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Abstract

Base station (BS) sleeping is one of the emerging solutions for energy
saving in cellular networks. It saves energy by selectively switching under-
utilized BSs to a low power consuming mode (“sleep mode”) during low traffic
hours while transferring their associated traffic to active BSs nearby. How-
ever, while saving energy, BS sleeping causes a reduction in total available
capacity of the network, so Grade of Service (GoS) might be degraded, result-
ing in a trade-off between energy saving and network performance. This pa-
per proposes a robust and computationally efficient analytical approximation
technique, which we call Information Exchange Surrogate Approximation for
Cellular Networks (IESA-CN), based on the recently established IESA frame-
work for evaluation of GoS, as measured by call blocking probability, in cellu-
lar networks with different BS sleeping patterns. By considering the mutual
overflow effect between BSs, the newly proposed method is verified by exten-
sive and statistically reliable simulation experiments to significantly improve
the accuracy as compared to traditional Erlang Fixed-Point Approximation
in a wide range of scenarios.
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1. Introduction

Energy efficiency is becoming increasingly important for cellular mobile
network operators due to environmental and economic concerns [1–3]. Re-
duction in energy consumption reduces pollution and greenhouse gas, and
brings cost-saving benefits to operators and consumers.

Substantial research effort has been directed towards reducing energy
consumption in cellular networks. One of the emerging solutions to achieve
this goal is base station (BS) sleeping [1–3]. BSs account for 50% – 80% of the
total energy consumption by cellular networks. They are usually designed
for peak hour traffic. However, traffic demands at individual BSs are highly
variable both temporally and spatially [4]. As a result, a significant amount of
energy can be wasted in under-utilized BSs, if all BSs operate in active mode
all the time. Therefore, it is reasonable to selectively switch some of the BSs
to “sleep mode”, a low power consuming mode where only minimal structure
required for re-activation operation is kept on. Note that a macro BS in sleep
mode typically consumes less than 7% of the energy that is required by an
active BS operating at full load [5]. Meanwhile, the remaining active BSs
cooperatively extend coverage for calls which would have required service
from those BSs that entered sleep mode.

While it is desirable to save energy by BS sleeping, it is also important
to maintain the grade of service (GoS) when the total network capacity is
reduced due to BS sleeping. That is, there exists a trade-off between energy
saving and GoS requirements [2, 6–9]. Relaxing GoS constraints normally
enables more energy savings, whereas tightening GoS constraints is likely to
reduce energy saving by BS sleeping. A decision maker needs quantitative
means to assess this trade-off, particularly, to evaluate the GoS for each
energy saving scheme.

One GoS measure in cellular network is call blocking probability, defined
as the number of calls that are blocked entry or dropped during service di-
vided by the total number of call arrivals [7, 10, 11]. It is an important GoS
measure for cellular networks since the GSM era. Even in current cellular
network where data traffic has become the dominant traffic, blocking proba-
bility is still a useful measure for real-time mobile applications such as video
streaming, mobile gaming and video conferencing. In order to satisfy Qual-
ity of Service (QoS) requirements such as delay and data rate in addition to
the above mentioned blocking probability GoS requirement, there is a need
to limit the number of admitted connections served by a given BS. Here,
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the blocking probability is equivalent to the probability that a connection
is rejected for admission because of the need to meet the application QoS
requirements.

Unfortunately, it is often not possible to explicitly obtain an analytical
expression for the blocking probability [12]. Computer simulation is therefore
used to evaluate the performance of various cellular networks (e.g. [13–15]).
However, simulations are time consuming, especially, for large systems. On
the other hand, analytical approximations are much more computationally
efficient. This is especially important when the evaluation is used as a module
in a network design tool for searching optimal solutions where computational
efficiency is key for such optimization procedures.

Therefore, analytical approximation methods are needed to evaluate block-
ing probability in cellular networks. The time required to obtain an approx-
imation is often several orders of magnitude less than the time required for
a simulation. The most prominent concern for approximations, however, is
the accuracy.

We will base our discussions for evaluating blocking probabilities on the
overflow loss system model, which forms an important class of teletraffic
models for evaluating system performance. The definition of traffic overflow,
according to [16], is “1. That condition wherein the traffic offered to a
portion of a communication system exceeds its capacity and the excess may
be blocked or may be provided with alternate routing, or 2. the excess
traffic itself”. In this paper, we use the shorter term overflow to refer to the
condition of traffic overflow, and we use the commonly used term of overflow
traffic (e.g. [17–21]) for the excess traffic itself. We will also use overflow as a
verb to describe “action” by the access traffic when it is blocked or provided
with alternate routing. Overflow loss systems are systems or networks where
overflow traffic may exist. In such systems, if all servers in the primary server
group are unavailable, overflow traffic is either blocked and cleared from the
system, or it overflows to an alternative server group [22]. In cellular networks
with BS sleeping, overflow occurs when a call attempts a sleeping or fully-
loaded BS. In this case, an active BS nearby with available capacity will
serve as the alternative server group for the call rejected by the sleeping or
fully-loaded BS [23].

Apart from cellular networks considered in this paper, the applications of
overflow loss systems can be found in many other systems ranging from clas-
sical telecommunication systems to emerging service sector models including
such as circuit switching systems [24], optical burst switching systems [25, 26],
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video-on-demand systems [27], call centers [28], and health-care systems [29].
The exact blocking probability in such overflow loss systems can be ob-

tained by solving a set of steady-state equations for a multi-dimensional
Markov process, with each dimension represents the state of one server group
in the system. However, this approach is not viable in an overflow loss system
as such system generally does not have a closed form solution for blocking
probability [30, 31]. Also, due to the curse of dimensionality, this approach
is not scalable for systems of practical size as the state space increases explo-
sively when the system becomes large [12]. Therefore, it becomes desirable
to estimate the blocking probability by analytical approximations.

The classical approximation method for blocking probability in overflow
loss systems, known as the Erlang Fixed-Point Approximation (EFPA), was
first proposed in 1964 [32]. Kelly [33] suggested that cellular networks with
channel borrowing mechanism can be modelled as overflow loss systems and
proposed to use EFPA to estimate the blocking probabilities. In this pa-
per, we follow Kelly’s suggestions by applying two EFPA-based approxi-
mation methods, i.e. the traditional EFPA and a newly-proposed versatile
approach named Information Exchange Surrogate Approximation for Cellu-
lar Networks (IESA-CN). The IESA-CN approach, based on a recently pro-
posed framework known as Information Exchange Surrogate Approximation
(IESA), develops a surrogate model called an information exchange system
(IES). It features an information exchange mechanism in which incoming
calls may exchange certain congestion information with calls in service [22].
In addition, unlike the original IESA, IESA-CN captures unique features in
cellular networks. We will show that, with simulation results as the bench-
mark, IESA-CN is a significantly more accurate approximation than the con-
ventional approximation method EFPA and can be applied for evaluating
blocking probabilities in cellular networks with BS sleeping in a wide range
of scenarios. Note that IESA-CN, like EFPA, decouples the system into
independent subsystems loaded with Poisson traffic (e.g., Erlang B subsys-
tems [32, 33]), which makes both methods computationally efficient. On the
other hand, IESA-CN introduces an information exchange mechanism, which
can capture traffic dependence in the system, and hence it can significantly
improve the accuracy over EFPA.

This paper is an extension of its conference version [34], that assumes
identical traffic in each cell without considering BS sleeping. The contribu-
tions of this paper are summarized as follows:
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1. We apply the traditional approximation technique EFPA to a cellular
network model with BS sleeping technique. To the best of our knowl-
edge, this is the first work that applies EFPA to obtain call blocking
probabilities for such models.

