smaller rate than that of MNIP, which results in

a substantial improvement of the energy efficiency by nearly

36% in all cases as seen in Fig. 2(a).

For the set of experiments in Fig. 3, we again consider

a system where each server group has 15 servers and we

set B̄i = 10 for i = 1, 2, 3. We introduce a parameter β,

where different values of β lead to different levels of server

heterogeneity. In particular, we consider three different values

for β, i.e., β = 0.5, 1, 1.5. We set ε̄0i /ε̄i = (0.4i − 0.3)β

for i = 1, 2, 3. The set of service rates µ̄i are randomly

generated from the range [1, 10] and are arranged in a non-

increasing order, i.e., µ̄1 ≥ µ̄2 ≥ µ̄3. For the set of energy

consumption rates ε̄i, we first choose two real numbers ā1
and ā2 randomly from [0.5, 1]. Then, with µ̄1/ε̄1 = 200, we

set µ̄i/ε̄i = āβi−1µ̄i−1/ε̄i−1 for i = 2, 3.

The results in Fig. 3 are obtained from 1000 experiments

and are plotted in the form of cumulative distribution of

the relative difference of MAIP to MNIP in terms of the

energy efficiency. We observe in Fig. 3 that MAIP significantly

outperforms MNIP by up to 60%. It can also be observed

from Fig. 3(a) and Fig. 3(b) that MAIP outperforms MNIP

by more than 10% in nearly 100% of the experiments for the

case β = 0.5. In addition, we observe in Fig. 3 that, as the

level of server heterogeneity (i.e., the value of β) becomes

higher, the performance improvement of MAIP over MNIP in

general becomes larger, although the gain is decreasing when

the normalized offered traffic ρ approaches 0.8, similar to what

is observed in Fig. 1(a).

B. Effect of Jockeying Cost

Recall that MAIP is designed as a non-jockeying policy,

which is more appropriate than jockeying policies for job

assignment in a large-scale server farm. As discussed in

Section II, jockeying policies suit a small server farm where

the cost associated with jockeying is negligible. In large-scale

systems, the cost associated with jockeying can be significant

and may have a snowball effect on the system performance.

Here, we demonstrate the benefits of MAIP in a server farm

where jockeying costs are high, by comparing it with a

jockeying policy known as Most Energy Efficient Server First

(MEESF) proposed in [20].

The settings of servers in each of the three server groups

are based on the benchmark results of Dell PowerEdge rack
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Fig. 5. Performance comparison in terms of the job throughput with respect to the number of servers K . (a) ∆ = 0. (b) ∆ = 0.0005. (c) ∆ = 0.01.
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Fig. 6. Sensitivity of the energy efficiency of MAIP to the job-size distribution. (a) ρ = 0.4. (b) ρ = 0.6. (c) ρ = 0.8.

servers R610 (August 2010), R620 (May 2012) and R630

(April 2015) [55]. Specifically, we normalize µ̄3 and ε̄3 to

one and then set µ̄1/µ̄3 = 3.5, ε̄1/ε̄3 = 1.2, ε̄01/ε̄1 = 0.2,

µ̄2/µ̄3 = 1.4, ε̄2/ε̄3 = 1.1, ε̄02/ε̄2 = 0.2 and ε̄03/ε̄3 = 0.3. We

also set B̄i = 10 for i = 1, 2, 3 and ρ = 0.6. The number of

servers K is varied from 3 to 270, where we increase K by

increasing the number of servers in each of the three server

groups.

Let us assume that each jockeying action incurs a (constant)

delay ∆. That is, when a job is reassigned from server i to

server j, it will be suspended for a period ∆ before resumed

on server j. Clearly, when ∆ > 0, this is equivalent to

increasing the size of the job and hence its service requirement.

Accordingly, for a given system, a non-zero cost per jockeying

action indeed increases the traffic load. We consider three

different values for ∆. The case where ∆ = 0 is for zero

jockeying cost, the case where ∆ = 0.0005 indicates a

relatively small cost per jockeying action, and the case where

∆ = 0.01 represents a large cost per jockeying action. The

results are presented in Fig. 4 for the energy efficiency and in

Fig. 5 for the job throughput.

