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Abstract An earlier article, inspired by overflow models in
telecommunication systems with multiple streams of tele-
phone calls, proposed a new analytical model for a network
of intensive care units (ICUs), and a new patient referral
policy for such networks to reduce the blocking probability of
external emergency patients without degrading the quality of
service (QoS) of canceled elective operations, due to the more
efficient use of ICU capacity overall. In this work, we use
additional concepts and insights from traditional teletraffic
theory, including resource sharing, trunk reservation, and
mutual overflow, to design a new patient referral policy to
further improve ICU network efficiency. Numerical results
based on the analytical model demonstrate that our proposed
policy can achieve a higher acceptance level than the original
policy with a smaller number of beds, resulting in improved
service for all patients. In particular, our proposed policy can
always achieve much lower blocking probabilities for external
emergency patients while still providing sufficient service
for internal emergency and elective patients. In addition, we
provide new accurate and computationally efficient analytical
approximations for QoS evaluation of ICU networks using
our proposed policy. We demonstrate numerically that our
new approximation method yields more accurate, robust and
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conservative results overall than the traditional approximation.
Finally, we demonstrate how our proposed approximation
method can be applied to solve resource planning and op-
timization problems for ICU networks in a scalable and
computationally efficient manner.
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1 Introduction

The intensive care unit (ICU) is a crucial and expensive
resource, with an ICU bed costing up to six times the cost of
a regular hospital bed [18]. As a result, ICUs are frequently
under-resourced and over-utilized, with occupancy rates of
over 90 percent reported in the literature [27]. In addition,
congestion in the ICU has a knock-on effect on the rest of
the hospital system, for example in the form of deferred
elective operations, and can lead to increased rates of death
or ICU readmission due to early discharge from the ICU [10,
53]. Therefore, much research has gone into the efficient
management of such units [1].

In particular, various studies in the literature have found
that queueing theory is a useful tool for the modeling and
resource planning of intensive care resources [19, 44]. In this
paper, we apply and extend various concepts from queueing
and teletraffic theory to develop a new policy for improving
the admission of patients to an ICU network, so that the
blocking probability of external emergency patients is re-
duced, while still fulfilling QoS requirements for other patient
types. We also develop new analytical approximation tools
for the performance evaluation and resource planning of ICU
networks using the proposed policy.
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1.1 Classification of ICU patients

In this paper, we consider an analytical model for a network of
ICUs in which patients are classified into three types [41]. Ex-
ternal emergency patients are those arriving from ambulatory
care (including air transport). Internal emergency patients
arrive to an ICU from other departments at the same hospital.
Finally, elective patients correspond to planned operations
requiring post-operative ICU stay.

Due to legal, logistical, and economic concerns regarding
patient admission and transfer, efficient resource planning
and daily operation of ICU networks, subject to meeting
all quality-of-service (QoS) constraints, can form a major
challenge. In almost all cases, internal emergency and elective
patients must be served at the ICU of the hospital from
which they originate. For example, in the United Kingdom,
government policy is that patient transfers for non-clinical
reasons “should only take place in exceptional circumstances
and ideally only during daylight hours” [52]. Studies in theUK
and Victoria, Australia have shown that critical care patients
having undergone at least one non-clinical transfer remain in
critical care for a longer duration on average [2, 12]. In other
countries, such as the Netherlands, non-clinical transfers are
banned outright and “a patient can only be transferred if it is
beneficial for the patient” [41].

Furthermore, for economic reasons, ICUs may reject ex-
ternal emergency patients in favor of elective patients awaiting
planned operations. For example, it has been reported in Cali-
fornia that some hospitals prefer to divert ambulances in favor
of their elective patients, in the interest of improving payer
mix and revenue collection [29]. In another example, Litvak
et al. [41] studied a group of hospitals in the Netherlands and
found that the designation of one of the hospitals in the region
as a trauma center was causing capacity problems at that hos-
pital’s ICU, as the other hospitals were increasingly referring
external emergency patients to the designated trauma center
in favor of their own elective patients.

On account of the different requirements for different ICU
patient types, and of the inequities in patient outcomes caused
by current policies, any new policy for the admission of
patients to an ICU network must take fairness into account in
addition to the overall patient rejection rate. This may require
restricting ICU services to patients most likely to benefit [9].
In fact, maximizing the number of beds available to each
patient without reservation does not even necessarily lead to
the lowest overall patient rejection rate, as demonstrated in
Section 3.4.3.

1.2 Cooperation between multiple medical units in a region

Onemethod currently in use for improving theQoS of hospital
patients is the pooling of resources from multiple hospitals
within a region [41, 48]. For example, public hospitals inHong

Kong are grouped into seven clusters, and the New Territories
East cluster (NTEC) has three ICUs with approximately 20,
15, and 8 beds, respectively. The NTEC is frequently full and
chronically over-utilized, and ICU patients in the region may
be forced to transfer (although this option may not always be
available). In response to chronic patient refusal, supported
by data published by one of these ICUs [27], the Hong Kong
Hospital Authority has introduced an ICU transfer policy to
improve resource use.

Another example of inter-hospital cooperation is given
by McManus et al. [44], who describe an ICU in the United
States where “external requests for transfer” of a patient to
an ICU may be “diverted to other institutions in the region”
during times of congestion. This corresponds to the concept
of overflow for external emergency patients in the Litvak et
al. [41] model. Additionally, overflow of internal emergency
patients is “accommodated in off-service care sites” such as
a post-anesthesia care unit or a separate, specialized cardiac
ICU.

Despite evidence that cooperation between multiple ICUs
in a region can reduce the rejection rate of intensive care
patients, many hospital regions currently have no strategy
for doing so. Instead, most ICUs currently seek transfer
of overflow patients on an ad-hoc basis, without centralized
systems or systematic polices (such as the one proposed in this
paper) to coordinate capacity and utilization issues. Therefore,
the practical behavior of ICUs can and should change for
the better. The current lack of centralized systems for ICU
coordination may be because places sophisticated enough to
introduce such systems are generallywell-resourced. However,
shortages are predicted in the future due to increasing costs
and aging populations, even in well-resourced countries.
Systems like this are thus likely to be needed.