2. We develop a suitable surrogate under IESA framework for cellular
networks with BS sleeping called Information Exchange System for
Cellular Networks (IES-CN). We provide, for the first time, an accu-
rate and computationally feasible analytical approximation of blocking
probability for cellular networks with (or without) BS sleeping, asym-
metric offered traffic across BSs and handovers. IESA-CN based on the
proposed surrogate IES-CN is shown to be accurate in a wide range of
scenarios and we demonstrate that IESA-CN, which has a root from
the classical EFPA, is a significant improvement over EFPA.

IESA-CN has many potential network design applications including net-
work planning, resource allocation, and admission control. It can apply to
homogenous or heterogeneous mobile cellular networks with or without BS
sleeping.

The remainder of this paper is structured as follows. Section 2 provides
background information and discusses existing work on BS sleeping tech-
niques and approximation methods on cellular networks and overflow loss
systems. Section 3 describes the cellular network model to be evaluated.
Section 4 defines call attributes used by the IES-CN and describes each ap-
proximation method in detail. A case study and its associated numerical
results are presented in Section 5. Finally, Section 6 concludes the paper.

2. Related work

2.1. BS sleeping technique

A comprehensive survey of BS sleeping techniques in cellular networks is
provided in [2]. Compared to the other green techniques such as upgrading
hardware components to more energy-efficient standards, BS sleeping has the
advantage of minimal deployment and replacement cost as all the operations
could be implemented on existing network infrastructure. Marsan et al. [35]
compared energy savings achieved by different switching patterns of BSs, but
did not take GoS degradation into consideration, and instead assume that the
remaining active BSs are able to serve all the calls during low traffic hours.
Gong et al. [7] proposed a two-stage dynamic algorithm to optimize the
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trade-off between energy consumption and blocking probability in renewable
energy powered cellular networks without considering overflow traffic. Niu et
al. [8] provided a delay model for a single cell with BS sleeping based on an
M/G/1 queue with vacations. This simple single BS model leads to closed-
form results for the trade-off between energy and delay. However, it does not
consider handover and overflow traffic present in cellular networks with BS
sleeping. Bousia et al. [36] proposed a distance-aware BS sleeping algorithm
in LTE-Advanced cellular network. The authors demonstrated by simulation
that their proposed algorithm outperforms an existing random switching-off
algorithm.

BS sleeping techniques have also been applied concurrently with other
green strategies, such as heterogeneous cell deployment, to further improve
the savings. Cao et al. [37] proposed strategies to obtain the optimal BS
density (which can be achieved by BS sleeping) in homogeneous and hetero-
geneous cellular networks with service outage probability constraint based on
stochastic geometry theory. Huang et al. [13] discussed three energy-efficient
control strategies including BS sleeping in heterogeneous cellular networks
based on large-scale user behavior by formulating an optimization problem
involving BS density, BS power consumption and GoS requirement. The au-
thors used simulations to demonstrate that significant improvement of energy
efficiency can be achieved by integrating BS sleeping technique and heteroge-
neous cell deployment strategy. Chen et al. [9] proposed a joint BS and relay
stations (RS) sleeping mechanism to maximize energy saving under GoS con-
straint. The authors also adopted simulations to obtain energy consumption
and GoS metric such as throughput.

BS sleeping schemes can also be cooperatively applied by multiple net-
work operators to further reduce energy consumption. Oikonomakou et
al. [38] proposed a cooperative sleeping scheme in a single macrocell of a
heterogenous cellular network owned by multiple network operators. By
simulation results, the proposed scheme is shown to achieve notable energy
saving while maintaining satisfactory QoS for users. Bousia et al. [39, 40]
further studied operators cooperation for BS sleeping, they proposed a game-
theoretic approach to minimize cost for each operator [39] and a multiobjec-
tive framework to solve the problem of resource allocation among operators
by comparing different strategies of bidding for resources [40].

A number of factors could affect the effectiveness of different BS sleeping
strategies in terms of energy saving and GoS impact. Tabassum et al. [14]
analyzed the impact of different scheduling and user association schemes by
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active BSs on the spectral efficiency of users originally associated with BSs
that entered sleep mode. Wu et al. [6] analyzed the energy saving and delay
trade-off, and developed a scheme to choose the optimal time to trigger BS
sleep mode based on minimal total power needed to support a certain offered
traffic load. Han et al. [23] considered four progressive BS switching patterns
according to traffic patterns in order to maximize energy saving. The authors
considered the outage probability of users based on path-loss and fading
effects. Notably, all the GoS, or QoS measures, used in [9, 13, 14, 23, 36, 38–
40], i.e. delay, outage probability or spectral efficiency, were obtained by
Monte-Carlo simulations.

2.2. Blocking probability approximations for cellular networks without BS
sleeping

While most existing publications (e.g., [13, 14, 23]) evaluate blocking
probability in cellular networks by computer simulation, there is literature on
blocking probability evaluation for cellular network (without BS sleeping) via
analytical means. One example is the above discussed work by Cao et al. [37].
In addition, Raymond [41] proposed a method to estimate minimal blocking
probability for simple cellular networks with dynamic channel allocation and
flow control. Lagrange and Godlewski [42] approximated blocking probability
in a two-tier cellular network consisting of micro-cells and umbrella-cells,
where calls first attempt the micro-cells and overflow to umbrella-cells if
no channels in micro-cells are available. Huang et al. [20] proposed another
approximation method called multiservice overflow approximation (MOA) to
evaluate blocking probability in a similar two-tier cellular network structure.

None of [37], [41], [42] or [20] considered possible mutual traffic over-
flow [43] among BSs, due to channel borrowing or user association techniques,
by which a user is able to use a channel, or capacity originally assigned to
another BS, if the first BS it attempts cannot offer the required service due
to insufficient capacity or sleep mode operation [2, 14, 34, 44]. Such mu-
tual overflow effect does not exist in models with hierarchical structure such
as [38, 42], where the overflows are only assumed to occur unidirectionally
from the micro-cells to the umbrella-cells, but not the other way around,
or bidirectionally between two micro-cells. By contrast, in non-hierarchical
cellular network structure where overflow traffic flows bilaterally, congestion
in a particular BS would cause increasing overflow traffic to other BSs, which
may in turn yield more overflow traffic to the original BS. Mutual overflow
adversely affects the accuracy of approximations, such as those proposed
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in [20, 37, 41, 42] when they are used for cellular networks with mutual
overflow.

2.3. Blocking probability approximations for overflow loss systems

With channel borrowing, calls that arrive at fully-loaded or sleeping BSs
can be served by neighboring BSs with idle capacity. Therefore, cellular net-
works with BS sleeping can be modelled as an overflow loss system. A BS
here is regarded as a server group, and each channel (serving a single call)
in the BS is a server. In the case without channel borrowing, Everitt [44]
further mentioned that EFPA can be used to approximate blocking proba-
bility in cellular networks with the consideration of call mobility among cells
with high accuracy. Mitchell and Sohraby [45] showed that EFPA is very
accurate in assessing blocking probabilities for new and handover calls with
different control strategies in a multi-cell multi-class cellular network model
with symmetric traffic loading.

References [44] and [45] do not discuss channel borrowing mechanism or
user association process, which are important parts of the technical basis of
BS sleeping. Particularly, the user association process allows users originally
associated with BSs that entered the sleep mode to be reassociated with
nearby active BSs [2].