For the case where ∆ = 0, we have a similar observation

in Fig. 5(a) to that in Fig. 2(b). That is, under a medium

traffic load, the service capacity is sufficiently large, so that

both MAIP and MEESF yield a job throughput that is almost

identical to the arrival rate for all values of K . We observe in

Fig. 4(a) that, in this case, MEESF consistently outperforms

MAIP in terms of the energy efficiency, even though with a

very small margin.

For the case where ∆ = 0.0005, we observe in Fig. 5(b)

that, since the cost per jockeying action is relatively small, the

service capacity turns out to be sufficiently large so that the

job throughput of MEESF is not affected. We also observe in

Fig. 4(b) that, when the number of servers K is small, the

energy efficiency of MEESF is still better than that of MAIP.

However, when the number of servers K is large, the energy

efficiency of MEESF is clearly degraded. This is because, as

K increases, the number of jockeying actions required for a

job on average increases. With a non-zero cost per jockeying

action, it can substantially increase the power consumption,

since we are forced to use more of those less energy-efficient

servers to meet the increased traffic load.

The effect is more profound when ∆ is increased to 0.01. In

this case, as shown in Fig. 4(c) and Fig. 5(c), the cost associ-

ated with jockeying is so high that both the job throughput and

the energy efficiency of MEESF are significantly degraded,

due to the substantially increased traffic load.
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C. Sensitivity to Job-Size Distribution

The workload characterizations of many computer science

applications, such as Web file sizes, IP flow durations, and

the lifetimes of supercomputing jobs, are known to exhibit

heavy-tailed distributions [27], [28]. Here, we are interested

to see if the performance of MAIP is sensitive to the job-

size distribution. To this end, in addition to the exponential

distribution, we further consider three different distributions,

i.e., deterministic, Pareto with the shape parameter set to 2.001

(Pareto-1 for short), and Pareto with the shape parameter set

to 1.98 (Pareto-2 for short). In all cases, we set the mean to

be one.

We use the same experiment settings as in Fig. 3 with β = 1.

In each experiment, we obtain the energy efficiency of MAIP,

and compute the relative difference of the one using each

corresponding distribution to the one using the exponential

distribution. Fig. 6 plots the cumulative distribution of the

relative difference results obtained from the 1000 experiments

for each particular value of the normalized offered traffic ρ. We

observe in Fig. 6 that all relative difference results are between

−5% and 0. Given that the confidence intervals of these

simulation results are maintained within ±5% of the observed

mean with a 95% confidence level, the energy efficiency of

MAIP seems not to be too sensitive to the job-size distribution.

VII. CONCLUSIONS

We have studied the stochastic job assignment problem in a

server farm comprising multiple processor sharing servers with

different service rates, energy consumption rates and buffer

sizes. Our aim has been to maximize the energy efficiency

of the entire system, defined as the ratio of the long-run

average job departure rate to the long-run average power

consumption, by effectively assigning jobs/requests to these

servers. To this end, we have introduced MAIP job assignment

policy and have proved its equivalence to the Whittle’s index

policy when job sizes are exponentially distributed. MAIP only

requires information of binary states of servers, and can be

implemented by using a binary variable for each server. This

policy does not require any estimation or prediction of average

arrival rate. MAIP has been proven to approach optimality

as the numbers of servers in server groups tend to infinity

when job sizes are exponentially distributed. This asymptotic

property is appropriate to a large-scale server farm that is likely

to purchase and upgrade a large number of servers with the

same style and attributes at the same time. The proof for

asymptotic optimality has been completed by applying the

ideas of Weber and Weiss [45] to our multi-queue system with

inevitable uncontrollable states. Extensive numerical results

have illustrated the significant superiority of MAIP over MNIP

(the baseline policy) in a general situation where energy

efficiency of each server differs from its effective energy

efficiency. MAIP has been shown numerically to give similar

energy efficiency results in cases of exponential and Pareto

job-size distributions, which indicates that it is appropriate to a

server farm with highly varying job sizes. Through a numerical

example, we have shown that MAIP is more appropriate than

MEESF for a server farm with non-zero jockeying cost in the

example, which is also useful for a real large-scale system

with significant cost of job reassignment.

APPENDIX A

PROOF OF PROPOSITION 1

Lemma 1. For the system defined in Section III with expo-

nentially distributed job sizes, let aν,gj (nj) denote the action

taken in state nj under the policy which optimizes (10) for

a given ν. The following two statements are equivalent: (1)

ν ≤ λ
(

V ν
j (nj + 1, Rg

j )− V ν
j (nj , R

g
j )
)

, and (2) aν,gj (nj) = 1,

where nj = 1, 2, . . . , Bj − 1.