Furthermore, cooperation between ICUs to improve re-
source use may prove vital during periods of unexpected
increases in ICU demand, such as an outbreak of acute in-
fections. For example, there were 1755 cases of severe acute
respiratory syndrome in Hong Kong between February and
May 2003 [58], with over 20 percent of patients admitted
to the ICU at one hospital at one point [40]. The European
Society of Intensive Care Medicine recommends that Emer-
gency Executive Control Groups be set up at regional or
even national levels to exercise authority over resource use
and communications during such outbreaks or other mass
disasters [28].

1.3 Improving patient admissions in ICU networks

Litvak et al. [41] studied a network of four Dutch ICUs, with
the aim of minimizing the blocking of external emergency
patients (defined as the probability that such a patient is
refused from all four ICUs due to lack of capacity), subject to
maintaining a minimum QoS for elective patients. Inspired
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by overflow models in telecommunication systems, Litvak et
al. [41] designed an analytical model of an ICU network and
proposed a policy in which ICUs in a region jointly reserve
beds for the admission of external emergency patients only.
In practice, these beds will be distributed over the ICUs in
the region, thus creating a virtual ICU. This implies that in
certain cases hospitals must cancel elective operations despite
having an empty operational bed.

Litvak et al. [41] claim that their policy results in improved
service for all patients, despite reducing the number of beds
available to internal emergency and elective patients. This
is due to the more efficient use of ICU capacity overall.
Nevertheless, the proposed reservation scheme still leads to
wastage of valuable ICU resources (i.e. beds) in some cases.
For example, an elective patient due to undergo operation at
a given hospital may be deferred even if an ICU bed is empty
at the same hospital, due to that bed being reserved for the
virtual ICU. At the same time, an external emergency patient
may be rejected from a regional ICU network despite a bed
being available somewhere in the network, due to that bed
not forming part of the virtual ICU.

In this paper, we use additional concepts and insights from
traditional teletraffic theory, including resource sharing [30,
36], trunk reservation [23, 31, 51], and mutual overflow [22,
37], to design a new patient referral policy for the Litvak et
al. [41] model in which no ICU bed is explicitly reserved
for a particular patient type or set of patient types. In this
way, we increase the flexibility for assigning ICU beds for
all types of patients. We demonstrate numerically that our
proposed model has better resource sharing than the virtual
ICU model, in the sense of reducing the blocking probability
of external emergency patients given a fixed QoS requirement
for internal emergency and elective patients.

1.4 Analytical approximation methods for the performance
evaluation and resource planning of ICU networks

To illustrate the need for approximate QoS evaluation, we
note that the number of system states in an ICU network,
under both the virtual ICU model and our proposed model,
is exponential in the number of ICUs in the network. As an
example, when solving a similar resource allocation problem
for a burn care network, Blair and Lawrence [5] were only
able to optimize a network of four wards and were forced
to split their seven-ward network into two fully independent
parts.

This paper combines two existing analytical approxima-
tion methods in the literature, namely exponential decom-
position (ED) [16], also known as the Erlang fixed-point
approximation [15, 31, 32], and the Information Exchange
Surrogate Approximation (IESA) [7, 8, 56, 57, 59], and ex-
tends both methods to apply to the ICU network model. Such

extensions are necessary due to special properties of the ICU
network model that do not exist in other types of systems.

To illustrate the usefulness of our proposed QoS approx-
imation methods, we apply these methods to the following
optimization problem: given a network of ICUs, each with a
predetermined capacity, find the optimal reservation thresh-
olds for each ICU so that the overall blocking probability of
external emergency patients is minimized, subject to main-
taining a minimum QoS for internal emergency and elective
patients. We demonstrate that the accuracy and fast running
time of our approximations, as compared to simulation, al-
lows for efficient coverage of large search spaces. Numerical
results show that our proposed threshold reservation policy,
with the reservation thresholds optimized using our new QoS
evaluation method, produces much lower blocking for exter-
nal emergency patients than the virtual ICU policy of Litvak
et al. [41] (with the number of virtual ICU beds optimized
using their QoS evaluation method).

1.5 Organization

The remainder of this paper is organized as follows. Section 2
provides a brief background on relevant topics regarding ICU
management and queueing theory. Section 3 describes the
Litvak et al. [41] model of an ICU network and compares
two policies for patient referral within such a network: one
proposed by Litvak et al. [41] and one which we propose here.
In Section 4, we show that the ICU network model is not
very sensitive to the patient length-of-stay (LoS) distribution.
This allows us to assume an exponential LoS distribution
which greatly simplifies analysis. Sections 5 and 6 provide
approximation methods for the QoS of an ICU network
under our proposed model. In Section 7, these approximation
methods are incorporated into an optimization algorithm for
minimizing the blocking probability of external emergency
patients in an ICU network. Concluding remarks are made in
Section 8.

2 Queueing theory and healthcare: a literature review

Queueing theory has long been used in the field of health-
care [39, 49] not only to analyze system performance, but also
in order to facilitate system design. In particular, Lakshmi
and Iyer [39] distinguish between mathematical challenges
(health care problems for which appropriate queueing net-
work models have not yet been developed) and health care
challenges (health care problems which have not been studied
yet, but could be studied using existing queueing techniques).
In this section, we review several concepts from queueing
theory which motivate both the ICU network model which
we seek to optimize and the patient referral policy that we
propose for this model.
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2.1 Modeling patient flows

Newell [45] studied arrivals of emergency cases to a teaching
hospital in England over the years of 1950 to 1952, and
found the daily tallies could be modeled using a Poisson
distribution, as long as Sunday and weekday arrivals were
counted separately. Similar results were noted by Long and
Feldstein [42], Kim et al. [34, 35], and Kim and Whitt [33].
In practice, many analytical models of patient arrivals to
hospitals ignore daily or seasonal variations in the arrival rate,
thus assuming a simple Poisson process [5, 14, 41, 45, 48].
We will do the same in our model.