Overflow traffic in cellular networks with BS sleeping, especially because
of the mutual overflow effect caused by the user association process, could
lead to very inaccurate estimation of blocking probability by EFPA [43]. Here
we consider EFPA in the sense of [33] without moment matching as was done
in [32]. In this sense, EFPA is a classical approximation method based on
Poisson and independence assumptions. The Poisson assumption assumes
that if the arrival process is Poisson, the overflow traffic also follows a Poisson
process. The independence assumption assumes that all server groups are
mutually independent. However, it is known that the mean rate of overflow
traffic is higher than its variance implying that modelling it by a Poisson
process introduces errors, and that the server groups are not statistically
independent because a busy server group is likely to imply that other server
groups are also heavily loaded at the same time.

Due to these two assumptions, EFPA dramatically reduces the computing
time as compared to the original multi-dimensional Markov process. How-
ever, they also lead to inaccurate estimates in various scenarios [22]. Several
publications have proposed ways to combat the errors of EFPA, e.g., using
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moment matching techniques to reduce errors due to the Poisson assump-
tion [46] or derive conditional probabilities to reduce errors due to the inde-
pendence assumption [47]. However, the improvement of EFPA using mo-
ment matching techniques is marginal in systems involving mutual overflow
(where the independence error is dominant) while the conditional probabili-
ties derivation method is not scalable [48].

Another approach is to apply the technique used in the traditional EFPA,
i.e., decoupling the system into independent Erlang B subsystems, to a cer-
tain surrogate of the original system. For example, in the surrogate model
used in Overflow Priority Classification Approximation (OPCA) [48], calls
are classified based on the number of overflows they experience. A preemp-
tive priority regime, where a junior call with a lower number of overflows is
entitled to preemptive priority over a senior call with a greater number of
overflows, is incorporated into the original model. That is, a senior call in
service must give up its own channel during its service period if a junior call
requests it. Alternatively, this preemptive process can be viewed as if the ar-
riving junior call and the senior call in service exchanged their identity upon
the arrival. In this way, the congestion information carried by the senior call
can be used by the junior call.

By decoupling the system of the surrogate model into independent Erlang
B subsystems as in EFPA, OPCA is able to reduce the errors due to the
independence assumption in EFPA by capturing state dependencies among
overflow traffic. It has been shown to be quite accurate in systems where
all calls have full access to all server groups. However, cellular networks can
be viewed as partially accessible networks as it is unlikely for a call to visit
all the BSs in the system during its lifetime. The rudimentary approach of
OPCA is shown to be inaccurate in such systems [22].

The IESA framework, with its roots in EFPA and OPCA, was proposed
to estimate blocking probability in partially-accessible networks [22]. Instead
of literally swapping the calls as in OPCA, the calls in IESA only exchange
certain congestion information while retaining their own identities and over-
flow records in the IES (i.e. the surrogate model associated with IESA).
IESA could be quite accurate if a suitable surrogate is chosen for the system
concerned.

The IESA framework initially proposed in [22] was further modified in [49,
50] to estimate the blocking probabilities in Video on Demand (VoD) sys-
tems. However, it will not yield an accurate approximation for blocking
probability in cellular networks due to the inherent differences between these
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two systems. In VoD systems, a request is possibly able to overflow to any
disks where a copy of the requested movie is available. However, in cellular
networks, when a call is rejected by a BS due to sleeping or insufficient ca-
pacity, it can only overflow to nearby BSs due to limited signal strength (the
locality feature). In this sense, the statistical dependencies among states of
local BSs in cellular networks are stronger as they are more highly correlated.
Furthermore, in cellular networks, the set of BSs that a given call is allowed
to overflow to is changed when the call performs a handover from one BS
to another (the mobility feature). This situation does not exist in VoD sys-
tems where the set of accessible disks is determined upon the initiation of a
request and remains fixed throughout its lifetime. Therefore, the surrogate
used in [22], [49] and [50] is inappropriate, and its corresponding blocking
probability approximation is inaccurate for the current problem.

Following the discussions above, the challenge and contribution of the
paper is to design a suitable surrogate for cellular networks with BS sleeping,
and derive an accurate approximation of blocking probability of the surrogate
under the IESA framework. We will demonstrate later in the paper that the
locality and mobility features uniquely present in cellular networks can be
addressed by means of a single parameter already available in the original
IESA framework. The fact that adjusting a single parameter can adapt the
original approximation (as demonstrated in [22], [49] and [50]) under the
IESA framework to a different network model illustrates the flexibility and
versatility of the IESA framework for estimating the blocking probability of
various overflow loss systems.

3. Network Model

Consider a cellular network with multiple interconnected BSs. We define
U as the set of all BSs in the network, and let Γi ⊂ U denote the set of BSs
that a call originated from BS i is allowed to overflow. The number of BSs
to which a call originated from i has access is denoted by ni = |Γi|. The
set of traffic source cells that have access to i is denoted by Φi. Note that
here we do not prioritize handover calls over new calls (e.g., [45, 51, 52]).
Priority schemes involving granting preemptive priority to handover calls,
allowing handover calls to wait in the buffer, or reserving a proportion of
channels exclusively for handover calls can be incorporated into our model
by treating new calls and handover calls as two different classes, and applying
approximation techniques to each of them. Therefore, the new call blocking
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probability and handover forced termination probability are equal and we will
refer to both as blocking probability to avoid ambiguity.

We mainly focus, in this paper on a homogeneous cellular network with-
out inter-layer overflow traffic such as that from micro cells to underlying
macro cells as in [13, 38]. In Section 5 we also consider a case with ir-
regular cell layouts. We note that moment matching [46, 50], which is the
main technique to approximate blocking probabilities in multi-layer overflow
loss systems, can be incorporated with the IESA framework to evaluate the
blocking probabilities in heterogeneous cellular networks.

We also note that in current and future cellular networks, packet-switched
data becomes the dominant traffic due to the popularity of multimedia mo-
bile applications. A multi-service multi-rate loss model is required for such
systems [53]. There has been work on applying EFPA or EFPA-based ap-
proximations to multi-service multi-rate systems (e.g. [54]). In this paper we
assume single rate for simplicity and will leave the extension to multi-service
multi-rate model for future research.

We assume that new calls arrive at BS i following a Poisson process with
rate λi. As we discussed previously, the assumption of Poisson arrivals is
fundamental in EFPA. It is also a common assumption in existing research
on cellular networks (e.g. [8, 36]). We will show later that because the system
is not very sensitive to the burstiness in the arrival process, our proposed
method is also fairly accurate for systems with more bursty arrivals, that
may be modeled by a Markov modulated Poisson process (MMPP).

Call service times are independent and exponentially distributed with
mean 1/µi. Call sojourn times in each BS are also assumed to be independent
and exponentially distributed with mean 1/δi. For simplicity, we assume the
values of µi and δi are equal across all BSs, thus they can be denoted as
µ and δ. In this sense, each BS can be modeled as an M/M/c/c queue
(e.g., [41, 52]). The state of BS i is denoted by Si, where Si = 0 if i is
sleeping, while Si = 1 if i is active. We will also demonstrate later that
the blocking probabilities are nearly insensitive [55] to service and sojourn
time distributions. The classical symmetric random walk model is adopted
to characterize call mobility. In such a model, a call leaving a cell will move
to any one of the neighboring cells with equal probability [56]. Also, for
simplicity and without loss of generality, we assume all BSs to have the same
number of channels, denoted as c = ci for all i ∈ U .

The traffic offered (in Erlangs, similarly hereinafter) to a particular BS
i is denoted as Ai = λi/µ. The total traffic offered to the system is thus
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A =
∑
i∈U

Ai.