Proof. According to (10) and (11), observe that, for a given

Rg
j , nj = 1, 2, . . . , Bj − 1, j ∈ K+, there exists a value

ν∗j (nj , R
g
j ) ∈ R, satisfying

aν,gj (nj) =

{

1, ν ≤ ν∗j (nj , R
g
j ),

0, otherwise.

We rewrite (10) as

V ν
j (nj , R

g
j ) = max

{

µj − e∗εj − g

µj
+ V ν(nj − 1, R∗

j ),

µj − e∗εj − g

λ+ µj
−

ν

λ+ µj
+

λ

λ+ µj
V ν(nj + 1,

R∗
j ) +

µj

λ+ µj
V ν(nj − 1, R∗

j )

}

, (21)

where 1/(λ + µj) and 1/µj are the average lengths of one

sojourn in state nj with and without new arrivals (tagged and

untagged), respectively. We obtain

ν∗j (nj , R
g
j ) = λ

(

V ν
j (nj + 1, Rg

j )− V ν
j (nj − 1, Rg

j )
)

−
λ(µj − e∗εj − g)

µj
(22)

Again, by (21), if aν,gj (nj) = 1, then

V ν
j (nj , R

g
j )− V ν

j (nj − 1, Rg
j )

=
λ

µj

(

V ν
j (nj + 1, Rg

j )− V ν
j (nj , R

g
j )
)

+
µj − e∗εj − g

µj
−

ν

µj
.

(23)

Recall that aν,gj (nj) = 1 when ν ≤ ν∗j (nj , R
g
j ), where

the identity indicates no difference between aν,gj (nj) =
0 and aν,gj (nj) = 1. We conclude that ν∗j (nj , R

g
j ) =

λ
(

V ν
j (nj + 1, Rg

j )− V ν
j (nj , R

g
j )
)

, nj = 1, 2, . . . , Bj − 1.

This proves the lemma. �

Lemma 2. For the system defined in Section III with expo-

nentially distributed job sizes, ∀nj = 1, 2, . . . , Bj − 1, j =

1, 2, . . . ,K + 1, V ν
j (nj + 1, Rg

j )− V ν
j (nj , R

g
j ) ≥

µj−e∗εj−g
µj

.

Proof. For nj = Bj − 1, V ν
j (Bj , R

g
j ) − V ν

j (Bj − 1, Rg
j ) =

(µj − e∗εj − g)/µj .

According to (21), if aν,gj (nj) = 0, nj = 1, 2, . . . , Bj − 1,

then, V ν
j (nj , R

g
j ) − V ν

j (nj − 1, Rg
j ) = (µj − e∗εj − g)/µj .

Also, if aν,gj (nj) = 1, nj = 1, 2, . . . , Bj − 1, then we obtain

(23) and, based on Lemma 1,

V ν
j (nj , R

g
j )− V ν

j (nj − 1, Rg
j ) ≥

µj − e∗εj − g

µj
. (24)
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This proves the lemma. �

Next, we complete the proof of Proposition 1.

Proof. If aν,gj (nj) = 0 then, by Lemmas 1 and 2, ν >

λ
(

V ν(nj + 1, Rg
j )− V ν(nj , R

g
j )
)

≥ (λ(µj − e∗εj − g))/µj .

It remains to prove that, if ν > (λ(µj − e∗εj − g))/µj , then

aν,gj (nj) = 0. By definition, V ν
j (Bj , R

g
j )−V ν

j (Bj −1, Rg
j ) =

(µj − e∗εj − g)/µj , and by Lemma 1, ν∗j (Bj − 1, Rg
j ) =

λ(µj − e∗εj − g)/µj .
Finally, we complete the proof by induction. Assume that

ν∗j (n,R
g
j ) = λ(µj − e∗εj − g)/µj , for all n ≥ nj , nj =

2, 3, . . . , Bj−1. If ν > λ(µj−e∗εj−g)/µj , then aν,gj (n) = 0
for all n ≥ nj ; that is, V ν

j (n,Rg
j ) − V ν

j (n− 1, Rg
j ) = (µj −

e∗εj−g)/µj , for all n ≥ nj . Together with Lemma 1, ν∗j (nj−
1, Rg

j ) = λ
(

V ν
j (nj , R

g
j )− V ν

j (nj − 1, Rg
j )
)