Various distributions have been used to model the LoS dis-
tribution of hospital patients, including lognormal [20, 41, 43],
hyperexponential [20], Weibull [50], and hypergamma [47].
Despite the large number of LoS distribution types used in
the literature, it has been found that a lognormal distribution
provides a satisfactory approximation of patient LoS [20, 43].
Furthermore, Litvak et al. [41] found that the QoS of their
ICU network did not significantly depend on the patient LoS
distribution apart from its mean, allowing a much simpler
exponential LoS distribution to be used. We shall re-examine
this claim in Section 4.

By assuming Poisson arrivals and exponential LoS, the
state of an ICU network can be modeled as a continuous-time
Markov chain [46], from which QoS measures can be (in
theory) obtained via an exact analytical solution. On the other
hand, since the number of states grows exponentially as the
number of ICUs increases, exact analysis of the resulting state
space is not a scalable analytical approach.

2.2 Resource sharing, closed chains, and mutual overflow

Resource sharing ismotivated by the fact that pooled resources
can be used more efficiently than dedicated resources: for
example, a single queue for a group of servers (i.e. cashiers,
bank tellers, ICU beds, etc.) results in shorter waiting times
than a separate queue for each server. While resource sharing
in hospital systems has been linked to economies of scale [4],
Kleinrock [36] explains that resource sharing leads to gains
beyond simple unit cost discounts for resource acquisition,
management, andmaintenance; instead, these gains are related
to the statistical nature of the demand. Simply put, the law
of large numbers dictates that any statistical fluctuations in
an individual’s demand for a resource is smoothed out in
the larger population, so that the total demand approaches
deterministic as the population size increases [36, p. 275].

A closely related concept to resource sharing is that
of mutual overflow [22, 37]. Mutual overflow arises when
congestion in a queue causes overflow to other queues, which
in turn become congested and yield overflow back to the
original queue. One way of achieving mutual overflow is
the closed chain, in which requests attempt each queue in

the chain in cyclic order. For example, consider a set of
G server groups (ICUs) labeled 1 to G. In a closed-chain
configuration, requests of type n will attempt, in order, server
groups n(G), (n + 1)(G) , . . . (n + k − 1)(G), where k represents
the maximum number of server groups a request may attempt
and x(G) = ((x − 1) mod G) + 1. Closed chains have been
shown to improve QoS compared to systems without closed
chains [17, 21, 26].

2.3 Resource allocation in systems with multiple patient
types

Bekker et al. [3] listed four possible policies for allocating
multiple types of patients to multiple wards in the same
hospital:

– A separate ward for each patient type
– Simple merging: all wards serve all patient types
– Earmarking: each patient type has a number of dedicated

beds, with the remaining beds shared among all patients
(the previous two policies can be seen as the limiting
cases of this policy)

– Threshold policy: All beds may serve all patient types,
but each ward refuses certain patients if the number of
vacant beds falls below a certain threshold. An example
of threshold reservation in a healthcare context is given by
Esogbue and Singh [14], who considered a single hospital
ward with N beds serving emergency and elective patients,
with the last N − m beds reserved for emergency patients
(i.e elective patients are not admitted if more than m
beds are occupied at the ward). An exact method of
computing the blocking probabilities of both types of
patients was presented and was used to optimize the
reservation threshold m.

Bekker et al. [3] proposed that the threshold policy be used for
small hospital systems, in which the policy was shown to be
nearly optimal, whereas the earmarking policy is preferable
for larger-scale systems in order to cut down on cross-training
costs, as only a few shared beds (and therefore medical staff)
are required to be shared among all patient types. On the other
hand, in our ICU network model, there is only one type of bed
which is distributed amongmultiple hospitals, and restrictions
on overflow are based on geographical considerations instead.

2.4 Resource allocation and threshold reservation in a
network of physically separate ICUs

In the proposed policy of Litvak et al. [41], each ICU reserves
several beds exclusively for external emergency patients.
which are then pooled together in a virtual ICU. This is
similar to Bekker et al.’s [3] earmarking policy for a single
hospital with multiple wards, but differs in that internal
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emergency and elective patients do not have access to the
virtual ICU. The virtual ICU policy is inefficient as the strict
reservation of certain beds for external emergency patients
means that other types of patients may be rejected even when
there is a large number of vacant beds available in the network.

To resolve this, we propose using a threshold reservation
scheme as described in Section 2.2. The threshold policy is
such that external emergency patients cannot use the last few
remaining beds of each ICU. Such a policy bares similarities
to trunk reservation in telecommunications networks [38],
in which the last few circuits of each trunk are reserved
for direct traffic in order to prevent overflow traffic (which
use longer and more resource-intensive alternate routes)
from dominating the network. Note that in trunk reservation,
no individual circuit is explicitly reserved for direct traffic;
likewise, in our threshold reservation policy, no individual
bed is explicitly reserved for a particular patient type or set of
patient types. Threshold reservation thus maximizes resource
sharing in periods of non-congestion, while protecting the
QoS of internal emergency and elective patients, which cannot
overflow, during periods of occasional congestion.

2.5 QoS approximation in overflow loss systems

The ICU network model which we consider in this paper
belongs to a broad class of stochastic models known as
overflow loss systems. In an overflow loss system, there is a
set of request types and a set of server groups, each server
group serves some subset of the request types in the system,
and a routing policy determines the order which requests
of each type attempt the set of accessible server groups
for that request type. In this paper, we will consider only
routing policies where these orderings are fixed, as opposed
to state-dependent or random.

The classical analytical approximation approach for per-
formance evaluation in overflow loss systems, known by
various names such as the reduced load approximation [54],
Erlang fixed-point approximation [15, 31, 32], and exponen-
tial decomposition [16], has a long history in teletraffic theory;
see Cooper and Katz [11] for an early example of its use. In
this paper, we will use the term exponential decomposition
(ED). ED decomposes the system into independent Erlang
B subsystems [13] by adding two simplifying assumptions
to the analytical model: (i) that the offered traffic to each
subsystem, composed of both direct and overflow traffic, is
Poisson, and (ii) that the offered traffic to each subsystem
is independent of all other traffic streams. Due to these two
simplifying assumptions, ED dramatically reduces the com-
puting time compared to exact analysis of the full state space.
However, as these two assumptions are generally not valid,
they can also lead to large approximation errors in various
scenarios [56, 57].