A call will leave its current serving BS under either one of two following
conditions: 1) the call completes its service and leaves the system, and 2) the
call performs a handover to a neighboring cell served by another BS (due to
the mobility of calls).

Assuming that service and sojourn times are independent and exponen-
tially distributed, the probability θ that a call in the network performs a
handover given that it has not been completed, is given by

θ =
δ

µ+ δ
. (1)

We define B̂i as the blocking probability at BS i. Given B̂i, the combined
arrival rate of new and handover calls λ′i for i can be obtained by

λ′i = λi +
∑
j∈Υi

λ′j(1− B̂j)θ (2)

in which Υi is the set of direct neighbor BSs of i.
We define A′i as the effective offered traffic to i after taking the mobility

of calls into consideration. It is given by

A′i =
λ′i

µ+ δ
. (3)

Taking the mobility feature into account, let Bcall
i denote the probability

that a call originated from BS i cannot complete its service due to blocking
or dropping. Given B̂i and θ, we can derive Bcall

i by another set of fixed-point
equations [57]:

Bcall
i = B̂i + θ(1− B̂i)

1

|Υi|
∑
j∈Υi

Bcall
j . (4)

The first term (B̂i) in (4) represents the probability that the call is blocked
upon its initiation at i, and the second term represents the probability that
the call is successfully admitted to i but dropped upon a handover attempt
before its completion.

Henceforth, we assume for any i ∈ U that Υi and Γi coincide and are the
set of its direct neighbors. This means that a call arriving at i is able to use
(borrow) channels in all its direct neighboring BSs if BS i itself is sleeping or
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has no vacant channels. Meanwhile, a call can perform multiple handovers
across neighboring BSs during its service period.

4. Approximations

In this section, we begin by defining the set of call attributes used for
IES-CN. Then we show how to apply EFPA and IESA-CN to our network
model.

4.1. Call attributes and notations

In order to perform the information exchange mechanism and estimate
blocking probability, we assign several attributes to calls in the model. The
first attribute is the call identity I, which contains information including
the call’s origin, the call’s expected service time and sojourn time in each
server group, and the elapsed time since the call’s inception. The second
attribute, denoted by ∆, is defined in [22] as the set of server groups that
the call has already attempted and overflowed, or overflow record of the call.
Correspondingly in our model, ∆ represents the set of BSs that has rejected
admission of the call due to no available channels. The third attribute,
denoted by Ω, represents an estimate of network congestion, which can be
used to capture the statistical dependencies in the entire network. We will
discuss this in further detail later when we describe IESA-CN.

We denote call ζ, with its first, second and third attributes being Iζ , ∆ζ ,
Ωζ , respectively, as an (Iζ , ∆ζ)-call or (Iζ , ∆ζ , Ωζ)-call. Attributes of a call
may be updated or exchanged during the call’s sojourn time in the network.
The specific rules of updating or exchanging depend on the approximation
method used. We further assume that call ζ generated in BS i determines
its next overflow destination by random hunting in Γi −∆ζ , which is the set
of BSs that the call has access to and not yet attempted. As the nature of
random hunting requires keeping track of each random sequence of BSs that
a call attempts, we define Ψ(X, x), x = 0, 1, ..., |X| as the set of choices of x
elements from X. By definition, Ψ(X, 0) = ∅.

The attributes are created for the information exchange mechanism in
the surrogate model under the IESA framework. Although such mechanism
does not exist in the true model, the value of the attributes are helpful in
calculating blocking probabilities by EFPA. Here, the “true model” is the
original cellular network model for which we aim to evaluate estimate the
blocking probability by simulation or approximations. Accordingly, notations
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for attributes and their values are only relevant to EFPA, IESA-CN, and
IES-CN (the surrogate model of IESA-CN) and they appear in the following
sections.

4.2. EFPA

EFPA decouples a system of k server groups (in our case k BSs) into
k independent Erlang B subsystems [32, 33]. This is consistent with our
previous assumption to model BSs as M/M/c/c queues. The load offered to
each BS includes the original traffic, the handover traffic, plus all the traffic
that overflows to it from other BSs either due to BS sleeping, or unavailability
of free channels. We introduce the following notations in order to describe
the model more systematically.

For each BS i ∈ U in EFPA, we define (using the superscript E to repre-
sent EFPA):

• aE
i,m,n,s – Traffic offered to i with n overflows from source m and have

overflowed sequentially along the path s = {s1, s2, ...sn} (m ∈ Φi; s ⊂
Γm, n < nm).

• aE
i,n – Traffic offered to i with n overflows, namely summing all eligible
aE
i,m,n,s:

aE
i,n =

∑
m∈Φi,n<nm

∑
s⊂Ψ(Γm−{i},n)

aE
i,m,n,s. (5)

• AE
i – Total combined traffic offered to i, namely:

AE
i =

n̂i−1∑
n=0

aE
i,n, (6)

where n̂i = maxm∈ Φinm.

• vE
sn,n,m,s – Overflow traffic from i with n overflows originated from m

that have overflowed sequentially along the path s = {s1, s2, ..., sn−1, sn}
(m ∈ Φsn , s ⊂ Ψ(Γm, n), n ≤ nm, if n = nm, the traffic will be cleared
out).

• BE
i – Probability that all channels in i are busy.
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By the Poisson assumption and Erlang B formula [33, 58], we obtain the
relationship between BE

i and AE
i as:

BE
i =

{
E(AF

i , c) for all i with Si = 1;
1 for all i with Si = 0,

(7)

where E(A, c) is the Erlang B formula where A is the total offered traffic in
Erlang and c is the number of channels available.

With the independence assumption of EFPA, the offered traffic aE
sn,m,n−1,s−{sn},

which has overflowed from n−1 BSs sequentially along the path s, will again
overflow from the sn with probability BE

sn becoming overflow traffic vE
sn,n,m,s,

so that

vE
sn,n,m,s = aE

sn,m,n−1,s−snB
E
sn . (8)

The overflow traffic will subsequently be offered to another randomly
chosen i in Γm − s, namely a BS accessible by calls originated from m and
not yet attempted by the overflow call (not in the path s). As there are
nm − n BSs in the set Γm − s, the overflow traffic will be offered to each BS
with probability 1

nm−n . Accordingly, we have

aE
i,n,m,s =

vE
sn,n,m,s

nm − n
for i ∈ Γm − s. (9)

Combining (8) and (9), we can derive aE
i,n,m,s and AE

i as

aE
i,n,m,s =

Am
nm

n∏
j=0

BE
sj

nm − j
, (10)

and

AE
i =

∑
m∈Φi

Am
nm

1 +
nm−1∑
n=0

∑
s⊂Ψ(Γm−{d},n)

n∏
j=1

BE
sj

nm − j

 , (11)

respectively.
Together, (7) and (11) constitute a set of fixed-point equations, which

can be solved by the successive substitution method [59]. The iteration is
continued until the differences between two consecutive results of BE

i for all
i ∈ U are less than a preset threshold. It follows that the overall blocking
probability of the true model estimated by EFPA, denoted by B̂E, is given
by
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Figure 1: Conceptual illustration of the blocking probability approximation based on IESA
framework.