= λ(µj − e∗εj −
g)/µj . That is, if ν > λ(µj −e∗εj−g)/µj , then ν > ν∗j (nj −
1, Rg

j ); that is, aν,gj (nj − 1) = 0. This proves the lemma. �

APPENDIX B

PROOF OF PROPOSITION 2

Proof. We now dicuss the action made in state 0; that is,

a
φj

j (0). Let πj,nj
be the steady state distribution of state

nj ∈ Nj under policy φ∗
j over the process PH

j . We consider

the following problem.

max







−e∗ε0j , (−e∗ε0j)πj,0 + (1 − πj,0)(µj − e∗εj)

−

Bj−1
∑

nj=1

aνj (nj)πj,nj
ν − πj,0ν







. (25)

It follows that aνj (0) = 1 is equivalent to

ν ≤
(1− πj,0)(µj − e∗εj + e∗ε0j)

Bj−1
∑

nj=1
aνj (nj)πj,nj

+ πj,0

. (26)

By Proposition 1, if ν ≤ λ(µj − e∗εj − g)/µj , for a given

g, then aν,gj (nj) = 1, for all nj = 1, 2, . . . , Bj − 1; otherwise,

aν,gj (nj) = 0. According to our definitions and Corollary 1,

aνj (nj) = aν,g
∗

j (nj), nj = 1, 2, . . . , Bj − 1, where g∗ > 0

is the average reward of process PH
j under policy φ∗

j ∈ ΦH
j .

Now we split discussion of (26) into two cases. If ν ≤ λ(µ−
e∗εj − g∗)/µj , then, (26) is equivalent to

ν ≤

Bj
∑

i=1

(

λ
µj

)i

(µj − e∗εj + e∗ε0j)

Bj−1
∑

i=0

(

λ
µj

)i
=

λ

µj

(

µj − e∗εj + e∗ε0j
)

.

(27)
By definition of our problem, (27) is valid when ε0j ≥ 0 and

ν ≤ λ(µj − e∗εj + e∗ε0j)/µj . If ν > λ(µj − e∗εj − g∗)/µj ,

then (26) is equivalent to ν ≤ λ
(

µj − e∗εj + e∗ε0j
)

/µj . As

a consequence,

ν∗j (0) =
λ

µj

(

µj − e∗εj + e∗ε0j
)

. (28)

�

APPENDIX C

PROOF OF PROPOSITION 3

Proof. Based on Proposition 2, the proposition is proved for

nj = 0. We assume without loss of generality that ν ≤ λ(µj−
e∗εj + e∗ε0j)/µj , i.e. aν,gj (0) = 1.

According to Corollary 1, we obtain

g∗ =
∑

nj∈Nj

πj,nj

(

Rj(nj)− aν,g
∗

j (nj)ν
)

.

Together with Proposition 1, we rewrite ν ≤ ν∗j (nj , R
g∗

j ),
nj = 1, 2, . . . , Bj − 1 as

ν ≤
λ

µj
(µj − e∗εj − (1 − πj,0)(µj − e∗εj)

+πj,0e
∗ε0j + ν(1 − πj,Bj

))
)

=
λ

µj
(µj − e∗εj + e∗ε0j). (29)

As in the case for ν ≤ ν∗(nj , R
g∗

j ), nj = 1, 2, . . . , Bj − 1,

we rewrite ν > ν∗(nj , R
g∗

j ) as

ν >
λ

µj
(µj − e∗εj + e∗ε0j). (30)

Equations (29) and (30) prove the proposition. �

APPENDIX D

CONSEQUENCES OF THE AVERAGING PRINCIPLE

For K0
i , i = 1, 2, . . . , K̃ with

∑K̃
i=1 K

0
i = K0, define

random variables ξt as follows. Let t0,k, k = 1, 2, . . . and

ti,k, i = 1, 2, . . . ,K0, k = 1, 2, . . ., be the times of the kth

arrival and of the kth departure from server i, respectively.

We assume without loss of generality that K̃ = K0. For the

server farm, inter-arrival and inter-departure times are positive

with probability one and, also with probability one, two events

will not occur at the same time. Define a random vector

ξt = (ξ0,t, ξ1,t, . . . , ξK0,t) as follows. For j = 0, 1, . . . ,K0,

ξj,t =



























tj,k − tj′,k′ , tj,k = min
k′′=1,2,...