Several publications [11, 16, 24] have proposed moment
matching for reducing errors caused by the Poisson assump-
tion; once again, see Cooper and Katz [11] for an early
example. This approach was used effectively by Litvak et
al. [41] for performance evaluation of their ICU network
model under the virtual ICU policy. In this paper, we use
moment matching to provide conservative QoS estimates
for the two patient types without overflow, namely internal
emergency and elective patients.

On the other hand, moment matching provides only
marginal improvement over traditional ED in systems in-
volving mutual overflow, where the independence assumption
forms the main source of error [56]. Therefore, ED with mo-
ment matching is not adequate for QoS evaluation of external
emergency patients under out proposed patient referral pol-
icy. Other publications have proposed ways to reduce errors
caused by the independence assumption. One approach is to
apply the technique used in traditional ED, i.e. decompos-
ing the systems into independent Erlang B subsystems, on
a surrogate of the original system. Ideally, the QoS of the
surrogate closely approximates that of the original system,
but the surrogate possesses certain properties which greatly
reduce its approximation error caused by decomposition. The
estimated QoS of the surrogate is then used as a QoS estimate
for the original system.

In this paper, we adapt and extend one such surrogate-
based approximation framework, the Information Exchange
Surrogate Approximation (IESA) framework [7, 8, 57, 59],
to our proposed ICU network model, where it is used to
evaluate the QoS of external emergency patients. IESA fea-
tures an information exchange mechanism in which incoming
calls/requests may exchange certain congestion information
with calls/requests in service. This mechanism can capture
traffic dependence in the system, and hence it can provide
significantly improve the accuracy over ED. Numerical re-
sults demonstrate that IESA is more accurate and robust than
traditional ED for the QoS evaluation of external emergency
patients, while remaining much more computationally effi-
cient than exact analysis or simulation. In fact, IESA has
a closed form solution, whereas ED does not, due to the
hierarchical nature of the information exchange mechanism.

3 Model

We consider the three-patient-type model of Litvak et al. [41]
with external emergency patients, internal emergency patients,
and elective patients, as depicted in Fig. 1. In this model, there
are G ICUs, each with its own catchment zone. Let Zone i
denote the catchment zone for ICU i. External emergency
patients to each ICU i arrive from Zone i according to a
Poisson process with rate λi,1 and may be admitted to any
ICU in the network. Such patients are blocked (transferred to
another hospital network or demoted to a lower level of care)
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Table 1 Comparison of our ICU network model to a physical system.

Physical network Analytical model Justification
Patients arrive to the ICU network from
other hospital departments, including the
AED and surgical units. The arrival process
to the ICU network is unknown.

The ICU network is treated as an iso-
lated system to which patients arrive
directly, according to a Poisson pro-
cesses with constant rate.

Poisson processes are well suited to modeling
events that are rare from an individual point of
view, but which occur within a large population.
Isolating the ICUs from the rest of the hospital
network simplifies analysis.

Patient LoS has an unknown distribution. Patient LoS is modeled using an expo-
nential distribution.

The sensitivity of the QoS to the LoS distribu-
tion is demonstrated in [41] and Section 4 to
be low.

Certain ICUs may be better-equipped to
deal with certain patients, based on the
types of specialists required.

All ICU beds are considered identical.
Any penalty incurred by serving an
external emergency patient at a non-
preferred ICU (in the form of trans-
portation costs, decreased quality of
care, etc.) is ignored.

Simplification of the analytical model.

Elective patients are deferred if no ICU
bed is available and will reattempt their
planned operation a later time.

Subsequent service attempts by elec-
tive patients are treated as new arrivals.

Simplification of the analytical model.

Internal emergency patients may be re-
ferred to another hospital unit, e.g. the
post-anathesia care unit, if the ICU is full.

Internal emergency patients arriving
at an ICU create temporary overbeds
within the ICU itself when the ICU is
full.

The patient may require increased resources
compared to a regular patient despite being
referred to an non-ICU unit. Additionally, it is
expected that such patients will be transferred
back to the ICU as soon as an ICU bed becomes
available.

Fig. 1 An example ICU network with two ICUs. Solid arrows, dashed
arrows, and dotted arrows represent external emergency, internal emer-
gency, and elective patients, respectively.

if and only if every bed in the entire ICU network is either
occupied or reserved for other patient types.

Internal emergency patients and elective patients arrive
directly at each ICU i in accordance to Poisson processes
with rates λi,2 and λi,3 , respectively, and are not allowed
to overflow. An internal emergency patient which cannot be
admitted to a regular ICU bed will trigger the creation of a
temporary overbed; in a physical ICU network, this may be a
bed in another hospital department such as a post-anesthesia
care ward or a separate, specialized cardiac ICU [44]. Elective
patients, on the other hand, generally correspond to non-time-
critical surgical operations; if no ICU is available for such
patients, the operation is deferred. For simplicity, we will not
model retrials; instead, any subsequent attempt of an elective
patient to obtain an ICU bed is modeled as a new arrival.

Let Ci denote the number of regular beds in ICU i, i.e. the
rated capacity of that ICU. As in Litvak et al. [41], we assume
that patient LoS is exponentially distributed with equal mean
(except in Section 4, where we show via simulation that the
QoS is not very insensitive to the shape of the LoS distribution
apart from its mean). Without loss of generality, we assume
this mean to be one.

As an analytical model, the Litvak et al. [41] model
contains several simplifications compared to a physical ICU
network, as listed in Table 1. Nevertheless, the model forms a
good environment for testing new concepts andmethodologies
before they are applied to more complex real-world systems.