B̂E = 1−
∑

i∈U A
E
i (1−Bi)

A
. (12)

We can also obtain the blocking probability of calls from a specific BS.
Based on our definitions, if the traffic ai,m,nm−1,s is blocked once again (with
the probability BE

i ), it will become vi,m,nm,s+i and be cleared out of the
system as its overflow count reaches nm. Therefore, the blocking probability
for calls originated from m can be expressed as:

B̂E
m =

∑
s⊂Ψ(Γm,nm) v

E
snm ,m,nm,s

Am
. (13)

4.3. IESA-CN: conceptual description

The key of IESA framework is applying EFPA, i.e. decoupling the system
into independent Erlang B subsystems, to a surrogate model that has similar
blocking probability with that of the true model. Doing so preserves the
advantages of EFPA such as computational simplicity. Another advantage
is that the IESA framework can apply to applications for which EFPA has
been used. An illustration of the concept is depicted in Fig. 1.

More specifically, a surrogate model is designed to replace the non-hierarchical
traffic structure in the true model with a hierarchical traffic structure based
on congestion information received by a call when it overflows from one server
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group to the other. In the case that a call is rejected admission at one BS
(server group), due to sleeping or insufficient capacity, the overflow call is
proactively made to leave the system with a certain probability, which de-
pends on the system congestion level provided by the information exchange
mechanism developed in the surrogate model (to be described in detail later).
Such “quitter calls” are proactively made to leave the system without at-
tempting all the remaining accessible BSs. These quitter calls have the at-
tribute that they are very likely to be blocked if they were allowed to overflow
and attempt other accessible BSs. As a result, the surrogate model has sim-
ilar blocking probability to that of the true model, and importantly, it has
far less mutual overflow (which is known to adversely affect the accuracy of
blocking probability evaluation in EFPA). On the other hand, as there is a
positive probability that one of the skipped-over BSs could have served those
quitter calls if they would be allowed to attempt the remaining accessible
BSs, the surrogate system will have a higher blocking probability than the
true system, namely BS > BT .

Moreover, proactively giving up overflow traffic leads to a larger propor-
tion of the total traffic offered to a BS formed by new traffic in the surrogate
model as compared to the true model, while the proportion formed by over-
flowed traffic is decreased accordingly (a proof of this was provided in [48]
for a special case). As a result, when an EFPA-based approximation (the
“new estimation” in Fig. 1) is applied to the surrogate model, the approxi-
mation errors resulted from the Poisson and independence assumptions can
be reduced. In this sense, the gap between “new estimation” and “surrogate
model” in Fig. 1 is narrower than that between “true model” and “estima-
tion by EFPA” (i.e. BS − BN < BT − BE). As we have BS > BT and
BS−BN < BT −BE, we can deduce that the new estimation will always ob-
tain a higher blocking probability than the EFPA estimation (i.e. BN > BE).
If we can choose an appropriate surrogate that has similar blocking proba-
bility with that of the true model so that the positive difference of BS over
BT is not significant, the new approximation results will be closer to the
real blocking probabilities than those by direct application of EFPA (i.e.
|BT −BN | < |BT −BE|).

The “new estimation” in Fig. 1 was formally proposed as IESA in [22].
It has been proven in a simple overflow loss system that the blocking of the
new estimation obtained by IESA is always between those of exact solution
and EFPA, meaning that IESA is at least as good as EFPA in terms of
accuracy [22, 60]. Moreover, under critical loading condition, it has been
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proven that IESA is much more superior to EFPA [60].
The information exchange mechanism in the surrogate model for IESA,

which entails the third attribute while retaining the first two attributes, was
originally proposed in [22] in order to improve the accuracy of approximations
in partially accessible overflow loss systems. The surrogate for IESA-CN is
an adaptation to mobile cellular networks of the original IESA. In particular,
IESA-CN includes modeling of locality and mobility that are unique features
of cellular networks.

We now formally describe the surrogate for IESA-CN. A new call just
initiated has ∆ = ∅ and Ω = 0. When call ζ originated from BS m with
attributes Iζ ,∆ζ ,Ωζ arrives at i, it will be admitted if the BS still has vacant
channels available. Otherwise, if the most senior call κ in service has Ωκ < Ωζ ,
the incoming call ζ will overflow to one of the BSs in Γm−i and its attributes
become {Iζ ,∆ζ ∪ i,Ωζ + 1}. However, if Ωκ ≥ Ωζ , call κ and call ζ will
exchange their third attribute, Ω, before call ζ’s overflow. In this way, the
overflow call will have attributes {Iζ ,∆ζ ∪ i,Ωκ + 1} and the call in service
will have {Iκ,∆κ,Ωζ}.

For a handover call ζ, the attributes ∆ζ and Ωζ are reset to ∅ and 0,
respectively upon a handover. This is because the original congestion infor-
mation becomes irrelevant as the set of BSs that it can access also changes
upon a handover. Note that the reset mechanism does not exist in the orig-
inal IESA.

The additional attribute Ω represents an estimate of the number of busy
BSs in the network. For every call, we have |∆| ≤ Ω because the number
of BSs that the call has already attempted (and overflowed from) is a lower
bound for the estimate of the number of BSs that are busy in the network. In
this way, an overflow call retains its identity (I) and actual overflow record
(∆) while gathering network congestion information (Ω) from other calls.

We introduce a special mechanism in IESA-CN to approximate the prob-
ability that all of the unattempted accessible BSs are not available. The
mechanism uses the values of ∆ and Ω of an overflow call. In the event that
all of the unattempted BSs are presumed unavailable, the call will give up
attempting the remaining BSs and will immediately be cleared out of the
system. As in [22], we define Pk∗,|∆ζ |,Ωζ as the probability of a call ζ with
the attributes {Iζ ,∆ζ ,Ωζ} gives up attempting in a system with parameter
k∗. The parameter k∗ is by definition the maximum allowable value of the
attribute Ω of any call in the surrogate model and is a measure of the level of
dependency in the real system (k∗ ≤ ni as Ω ≤ |∆| at all times). Pk∗,|∆ζ |,Ωζ
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is evaluated as:

Pk∗,|∆|,Ω =


0 if Ω < ni;(

Ω−|∆|
ni−|∆|

)(
k∗−|∆|
ni−|∆|

) if Ω ≥ ni,
(14)

where |∆| ≤ ni ≤ k∗. From (14), one can infer that a call with a given value
of attribute Ω is more unlikely to be blocked if the value of k∗ is higher.

As the approximation results are affected by the design of the surrogate
model, choosing an appropriate value of parameter k∗ which can correctly
reflect the level of dependency in the network and the ability to spread out
congestion information is therefore crucial for the accuracy of the approxima-
tion under IESA-CN. A handover in cellular networks is generally considered
an independent event as the sojourn time of a call in each cell/BS is often
assumed to be exponentially distributed [34, 61, 62]. This is also one of the
reasons that we reset the call attributes Ω and ∆ upon a handover. Over-
flows, however, cause state dependencies among adjacent BSs and the ability
to spread out congestion will affect those dependencies. On the other hand,
this ability to spread out congestion depends on the degree of traffic over-
flow, which in turn depends on both traffic offered to each BS and on the
mobility of the calls. More specifically, heavy traffic leads to more overflows
and handovers, hence making congestion (as well as congestion information)
easier to spread out around the network. As a result, a larger k∗ value is
required. Similarly, higher mobility of calls (higher handover rate) indicates
more handovers during a call’s lifetime, and as a result requires a larger k∗

as well. This expectation is confirmed by numerical experiments presented
later in Fig. 7.

Note that in previous work on approximations in VoD systems under the
original IESA such as [22], [49] and [50], k∗ is a constant equal to the total
number of server groups. Therefore, the level of statistical dependency in
such systems is rather fixed, and can be represented by a constant value of
k∗. However, due to the locality and mobility features in cellular networks,
we need to choose an appropriate value of k∗ in IESA-CN for specific network
conditions.