{tj,k′′ |tj,k′′ > t},

tj′,k′ = max
j′′=0,1,...,K0,
k′′=1,2,...

{tj′′,k′′ |tj′′,k′′ < tj,k},

tj′,k′ ≤ t < tj,k,
0, otherwise.

(31)

Here, the ξt is almost surely continuous except for a finite

number of discontinuities of the first kind in any bounded

interval of t > 0.

For x ∈ RI , and i = 1, 2, . . . , I , we define the action for

the Whittle’s index policy as

aindexi (x) =

{

1 i = min{i|x−
i > 0, i = 1, 2, . . . , I},

0 otherwise,
(32)

where x−
i =

∑i
k=1 xk, and the action for the optimal solution

of the relaxed problem is

aOPT
i (x) =

{

1 ν∗i ≥ ν, xi > 0,

0 otherwise,
(33)
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for given state indices ν∗i , i ∈ Ñ{0,1} ∪ Ñ{0}, and ν.

We define a function, Qφ(i, i′,x, ξ), where φ ∈ Φ, i, i′ ∈
Ñ

{0,1} ∪ Ñ
{0}. For given ξ = (ξ0, ξ1, . . . , ξK0) ∈ RK0+1

and x = (x1, x2, . . . , xI) ∈ RI , Qφ(i, i′,x, ξ) is given, for

i− 1, i, i+ 1 ∈ Ñ
{0,1}
j ∪ Ñ

{0,1}
j , j = 1, 2, . . . , K̃ by

Qφ(i, i+ 1,x, ξ) = aφi (x)
1
ξ0

+ f0
i,a(x, ξ),

Qφ(i, i− 1,x, ξ) =
⌈x−

i
⌉

∑

j=⌈x−
i−1

⌉+1

1
ξj

+ fi,a(x, ξ),

Qφ(i, i′,x, ξ) = 0, otherwise,

(34)

where φ is set to be either index or OPT , x−
i =

∑i
k=1 xk,

and, with 0 < a < 1, f0
i,a(x, ξ) and fi,a(x, ξ) are appropriate

functions to make Q(i, i′,x, ξ) smooth in x for all given

ξ ∈ RK0+1 and 0 < a < 1. Here a is a parameter controlling

the Lipschitz constant. Then, for any given 0 < a < 1,

Qφ(i, i′,x, ξ) is bounded and satisfies a Lipschitz condition

over any bounded set of x ∈ RI and ξ ∈ RK0+1.

For 0 < a < 1 and ǫ > 0, we define X
φ,ǫ
t to be a solution

of the differential equation

Ẋ
φ,ǫ
t = bφ(Xǫ

t , ξt/ǫ)

=
∑

i′∈Ñ{0,1}∪Ñ{0}

Qφ(i′, i,Xǫ
t , ξt/ǫ)−Qφ(i, i′,Xǫ

t , ξt/ǫ),

(35)

where φ is set to be either index or OPT . It follows that

bφ(Xǫ
t , ξt/ǫ) also satisfies a Lipschitz condition on bounded

sets in R
I ×R

K0+1.

From the above definitions, for any x ∈ RI , δ > 0, there

exists b
φ
(x) satisfying

lim
T→+∞

P

{∣

∣

∣

∣

∣

1

T

∫ t+T

t

bφ(x, ξs) ds− b
φ
(x)

∣

∣

∣

∣

∣

> δ

}

= 0, (36)

uniformly in t > 0. Let x
φ
t be the solution of ẋ

φ

t =

b
φ
(xt), x

φ
0 = X

φ,ǫ
0 .

Now we invoke [54, Chapter 7, Theorem 2.1]: if (36) holds,

and E
∣

∣bφ(x, ξt)
∣

∣

2
< +∞ for all x ∈ RI , then, for any T > 0,

δ > 0,

lim
ǫ→0

P

{

sup
0≤t≤T

∣

∣

∣
X

φ,ǫ
t − x

φ(t)
∣

∣

∣
> δ

}

= 0. (37)

We scale the time line of the stochastic process by ǫ > 0.

As ǫ tends to zero, time is speeded up, and in this way the

stochastic process {Xφ,ǫ
t }, driven by the random variable ξt/ǫ,

converges to the deterministic process {xφ(t)} defined by the

differential equation b
φ
(x).