3.1 Notation for QoS evaluation

For measuring the QoS of an ICU network, let Bi denote
the blocking probability of external emergency patients from
catchment zone i, defined as the probability that such a patient
is refused by all the ICUs in the network and thus rejected
from the ICU network entirely. Let Di denote the deferral
probability of elective patients arriving at ICU i, defined
as the probability that the planned operation of an elective
patient is deferred due to a lack of beds at ICU i. Let Ti
denote the mean number of overbeds at ICU i for internal
emergency patients. Let B, D, and T represent the overall
blocking probability, deferral probability, and mean number
of overbeds for the entire network; thus
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Table 2 Table of notations for the ICU network model.
Symbol Definition

G Number of ICUs in the system
λi,1 Arrival rate of external emergency patients from catchment zone i
λi,2 Arrival rate of internal emergency patients to ICU i
λi,3 Arrival rate of elective patients to ICU i
Ci Rated capacity of ICU i
B Overall blocking probability of external emergency patients in the ICU network
Bi Blocking probability of external emergency patients from catchment zone i
bi Probability that an external emergency patient attempting ICU i will be refused by that ICU
T Mean number of temporary overbeds in the ICU network for internal emergency patients
Ti Mean number of temporary overbeds for internal emergency patients in ICU i
D Overall deferral probability of elective patients in the ICU network
Di Deferral probability of elective patients at ICU i

Fig. 2 Graphical depiction of the virtual ICU policy. Solid arrows,
dashed arrows, and dotted arrows represent external emergency, internal
emergency, and elective patients, respectively.

B =

∑G
z=1 λz,1Bi∑G
z=1 λz,1

D =
∑G

i=1 λi,3Di∑G
i=1 λi,3

,

and

T =
G∑
i=1

Ti .

Finally, let bi denote the congestion probability of ICU i for
external emergency patients, defined as the probability that an
external emergency patient arriving at ICU i will be refused
by that ICU. The notation defined above is summarized in
Table 2.

3.2 Virtual ICU policy

The virtual ICU policy was introduced by Litvak et al. [41] as
a more efficient policy than a set of G fully independent ICUs,

demonstrating that through resource sharing, improvements
in QoS could be obtained for all patient types. Under the
virtual ICU policy, each ICU i, i = 1, . . . ,G, reserves rV

i beds
exclusively for external emergency patients. These reserved
beds form a virtual ICUwhich only serves external emergency
patients. An external emergency patient arriving from Zone
i will first attempt to obtain one of the Ci − rV

i unreserved
beds at ICU i. If none of these beds are available, the patient
will attempt to obtain a bed at the virtual ICU. If all virtual
ICU beds are also occupied, then the patient is blocked. A
graphical depiction of the virtual ICU model is shown in
Fig. 2.

Litvak et al. [41] provided a moment-matched version
of ED for QoS evaluation under the virtual ICU policy, and
demonstrated that this method produces accurate QoS results
for this policy. In general, moment-matched ED is effective
for hierarchical overflow models [16]. On the other hand, the
virtual ICU policy is sub-optimal in terms of maximizing
QoS: the purely hierarchical structure of the virtual ICU
model means that the level of resource sharing remains far
from ideal.

3.3 Threshold reservation policy

Let Γz,n denote the ICU to which external emergency pa-
tients from Zone z and with n previous service attempts are
referred. Under the threshold policy, external emergency
patients arriving from Zone z will attempt each bed in
Γz =

(
Γz,0, Γz,1, . . . Γz,G−1

)
in order until an available ICU

bed is found. We call Γz the overflow policy of external emer-
gency patients from zone z. However, unlike in the virtual
ICU model, no beds are explicitly set aside for any patient
type. Instead, we impose a set of thresholds, rR

i,1 and rR
i,3, so

that for each ICU i, i = 1, . . . ,G, external emergency patients
are barred from last rR

i,1 beds and elective patients barred
from last rR

i,3 beds (i.e. these patients will not be admitted if
the number of vacant beds at ICU i falls below the specified
threshold). A graphical depiction of the threshold policy is
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Fig. 3 Graphical depiction of the threshold policy. Solid arrows, dashed
arrows, and dotted arrows represent external emergency, internal emer-
gency, and elective patients, respectively.

shown in Fig. 3. Finally, let Γ = (Γ1, Γ2, . . . , ΓG) denote the
overflow policy of the entire network.

3.4 Numerical comparison of reservation policies

We consider an ICU network with 3 ICUs, with 20 beds in
each ICU. The offered load for external emergency patients
from Zone i is λi,1 = λ and the offered load for internal
emergency and elective patients to ICU i is λi,2 = λi,3 = λ.
The overflow policy for external emergency patients is Γ =
((1, 2, 3) , (2, 3, 1) , (3, 1, 2)). The network is thus symmetrical
in both offered load and overflow policy. We shall also restrict
the reservation policy to be the same for each ICU.

For each reservation setting, the QoS of the ICU network
is evaluated using Markov-chain simulation. Simulation is
terminated when either the 95% confidence interval, as com-
puted using Student’s t-distribution, lies within 1% of the
simulation mean, or when thirty simulation runs have been
completed. The few cases where the confidence interval does
not fall within 1% of the simulation mean, even after thirty
runs, all have the property of B < 10−4. Such cases do not
affect the results of this subsection, as the simulation error
is dominated by the difference in QoS between the different
reservation settings.

3.4.1 Minimizing the blocking probability of external
emergency patients

For each λ in {5, 5.2, . . . , 6}, we determine via simulation
the optimal reservation settings to minimize the blocking
probability B of external emergency patients, subject to
T < 0.3 and D < 0.25. The results, shown in Table 3,
demonstrate that the threshold policy reduces the blocking
probability of external emergency patients from 60 to 85%
compared to the virtual ICU policy. In addition, when we
restrict rR

i,1 = rR
i,3 for better comparison with the virtual ICU

policy (which has only one reservation setting for each ICU),
the threshold policy still results in lower blocking probability

Table 3 Optimal reservation settings for minimizing the blocking
probabilities of external emergency patients in a symmetric 3-ICU
network. Each entry shows the blocking probability B of external
emergency patients and the corresponding reservation settings.