According to our tests, of the two features described above, mobility dom-
inates over locality. If we consider a cellular network without any handover,
the behavior of the system is similar to a VoD system where the value of k∗
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is a constant for IESA. In such scenarios, the optimal k∗ value is around the
number of BSs within two hops distance as overflow alone (without handover)
is unlikely to spread the congestion information beyond that scope.

However, if handovers exist, choosing an appropriate k∗ value is crucial
for designing a surrogate that can lead to accurate estimations of blocking
probabilities. We use regression analysis to forecast the quasi-optimal k∗.
The dependent variable is k∗, while the independent variables include the
handover rate δ and the average offered traffic per active channel aavg [63].

In practice, we can obtain the quasi-optimal value of k∗ for different values
of aavg and δ as follows. For a particular cellular network model, a small set
of independent cases with symmetric distribution of traffic offered to every
BS can be used as the training set for prediction. The training and predicting
processes can be done by, for example, the curve fitting toolbox of MATLAB.
Then, we use IESA-CN algorithm described later and together with those
predicted values of k∗ in order to estimate the blocking probability for the
general cases with arbitrary distribution of offered traffic. We acknowledge
that using machine learning technique requires running simulations to obtain
blocking probabilities for the training set. However, considering the differ-
ence in computational efficiency between approximation and simulation, this
approach is still much more computationally efficient than obtaining blocking
probabilities by simulation for every possible set of system parameters [64].

4.4. IESA-CN: detailed description

For IESA-CN, we define (using the superscript I to represent IESA-CN):

• aI
i,m,j,n,s – Traffic offered to BS i with n overflows (|∆| = n) and Ω = j

from source m and have overflowed sequentially along the path s =
s1, s2, ...sn (m ∈ Φi; s ⊂ Γm; n < nm; j = 0, 1, ..., k∗ − 1).

• aI
i,j,n – Traffic offered to i with n overflows and Ω = j, namely summing

all eligible aI
i,m,j,n,s:

aI
i,j,n =

∑
m∈Φi;n<nm

∑
s⊂Ψ(Γm−{i},n)

aI
i,n,j,m,s. (15)

• âI
i,j,n – Traffic offered to i with n overflows (|∆| = n) and Ω up to j,

namely

âI
i,n,j =

j∑
l=n

aI
i,n,l. (16)
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• AI
i,j – Total combined traffic offered to i up to level j, namely

AI
i,j =

j∑
l=0

aI
i,l. (17)

• vI
i,n,j,m,s – Overflow traffic from i with n overflows and Ω = j origi-

nated from m that have overflowed sequentially along the path s =
s1, s2, ..., sn−1, i (m ∈ Φi, s ⊂ Ψ(Γm, n), n ≤ nm; n ≤ j ≤ k∗).

• zI
sn,n,j,m,s – Blocked traffic (due to the special giving up mechanism

in IESA-CN) from i with n overflows and Ω = j originated from m
that have overflowed sequentially along the path s = s1, s2, ..., sn−1, sn
(m ∈ Φi, s ⊂ Ψ(Γm, n), n ≤ nm; j ≤ k∗).

• BI
i,j – Probability that all channels in i are busy at level j serving calls

with |∆| ≤ min(j, n̂i − 1) and |∆| ≤ Ω < j.

By definition, we have AI
i,j = AI

i,j−1 +
∑min(j,nm)

n=0 aI
i,j for j = 1, 2, ..., k∗−1

with initial values AI
i,0 = aI

i,0,0 = Ai.
Also by the Erlang B formula, we can obtain the relationship between

BI
i,j and AIi,j at each level j as

BI
i,j =

{
E(AI

i,j, ci) for all i with Si = 1;
1 for all i with Si = 0,

(18)

where 0 ≤ j ≤ k∗.
We analyze the origin of overflow traffic vI

sn,n,j,m,s for two scenarios. Firstly,
with probability BI

sn,j−1 − BI
sn,j−2, all channels of sn at level j − 1 are not

available. Equivalently, all channels are serving calls with seniority up to
Ω = j − 1. In this scenario, the traffic âI

sn,n−1,j−2,m,s−{sn} with Ω ≤ j − 2 of-

fered to sn will overflow with information exchange (with the most senior call
with Ω = j − 1) and thus forms the overflow traffic vI

sn,n,j,m,s. On the other
hand, with probability BI

sn,j−1, all channels of sn at level j−1 are busy serv-
ing calls with Ω ≤ j−1. In this scenario, the offered traffic aI

sn,n−1,j−1,m,s−{sn}
to sn simply overflow without information exchange and also contributes to
the overflow traffic vI

sn,n,j,m,s. Thus, for j = 1, 2, ..., k∗, we derive vI
sn,n,j,m,s as

vI
sn,n,j,m,s = âI

sn,n−1,j−2,m,s−{sn}(B
I
sn,j−1 −BI

sn,j−2) + aI
sn,n−1,j−1,m,s−{sn}B

I
sn,j−1

= âI
sn,n−1,j−1,m,s−{sn}B

I
sn,j−1 − âI

sn,n−1,j−2,m,s−{sn}B
I
sn,j−2.

(19)
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Referring back to (14), with a probability of Pk∗,n,j, the overflow traffic
vI
sn,n,j,m,s is prevented from further hunting for available BSs even if it has

not yet attempted all BSs in Γm. On the other hand, if the overflow traffic
has |∆| = nm, i.e., has already attempted all accessible BSs in Γm, or the
exchanged information indicates that no BSs is possibly available (Ω = k∗),
the probability Pk∗,nm,j will be equal to 1. This ensures that calls with |∆| =
nm or Ω = k∗ are always immediately cleared out. As defined previously,
traffic blocked in this manner will become zI

sn,n,j,m,s, namely

zI
sn,n,j,m,s = vI

sn,n,j,m,sPk∗,n,j. (20)

On the other hand, with probability 1−Pk∗,n,j, the overflow traffic vI
sn,n,j,m,s

will continue to attempt another BS in Γm−s as in EFPA. Every i ∈ Γm−s
will be chosen with probability 1

nm−1
. Accordingly, we have

aI
i,n,j,m,s =

vI
sn,n,j,m,s(1− Pk∗,n,j)

nm − n
. (21)

We can then compute AI
i,j and BI

i,j at each level iteratively based on (16), (17)
and (21).

The traffic offered to the highest level of the system, namely level k∗ −
1, is the total offered traffic as it includes all the levels below. Therefore,
AI
i,k∗−1(1 − BI

i,k∗−1) is the total carried traffic by i. The system blocking
probability can thus be measured by 1 minus the ratio of carried traffic to
the offered traffic. Thus we can derive the system blocking probability by
IESA-CN as:

B̂I = 1−
∑

i∈U A
I
i,k∗−1(1−BI

i,k∗−1)

A
. (22)

The blocking probability for calls originated from BS m can be calculated
by summing all zI

i,n,j,m,s together, namely

B̂I
m =

nm∑
n=0

∑
s⊂Ψ(Γm,n)

k∗∑
j=nm

zI
snm ,m,j,nm,s

. (23)

Note that both (12) and (22) does not take the mobility effect into ac-
count. We can constitute a set of fixed-point equations by combining (2), (3)
and an equation to calculate B̂ in terms of Ai for each method, namely, (12)
for EFPA and (22) for IESA-CN, to calculate the blocking probability with
consideration of the mobility effect.
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5. Numerical Results

In this section, we present numerical results for the model described in
Section 3 to demonstrate the accuracy, versatility, and computational effi-
ciency of IESA framework.