Now we interpret the scaling by ǫ in another way. Along

similar lines, for a positive integer n and a scaled system,

where Ki = nK0
i replaces K0

i , i = 1, 2, . . . , K̃, and K =

n
∑K̃

i=1 K
0
i , we define tnj,k,j = 0, 1, . . . ,K , k = 1, 2, . . . and

the random variables ξnt by analogy with the unscaled systems.

Then the random variables ξnj,t, j = 1, 2, . . . ,K , and ξn0,t are

exponentially distributed with rate λ0
i , i = ⌊(j − 1)/n⌋ + 1

and nλ0
0, respectively, where λ0

i , i = 0, 1, . . . ,K0, are the

corresponding rates for random variables ξi,t. We then define,

Qφ,n(i, i′,x, ξn) for x ∈ RI and ξn ∈ RnK0+1 as in

Equation (34), with appropriate modifications for the change

in dimension, where again the functions f0,n
i,a (x, ξn) and

fn
i,a(x, ξ

n) are apprppriately defined to guarantee smooth-

ness of Qφ,n(i, i′,x, ξ) x for all given ξn ∈ RnK0+1 and

0 < a < 1. Here, again, a is a parameter controlling the

Lipschitz constant, and φ is set to be either index or OPT ,

x−
i =

∑i
k=1 xk ,

In the same vein, for x ∈ RI and ξn ∈ RnK0+1, a

differential equation is given by

bφ,n(x, ξn)

=
∑

i′∈Ñ{0,1}∪Ñ{0}

Qφ,n(i′, i,x, ξn)−Qφ,n(i, i′,x, ξn). (38)

If we set ǫ = 1/n then, for any x ∈ RI , n > 0 and T > 0,
∫ T

0
bφ(x, ξt/ǫ)dt and

∫ T

0
(bφ,n(nx, ξnt )/n)dt are equivalently

distributed with φ set to be either index or OPT . We define

Z
φ,ǫ
0 = Z

φ,n
0 = x0/(K

0 + 1) (there is a zero-reward virtual

server), and

Ż
φ,n
t =

1

n(K0 + 1)
bφ,n(n(K0 + 1)Zφ,n

t , ξnt ),

and

Ż
φ,ǫ
t =

1

K0 + 1
bφ((K0 + 1)Zφ,ǫ

t , ξt/ǫ).

From (37), we obtain

lim
n→+∞

P

{

sup
0≤t≤T

∣

∣

∣
Z
φ,n
t − x

φ(t)/(K0 + 1)
∣

∣

∣
> δ

}

= 0,

(39)

for φ set to be either index or OPT . Therefore the scaling of

time by ǫ = 1/n is equivalent to scaling of system size by n.

Because of the Lipschitz continuity of Ż
φ,n
t and ẋ

φ
(t) on

0 < a < 1, lima→0 dŻ
n
t /da = 0 and lima→0 dẋ

φ
(t)/da =

0, equation (39) holds true in the limiting case as a → 0.

Also, if Z
φ,n
0 = Z

φ(0), and x
φ(0)/(K0 + 1) = z

φ(0), then

lima→0 x
φ(t)/(K0 + 1) → z

φ(t) and lima→0 Z
φ,n
t → Z

φ(t),
where φ is set to be either index or OPT , Zφ(t) represents

the proportions of servers under policy φ at time t and z
φ(t)

is given by (17) (as defined in Section V-D). This leads to

(19).
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[55] Standard Performance Evaluation Corporation, tested by Dell Inc.
[Online]. Available: https://www.spec.org/power ssj2008/results/

http://www.google.com/patents/US8626897
http://projecteuclid.org/euclid.aoap/1472745449
https://www.spec.org/power_ssj2008/results/


16

Jing Fu (S’15-M’16) received the B.Eng. degree in
computer science from Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 2011, and the Ph.D. degree
in electronic engineering at City University of Hong
Kong, Hong Kong, in 2016.

She has been with the School of Mathematics and
Statistics, The University of Melbourne, Melbourne,
Australia, as a Postdoctoral Research Associate since
2016. Her research interests now include green net-
working, cloud computing, large-scale multi-queue
systems, semi-Markov/Markov decision processes,

restless multi-armed bandit problems, asymptotic optimality, fluid control
problems.