2 thresholds 1 threshold
λ Threshold policy Threshold

policy
Virtual

ICU policy

5 7.07 × 10−5 0.00138 0.00048
rR
i,1 = 0, rR

i,3 = 3 no reservation rV
i = 4

5.2 0.00015 0.00259 0.00101
rR
i,1 = 0, rR

i,3 = 3 no reservation rV
i = 4

5.4 0.00067 0.00453 0.00558
rR
i,1 = 0, rR

i,3 = 2 no reservation rVi = 3

5.6 0.00281 0.00752 0.00934
rR
i,1 = 0, rR

i,3 = 1 no reservation rV
i = 3

5.8 0.00455 0.0172 0.0323
rR
i,1 = 0, rR

i,3 = 1 no reservation rV
i = 2

6 0.0174 0.0174 0.0441
no reservation no reservation rV

i = 2

than the virtual ICU policy for λ > 5.2, with the benefits of
the threshold policy increasing with λ. This demonstrates the
increased level of resource sharing in the threshold policy,
compared to the virtual ICU policy, has a large effect on the
QoS of the network.

Note that the optimal blocking probability for the two-
threshold policy and virtual ICU policy is not continuous in
λ, as would be the case if all solutions for a particular policy
used the same reservation settings. As λ increases, certain
reservation settings that are viable for lower λ become no
longer viable as the constraints on T and D are no longer met.
Note also that the optimal blocking probability for all policies
is quite sensitive to the value of λ.

3.4.2 Minimizing the overall rejection rate

For each λ in {5, 5.2, . . . , 6.0}, we determine via simulation
the optimal reservation settings to minimize the overall re-
jection rate, subject to B < 0.05, T < 0.3 and D < 0.25. The
overall rejection rate is defined as the proportion of patients
that are either blocked or deferred:
mean rejection rate
total offered load

=
Bλ + Dλ

3λ
=

B + D
3

.

The results, shown in Table 4, demonstrate a 32-44% decrease
in rejection rate by adopting the threshold policy instead of
the virtual ICU policy. In addition, comparison of the QoS
demonstrates that the threshold policy can result in improved
service for all three patient types compared to the virtual
ICU policy. Finally, when we restrict rR

i,1 = rR
i,3 for better

comparison with the virtual ICU policy (which has only one
reservation setting for each ICU), the threshold policy still
gives a lower overall rejection rate than the virtual ICU policy.
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Table 4 Optimal reservation settings forminimizing the overall rejection
rate of a symmetric 3-ICU network. Each entry shows the overall
rejection rate of the ICU network, the QoS of each patient type, and the
corresponding reservation settings.

λ Threshold policy Virtual ICU policy

5 0.02391 0.04314
B = 0.00133 B = 0.00552
T = 0.06127 T = 0.1158
D = 0.06774 D = 0.1129
no reservation rV

i = 2

5.2 0.03144 0.05391
B = 0.00255 B = 0.00937
T = 0.08248 T = 0.1441
D = 0.08669 D = 0.1336
no reservation rV

i = 2

5.4 0.04069 0.06670
B = 0.00453 B = 0.0149
T = 0.1083 T = 0.1762
D = 0.1085 D = 0.1554
no reservation rV

i = 2

5.6 0.05174 0.08177
B = 0.00752 B = 0.0225
T = 0.1390 T = 0.2116
D = 0.1327 D = 0.1779
no reservation rV

i = 2
5.8 0.06471 0.09911

B = 0.01172 B = 0.03215
T = 0.1741 T = 0.2504
D = 0.1590 D = 0.2009
no reservation rV

i = 2

6 0.07977 0.11885
B = 0.01472 B = 0.04409
T = 0.2143 T = 0.2927
D = 0.1870 D = 0.2243
no reservation rV

i = 2

3.4.3 Example where restricting overflow lowers the overall
rejection rate

In [41], it is found that internal emergency patients have
a lower arrival rate than the other patient types. We thus
consider the same optimization problem as in Section 3.4.1
but with λi,1 = λi,3 = λ and λi,2 = λ − 1. The results, shown
in Table 5, demonstrate a 20-43% decrease in rejection rate
by adopting the threshold policy instead of the virtual ICU
policy. They also demonstrate that setting rR

i,1 = rR
i,3 = 0,

i.e. no reservation, does not necessarily result in the lowest
rejection rates, unlike in Section 3.4.1. This is despitemaximal
resource sharing in the sense that external patients have access
to all beds in all ICUs in the network and no patient is ever
barred from an ICU if there is at least one bed available.
Instead, for λ = 5 or 5.2, we obtain the counter-intuitive result
of reduced overall rejection rate when the overflow of external
emergency patients is restricted. This is because overflowing
external emergency patients adversely affect the QoS of
internal emergency and elective patients. A similar effect was

Table 5 Optimal reservation settings forminimizing the overall rejection
rate of a 3-ICU network, with reduced arrival rates of internal emergency
patients. Each entry shows the overall rejection rate of the ICU network,
the QoS of each patient type, and the corresponding reservation settings.

λ Threshold policy Virtual ICU policy

5 0.01200 0.02119
B = 0.00246 B = 0.00902
T = 0.01971 T = 0.03973
D = 0.02862 D = 0.05454

rR
i,1 = 1, rR

i,3 = 0 rV
i = 1

5.2 0.01789 0.02775
B = 0.00492 B = 0.01419
T = 0.02842 T = 0.05340
D = 0.03893 D = 0.06905

rR
i,1 = 1, rR

i,3 = 0 rV
i = 1

5.4 0.02542 0.03550
B = 0.00160 B = 0.02128
T = 0.05521 T = 0.06987
D = 0.07144 D = 0.08523
no reservation rV

i = 1

5.6 0.03325 0.04439
B = 0.00298 B = 0.03039
T = 0.07406 T = 0.08907
D = 0.09079 D = 0.1028
no reservation rV

i = 1
5.8 0.04275 0.05441

B = 0.00517 B = 0.04162
T = 0.09702 T = 0.1111
D = 0.1127 D = 0.1216
no reservation rV

i = 1

6 0.05406 0.06807
B = 0.00839 B = 0.02555
T = 0.1241 T = 0.1831
D = 0.1370 D = 0.1786
no reservation rV

i = 2

observed by Gurumurthi and Benjaafar [21]; however, in their
work, the authors control overflow by changing the routing
policy itself and do not consider reservation.