We consider a cellular network model with 49 interconnected and wrapped-
around hexagonal cells as shown in Fig. 2, and each cell is served by a single
BS. The wrapped-around design avoids boundary effect and has been popu-
lar in cellular network research (see e.g., [65–67]). Assume that each BS has
10 channels, a Markov Chain for the model would have a state space of 1049,
which is computationally prohibitive.

Figure 2: 49-cell hexagonal configuration network model with wrapped-around design.

We have conducted extensive numerical experiments under a wide range
of system parameters. The approximation results by IESA-CN and EFPA are
compared with simulation results serving as a benchmark, which are obtained
by MATLAB in the form of an observed mean from multiple independent
runs. We use simulation results as the benchmark as no exact analytical
results are available for our model. The confidence intervals are at the 95%
level based on the Student’s t-distribution. Markov chain simulation is used
for the cases where both service time and sojourn time are exponentially
distributed, while discrete event simulation is used for the other cases.

We compute the error between the approximation and the simulation in
terms of the relative error. Given an approximation result r and a simulation
result s, the relative error is (r − s)/s. Note that our choice here of a linear
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(a) Pattern A (b) Pattern B (c) Pattern C (d) Pattern D

Figure 3: BS sleeping patterns

scale for the relative difference is made for convenience of illustration. Other
relevant alternatives such as log scale are also acceptable for assessing the
errors.

For simplicity without loss of generality, in this paper we consider four
different BS sleeping patterns based on the 7-cell cluster. The 49-cell network
model can be decomposed into 7 identical 7-cell clusters as shown in Fig. 2.
Each pattern switches different number of BSs in a cluster to sleep mode [23].
As shown in Fig. 3, a dark cell indicates that the BS serving the cell is in
sleep mode, while a light cell denotes that the BS is active. All patterns have
at least one active BS next to a BS in sleep mode, which ensures that traffic
arriving at any sleeping BS could be served by a neighboring active BS.

In this paper, we consider fixed sleeping schemes to compare the perfor-
mance of EFPA and IESA-CN in approximating the blocking probability.
This case can be extended to a dynamic case if the time spent under each
sleeping scheme is sufficiently long. The long time duration of being in a
given sleeping scheme can be justified by practical considerations associated
with transition time requirements for BSs to switch between active and sleep
modes. Then, an approximation for the overall blocking probability can be
obtained by a weighted average of the individual cases. See equivalent dis-
cussion in Case 2A in [68].

To demonstrate that our approach could be applied to cellular network
models with general (i.e., asymmetric or unbalanced) distribution of offered
traffic, we designate one of seven clusters in the 49-cell model as the “hot”
cluster [4, 51, 69]. The BSs in the hot cluster are offered heavier traffic than
the rest of the network. Such spatial traffic distributions can be found in
both research work and practical scenarios [4, 51, 69]. We denote An as the
traffic offered to each BS not in the hot cluster, and α as the ratio of traffic
offered to each BS in the hot cluster to traffic offered to each BS outside the
hot cluster. The traffic offered to each BS in the hot cluster is thus αAn.
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Note that Pattern D (6 out of 7 BSs are in sleep mode) will simplify the
49-cell system to seven isolated clusters, because a call arriving at a BS in
sleep mode has only one active BS to overflow to. Therefore, in this case, the
approximation results of EFPA and IESA-CN are identical as the information
exchange mechanism cannot be activated for the IES surrogate.

5.1. Power savings of switching patterns

Power consumption of a base station comprises of two parts, namely
traffic load dependent power consumption such as power amplifiers, and static
power consumption such as air conditioning which is consumed as long as
the BS is active [36].

Moreover, if a BS extends its coverage to serve customers originally asso-
ciated with another BS that has been switched to sleep mode, it will consume
more power to serve the users that are relatively far away due to the path-loss
effect.

Following the discussions above, the power consumption of a BS is given
by

PBS =

 Pstatic + τPmax
v + τ̂ P̂max

v when active,

Psleep when sleeping,
(24)

where τ and τ̂ are the loading of local traffic and traffic transferred from
neighboring sleeping BSs, respectively. Pstatic represents static power con-
sumption, τPmax

v represents traffic load dependent power consumption at-
tributed to local traffic, and τ̂ P̂max

v represents variable power consumption
attributed to transferred traffic from sleeping BSs. The exact difference be-
tween P̂max

v and Pmax
v depends on various factors such as the path-loss ex-

ponent, inter-distance of BSs and distribution of user locations [36, 70].
Assume that Psleep = 1W , Pstatic = 100W , Pmax

v = 160W and P̂max
v =

190W , average power consumptions of Patterns A, B and C and the case
where all BSs are kept active are depicted in Fig. 4. When offered traffic per
BS is 2 to 3 Erlangs as shown in the figure, up to 50% power consumption
can be saved if Pattern C is chosen. Meanwhile, as we will show later in this
section, all three patterns (A, B and C) can maintain the blocking probability
below 10−2, which is an acceptable level for cellular networks [23, 42, 52, 66].

5.2. Insensitivity of service and sojourn time distributions

Here we aim to examine the sensitivity of the blocking probability to the
service or sojourn time distributions. To this end, we consider three dis-
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Figure 4: Average power consumptions achievable for different switching patterns.

tributions, namely, exponential (the most common assumption for cellular
networks, with a variance of 1.0), deterministic and hyperexponential (with
variances of 1.2 and 2.0) distributions. In Fig. 5 we demonstrate that the
blocking probabilities are nearly insensitive [55] to the shape of the distri-
butions of either service or sojourn time. This suggests that our proposed
approximation method can be applied to systems with non-exponential dis-
tribution of service and sojourn time.

5.3. Numerical evidence of Fig. 1

In Fig. 6, we present blocking probabilities of the true and surrogate
models obtained by simulation as well as approximation results obtained by
EFPA and IESA-CN, respectively. The results confirm our conceptual illus-
tration depicted by Fig. 1. As discussed previously, the surrogate model has
relatively higher blocking probability than the true model while the approx-
imations underestimate the blocking probabilities. These two effects appear
to compensate each other. Therefore, as shown in the figure, IESA-CN re-
duces the approximation error as compared to the EFPA.

Please note that only in Fig. 6 we distinguish between “True model Sim-
ulation” and “Surrogate model simulation”. This is the only figure where we
provide numerical support for the conceptual illustration presented in Fig. 1,
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(a) Pattern A (b) Pattern B (c) Pattern C

Figure 5: Simulation results of blocking probabilities with different distributions of service
time (ser) and sojourn time (soj); D, E, and H represent deterministic, exponential and
hyperexponential distributions, respectively; µ = 1, δ = 1, α = 1.2.

so the simulation results for the surrogate model are only provided in Fig. 6.
In all other figures, the term “simulation” refers to the simulation results of
the true model.

5.4. Relationship between the value of k∗ and approximation result

As mentioned previously, the optimal value of the parameter k∗ in IESA-
CN, which is an estimate of the maximum number of BSs that a call has
access to, is influenced by the handover rate in the network. Therefore,
we firstly present the relationship between k∗ value and the approximation
results in Fig. 7a for An = 8, δ = 0, Fig. 7b for An = 8, δ = 1 and Fig. 7c
for An = 9, δ = 1 in the 49-cell model with all BSs active. The values of the
other input parameters are as shown in the captions of the figures.