Bill Moran (M‘95) currently serves as a Professor
and the Director of Signal Processing and Sensor
Control Group in the School of Engineering, RMIT
University, Australia. He has been a Professor in
the department of Electrical Engineering, Univer-
sity of Melbourne since 2001. Previously he was
the Research Director of Defence Science Institute
(2011-2014) in University of Melbourne, Professor
of Mathematics (’76–’91), Head of the Department
of Pure Mathematics (’77–’79, ’84–’86), Dean of
Mathematical and Computer Sciences (’81, ’82, ’89)

at the University of Adelaide, and Head of the Mathematics Discipline at the
Flinders University of South Australia (’91–’95). He was a Chief Investigator
(’92–’95), and Head of the Medical Signal Processing Program (’95–’99)
in the Cooperative Research Centre for Sensor Signal and information
Processing. He was elected to the Fellowship of the Australian Academy of
Science in 1984. He holds a Ph.D. in Pure Mathematics from the University
of Sheffield, UK (’68), and a First Class Honours B.Sc. in Mathematics from
the University of Birmingham (’65). He has been a Principal Investigator on
numerous research grants and contracts, in areas spanning pure mathematics to
radar development, from both Australian and US Research Funding Agencies,
including DARPA, AFOSR, AFRL, Australian Research Council (ARC),
Australian Department of Education, Science and Training, DSTO. He is a
member of the Australian Research Council College of Experts. His main
areas of research interest are in signal processing both theoretically and in
applications to radar, waveform design and radar theory, sensor networks, and
sensor management. He also works in various areas of mathematics including
harmonic analysis, representation theory, and number theory.

Jun Guo (S’01–M’06) received the B.E. degree
in automatic control engineering from Shanghai
University of Science and Technology, Shanghai,
China, in 1992, and the M.E. degree in telecommu-
nications engineering and Ph.D. degree in electrical
and electronic engineering from the University of
Melbourne, Melbourne, Australia, in 2001 and 2006,
respectively.

He was with the School of Computer Science
and Engineering, The University of New South
Wales, Kensington, Australia, as a Senior Research

Associate from 2006 to 2008 and on an Australian Postdoctoral Fellowship
supported by the Australian Research Council from 2009 to 2011. From
2012 to 2016, he was with the Department of Electronic Engineering, City
University of Hong Kong, Hong Kong. He is now an Associate Professor with
the College of Computer Science and Technology, Dongguan University of
Technology, Dongguan, China. His research is currently focused on green
communications and networking, teletraffic theory and its applications in
service sectors, and survivable network topology design.

Eric W. M. Wong (S’87–M’90–SM’00) received
the B.Sc. and M.Phil. degrees in electronic engi-
neering from the Chinese University of Hong Kong,
Hong Kong, in 1988 and 1990, respectively, and the
Ph.D. degree in electrical and computer engineering
from the University of Massachusetts, Amherst, MA,
USA, in 1994.

He is an Associate Professor with the Department
of Electronic Engineering, City University of Hong
Kong, Hong Kong. His research interests include
analysis and design of telecommunications and com-

puter networks, energy-efficient data center design, green cellular networks
and optical switching.

Moshe Zukerman (M’87–SM’91–F’07) received
the B.Sc. degree in industrial engineering and man-
agement and the M.Sc. degree in operations research
from the Technion—Israel Institute of Technology,
Haifa, Israel, in 1976 and 1979, respectively, and the
Ph.D. degree in engineering from the University of
California, Los Angeles, CA, USA, in 1985.

He was an independent consultant with the IRI
Corporation and a Postdoctoral Fellow with the
University of California, Los Angeles, from 1985 to
1986. He was with the Telstra Research Laboratories

(TRL), Melbourne, Australia, first as a Research Engineer from 1986 to 1988,
and as a Project Leader from 1988 to 1997. He also taught and supervised
graduate students with Monash University, Melbourne, Australia, from 1990
to 2001. From 1997 to 2008, he was with The University of Melbourne,
Melbourne, Australia. In 2008, he joined City University of Hong Kong, Hong
Kong, as a Chair Professor of Information Engineering and a team leader.

Prof. Zukerman has served on various editorial boards such as Computer
Networks, IEEE Communications Magazine, IEEE Journal of Selected Areas
in Communications, IEEE/ACM Transactions on Networking, and the Inter-
national Journal of Communication Systems.