3.4.4 Robustness to increases in the offered load

Certain events such as the outbreak of an infectious disease
may cause short-term spikes in the arrival rate of patients
to an ICU network. In order to demonstrate that the benefits
of the threshold policy over the virtual ICU policy are not
dependent on the offered load, we consider the λ = 5.4 case
from Table 3. Using the optimal reservation settings for both
policies for λ = 5.4, we examine the effect on B, T , and D
as the offered load is increased by up to 20%. The results
are shown in Fig. 4. As the offered load increases, the gap in
B between the threshold policy and the virtual ICU policy
also increases. On the other hand, T and D are about the
same for both policies. In other words, the threshold policy
is robust to increases in the offered load in the sense that the
threshold policy continues to achieve a better QoS than the
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Fig. 4 QoS of a three-ICU network with respect to increases in the offered load.

Fig. 5 Sensitivity of B, T , and D to the
patient LoS distribution. The superscript
represents the variance of a lognormal
LoS distribution, whereas no superscript
represents an exponential LoS distribu-
tion.

virtual ICU policy when the arrival rates are increased (with
the reservation settings fixed).

4 Sensitivity to the patient length-of-stay distribution

Litvak et al. [41] demonstrated via simulation that their
ICU network model, using their virtual ICU policy, is not
very sensitive to the shape of the patient LoS distribution
apart from its mean. In this section, we show that this near
insensitivity also applies to the threshold policy. We consider
the same 3-ICU network as Section 3.4 and generate 1000
random configurations, with 5.0 ≤ λi,t ≤ 6.0, 0 ≤ rR

i,1 ≤ 3,
and 0 ≤ rR

i,3 ≤ 3 for each i = 1, 2, . . .G and t = 0, 1, 2. The
number of simulation runs is such that the 95% confidence
interval, as computed using Student’s t-distribution, lies
within 1% of the simulation mean.

Let Bx , T x , and Dx denote the blocking probability of
external emergency patients, mean number of overbeds for
internal emergency patients, and deferral probability of elec-
tive patients, respectively, for a lognormal LoS distribution
with mean 1.0 and variance x, as found by simulation; and
B, T , and D the same for an exponential LoS distribution,
also with a mean of 1.0. The distributions of the ratios Bx/B,
T x/T and Dx/D are shown in Fig. 5 for x ∈ {0.5, 2.0, 4.0}.
The results suggest that the QoS of our ICU network is not

very sensitive to the patient LoS distribution, with all results
within the interval [0.98, 1.02].

5 Estimating the QoS of an ICU network

While accurate approximations exist for ICU networks using
the virtual ICU policy [41], the presence of mutual overflow
under the threshold policy means that estimation of QoS
becomes considerably more difficult [56]. Additionally, al-
though there are similarities between the ICU network and
other overflow systems such as telecommunications systems
and call centers, there are also some fundamental differences.
For example, our ICU network considers three different pa-
tient types, of which only one typemay overflow. Furthermore,
the concept of an over-bed is unique to the current ICU net-
work model. These differences make the problem in this
paper challenging. In this section, we examine and compare
several approximations for QoS in an ICU network under the
threshold policy, and show how they can be extended to apply
to the current ICU network model.

5.1 Markov chain representation of a single ICU

We start by making the simplifying assumption that all traf-
fic offered to an ICU, including overflow traffic, follows a
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Poisson process. Let ai,n denote the offered traffic of external
emergency patients from Zone i which have overflowed n
times in the network. Then

az,0 = λz,1
az,n = az,n−1bΓz,n−1, n > 0. (1)

Let xi denote the total offered traffic of external emergency
patients to ICU i. Then

xi =
G∑
z=1

∑
n:Γz,n=i

az,n. (2)

Thus ICU i receives a total offered load of xi + λi,2 + λi,3
Erlangs.

By assuming that the arrival process to each ICU is a
Poisson process, we obtain a one-dimensional Markov chain
representation for each ICU i, i = 1, . . . ,G, as follows. Let
state j denote the state in which there are j patients in service,
and qj,k be the transition rate from state j to state k. Then

qj, j+1 = xi1
{

j < Ci − rR
i,1

}
+ λi,2 + λi,31

{
j < Ci − rR

i,3
}

qj, j−1 = j

qj,k = 0, | j − k | , 1,

where 1 {·} represents the indicator function.
From the transition rate matrix q[j,k], we can obtain the

probability of each state j, j ∈ N, which we denote as πj .
Then

bi =
∞∑

j=Ci−r
R
i,1

πj (3)

Ti =
∞∑

j=Ci+1
πj ( j − Ci)

Di =

∞∑
j=Ci−r

R
i,3

πj .

For a through discussion on Markov chains, see Norris [46].

5.2 ED

ED can be applied to the ICU network by treating xi for
each ICU i, i = 1, 2, . . . ,G, as mutually independent. This
results in a system of fixed-point equations involving (xi)Gi=1
and (bi)Gi=1, which can be solved via iterative substitution [6]
using (1)–(3). The stopping criterion is defined as follows. Let
b(k)i denote the k th-iteration estimate of bi . The fixed-point
iteration is terminated when

���b(k)i − b(k−1)
i

��� < 10−8 for all
i = 1, 2, . . . ,G.

After obtaining xi and bi for each ICU i, i = 1, 2, . . . ,G,
the quantity Bi can be obtained as the product of the congestion
probabilities for each ICU in Γi , i.e. Bi =

∏
j∈Γi bj .

5.3 IESA

IESA [7, 8, 57, 59] is based on the applying the underlying
methodology of ED, namely decomposition of the ICU net-
work into a set of independent queues with Poisson input,
to a surrogate model of the original network, so that the
dependencies between ICUs are represented in a manner that
is preserved when decomposition is applied. In the IESA sur-
rogate model, each external emergency patient carries three
attributes: z, the originating zone, ∆, the set of attempted
ICUs, and Ω, an estimate of the number of ICUs in the
network currently refusing external emergency patients. All
new patients start with ∆ = ∅ and Ω = 0. We will use the
term (z,∆,Ω)-patient to denote a external emergency patient
from Zone z which has attempted each ICU in ∆ and has
a congestion estimate of Ω. Unlike the “true” model of the
ICU network, in addition to blocking if all ICUs have been
attempted unsuccessfully, external emergency patients in the
IESA model will also abandon the network if Ω reaches G.