In all three figures, the inverse relationship between k∗ and approximated
blocking probability is consistent with Eqn. (14). As the handover rate or
offered traffic increases, the number of BSs that a call is expected to visit is
likely to increase. In line with our expectation that the network congestion
is easier to occur and to spread out to the entire network if a typical call
visits more cells during its lifetime, the k∗ value that gives the most accurate
estimation result also increases from 9 in Fig. 7a to 11 in Fig. 7b and 25 in
Fig. 7c. Meanwhile, as the value of k∗ increases, the approximation result by
IESA-CN approaches that by EFPA. The intuitive explanation is that when
k∗ is large, the giving up probability obtained by Eqn. (14) approaches zero.
Without the giving up mechanism, the surrogate model is the same as the
true model and thus the approximation results by applying IESA-CN and
EFPA are identical.
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Figure 6: Simulation and approximation results for true and surrogate models (µ = 1, δ =
0, α = 1).

(a) An = 8, δ = 0 (b) An = 8, δ = 1 (c) An = 9, δ = 1

Figure 7: The choice of the parameter k∗ in IESA-CN (µ = 1, α = 1).

5.5. Accuracy of approximations in different network setups

In Fig. 8 – Fig. 11, we demonstrate the sensitivity of accuracy of EFPA
and IESA-CN to input parameters including arrival rate λ, handover rate
δ and level of asymmetrical traffic distribution α. The curve “simulation”
in Fig. 8 represents the simulation results of the true model (correspond-
ing to the “true model simulation” curve in Fig. 6) and is the benchmark
for assessing the relative errors in Fig. 9 – Fig. 11. From the results, we
observe consistency with our discussion earlier in the chapter. EFPA signifi-
cantly underestimates blocking probabilities in most cases due to the Poisson
and independent assumptions, while IESA-CN significantly improves the ac-
curacy of approximations for Patterns A, B and C. In addition, IESA-CN
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provides a conservative estimation as it gives blocking probabilities that are
higher than actual values, which is preferable and often adopted for the pur-
pose of network design [64]. On the other hand, both IESA-CN and EFPA
are quite accurate for Pattern D as shown in Figs. 8c and 9c, where there
is no mutual traffic overflow so that the independence and Poisson errors
due to overflow traffic do not exist. We also show the results for networks
with all BS turned on in Figs. 10a and 11a. We see that IESA-CN is also
accurate in a general cellular network with no BS in sleep mode. For the
parameter sets considered in Figs. 8 – 11, we also performed similar runs for
Pattern B and the results were very similar to those for Pattern C presented
in Figs 8b, 9b, 10c and 11c, respectively.

As demonstrated in this section, for all cases studied the proposed IESA-
CN is consistently more accurate than EFPA. While, despite that the com-
putational efficiency of IESA-CN is not as well as EFPA, it is much more
efficient than the simulation method. Note that for almost all the cases stud-
ied the errors of the system and hot-cluster blocking probabilities estimated
by IESA-CN are within 20% of the midpoint of the 95% confidence interval
of the simulation results based on the Student’s-t distribution.

Moreover, blocking probabilities in the range 10−3 – 10−2 is considered
practical for cellular networks and of particular interest of existing research
(e.g., [23, 42, 52, 66]). As shown in the figures in this section, the accuracy
of IESA is particularly high for the cases where the blocking probability is
in this range.

In addition, IESA-CN is a conservative estimation which gives blocking
probabilities that are higher than actual values in most cases. In contrast,
EFPA is an aggressive estimation which gives lower-than-actual estimations.
In many engineering applications such as network planning, conservative es-
timations are normally more desirable.

5.6. Non-Poisson arrivals

In Fig. 12, we demonstrated by simulation that if the arrival process is
MMPP, the blocking probability will be slightly higher than Poisson arrival
with the same offered traffic. Furthermore, as shown in Fig. 12, we note that
IESA-CN is still a fairly accurate approximation even if the arrival process
is MMPP. To the best of our knowledge, no analytical results are available
for MMPP arrivals so far. Therefore, it is desirable to use IESA-CN as an
estimation tool for systems with MMPP arrivals when simulation results are
not available.
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(a) Pattern A (b) Pattern C (c) Pattern D

Figure 8: Simulation and approximation results of system blocking probabilities with
different offered traffic An (µ = 1, δ = 1, α = 1.2).

(a) Pattern A (b) Pattern C (c) Pattern D

Figure 9: Relative errors of blocking probabilities with different offered traffic (µ = 1, δ =
1, α = 1.2).

5.7. Irregular network topology

In addition to networks with homogeneous BS layout as in Fig. 2, we
demonstrate the approximation results of IESA-CN in a network with ir-
regular topology based on Poisson distributed BSs (e.g. [71]) as shown in
Fig. 13. Here we assume that the offered traffic to each BS is the same and
equal to An. We consider two cases, one with all BSs active and the other
with one BS sleeping (the BS shown with a red “X” in Fig. 13). The re-
sults are shown in Figs. 14a and 14b, respectively. For both cases, IESA-CN
is demonstrated to provide reasonably accurate and relatively conservative
estimations of blocking probabilities.

5.8. CPU running time

Table 1 shows the CPU running time of each evaluation method for se-
lected switching patterns. The running time of IESA-CN algorithm is ap-
proximately two orders of magnitude higher than that of EFPA due to the
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(a) All-on case (An = 8.6) (b) Pattern A (An = 7) (c) Pattern C (An = 2.6)

Figure 10: Relative errors of blocking probability approximations with different levels of
asymmetric traffic distribution (µ = 1, δ = 1).

(a) All-on case (An = 8.6) (b) Pattern A (An = 7) (c) Pattern C (An = 2.6)

Figure 11: Relative errors of blocking probability approximations with different handover
rates (µ = 1, α = 1.2).

additional computations required for hierarchical application of EFPA to the
surrogate model. However, considering the improvement in accuracy and
the fact that EFPA is extremely fast, this increase in running time is accept-
able. On the other hand, IESA-CN is much faster than the Markov chain
simulation (which is faster than the discrete event simulation).

6. Conclusions

IESA is a versatile and promising framework proposed to improve the ac-
curacy of the conventional EFPA in order to address the challenging problem
of blocking probability estimation in partially accessible overflow loss systems
such as cellular networks. Due to its root from EFPA, IESA framework can
apply to a wide range of applications including those for which EFPA has
been used. In this work, we have proposed a suitable surrogate and the cor-
responding IESA-CN method under this framework for a cellular network
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(a) Pattern A (b) Pattern B

Figure 12: Blocking probability comparison of Poisson and MMPP arrivals (µ = 1, δ =
1, α = 1.2)

model with (or without) BS sleeping. Unlike the original IESA, IESA-CN
captures the locality and mobility features uniquely present in cellular net-
works. Numerical results have confirmed that our approximation under this
surrogate is accurate, robust and computationally efficient considering the
available alternatives: EFPA, exact Markov chain solution or computer sim-
ulation. We have also demonstrated that our approximation is particularly
accurate in the blocking probability range normally used in practice.

To the best of our knowledge, our proposed approximation framework is
the first workable approach in terms of accuracy and computational efficiency
for cellular networks with (or without) BS sleeping operation, asymmetric
offered traffic across BSs and call mobility. The framework can then be used
for a number of applications including network design, admission control and
resource allocation, which we leave for future research. We also acknowledge
the modern and future technological developments always give rise to further
model extensions. In our case, there is a scope for extending the model
to include other considerations, such as, scenarios with different kinds of
traffic and heterogeneous cellular networks with multi-layer topology. These
extensions may be addressed by incorporate the IESA framework with other
approximation techniques such as moment matching, and other teletraffic
models such as multi-service multi-rate queues. Incorporation of such issues
in the model is planned for future work.
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Figure 13: Poisson distributed BSs. The cell boundaries are shown and form a Voronoi
tessellation.
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