Consider a (z1,∆1,Ω1)-patient attempting ICU i. If a bed
is available at ICU i for external emergency patients, the
patient is admitted. Otherwise, the patient is compared to the
external emergency patient with the highest Ω values among
all external emergency patients residing at ICU i, which we
denote as an (z2,∆2,Ω2)-patient. Ties are broken arbitrarily. If
Ω1 ≥ Ω2, then the incoming patient overflows normally and
becomes a (z1,∆1 ∪ {i} ,Ω1 + 1)-patient. On the other hand,
if Ω1 < Ω2, then exchange of Ω occurs and the incoming
patient overflows as an (z1,∆1 ∪ {i} ,Ω2 + 1)-patient, while
the admitted patient becomes an (z2,∆2,Ω1)-patient. Note
that due to these rules, Ω ≥ |∆| for all incoming patients.

IESA thus forms an hierarchical traffic structure based on
Ω, where level j of the hierarchy includes all patients with Ω
less than or equal to j. Due to abandonment whenΩ = G, the
hierarchy has a total of exactly G layers, from 0 to G− 1. Due
to this hierarchy, IESA does not require fixed-point iterations
when applied to our ICU network model, unlike EFPA.

Let:

– ez,n, j denote the offered traffic to ICU Γz,n composed
of external emergency patients from Zone z which have
overflowed n times in the network and have a congestion
estimate of j;

– ẽz,n, j denote the offered traffic to ICU Γz,n composed
of external emergency patients from Zone z which have
overflowed n times in the network and have congestion
estimate of 0, 1, . . . or j;

– ai,n, j denote the offered traffic to ICU i composed of all
external emergency patients which have overflowed n
times in the network and have a congestion estimate of j;

– ãi,n, j denote the offered traffic to ICU i composed of all
external emergency patients which have overflowed n
times in the network and have a congestion estimate of
0, 1, . . . or j;
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Fig. 6 Relative errors for B, T , and D for ED and IESA. Each shaded area is truncated to show the extremums of the observed data.

– Ai, j denote the offered traffic to ICU i composed of all
external emergency patients with congestion estimate
0, 1, . . . or j; and

– bi, j denote the congestion probability of ICU i for external
emergency patients with congestion estimate 0, 1, . . . or
j.

By definition,

ez,0, j =

{
λz,1, j = 0
0, otherwise,

ẽz,n, j =
∑j

k=n
ez,n,k , and ãi,n, j =

∑j
k=n

ei,n,k . Summing over
all possible z,

ai,n, j =
∑

z:Γz,n=i
ez,n, j .

Summing over all possible n,

Ai, j =

G−1∑
n=0

ãi,n, j .

From Ai, j , λi,2, and λi,3, bi, j can be computed via Markov-
chain analysis as described in Section 5.1 . In accordance
with the information exchange mechanism, we obtain,

ez,n, j = ez,n−1, j−1bΓz,n−1, j−1
+ez,n−1, j−2

(
bΓz,n−1, j−1 − bΓz,n−1, j−2

)
.

(4)

The above values can be obtained iteratively for j = 0, 1, . . . ,G−
1. Finally, the blocking probability of external emergency
patients in zone i is

Bi =

G−1∑
n=1

ei,n,G . (5)

Note that (5) is a slight abuse of notation as patients with
a congestion estimate of G are never offered to any ICU;

however, defining ez,n,G as per (4) yields the correct result
for (5).

The values of Ti and Di can be estimated from the last
(i.e. G − 1th) level of the IESA hierarchy using the same
Markov-chain analysis as for bi,G−1.

5.4 Numerical comparison of ED and IESA

We consider ICU networks of G = 3, 4, or 5 ICUs. External
emergency patients are referred to an ICU in a round-robin
manner: thus an external emergency patient from zone i will
attempt ICUs i, i + 1 . . . ,G, 1, 2, . . . i − 1, in that order. For
each value of G , we generated 500 random configurations
with the following parameters:

– 15–20 beds in each ICU (15 ≤ Ci ≤ 20 for i = 1, 2, . . .G),
– reservation thresholds rR

i,1 and rR
i,3 of 0 to 3 for each ICU

i, and
– arrival rates λi,t of 0.25Ci to 0.3Ci for each ICU i and for
each patient type t.

The configurations were then filtered according to the follow-
ing conditions:

– a blocking probability B of between 0.1% and 5% for
external emergency patients, as estimated by IESA;

– at most 0.1G overbeds (T ≤ 0.1G), as estimated by IESA;
and

– a deferral probability D of at most 25% for elective
patients, as estimated by IESA.

The number of valid configurations were 427, 452, and 372
for G = 3, 4, and 5, respectively. For each valid configuration,
B, T, and D were evaluated using Markov chain simulation,
ED, and IESA. The number of simulation runs is such that
the 95% confidence interval, as computed using Student’s
t-distribution, lies within 1% of the simulation mean. The
relative errors of ED and IESA are shown in Fig. 6. The results
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demonstrate that IESA is much more accurate than ED when
estimating the blocking probability of external emergency
patients. On the other hand, both approximations are fairly
accurate for internal emergency and elective patients, with
ED being slightly more accurate than IESA.

6 Obtaining a conservative estimate for patient QoS

When dimensioning an ICU network, it is generally necessary
to ensure that the QoS estimates for some patients are con-
servative. For example, if one of the optimization constraints
is that the deferral probability D of elective patients must
not exceed Dmax, then any estimation of D must be equal
to or greater than the actual value of D. In this section, we
demonstrate a method of obtaining conservative estimates of
T , the mean number of overbeds in the network, and D, the
deferral probability of elective patients.

6.1 Hayward’s approximation

It has long been recognized that overflow traffic in overflow
loss systems has a higher peakedness (variance-to-mean
ratio) than fresh traffic, and that such peakedness increases
the blocking probability of requests offered to the system. For
a G/M/N/N queue offered traffic with mean m and variance
v, with z = v/m, a simple but effective blocking probability
approximation is provided by Hayward:

B (m, v, N) = B
(

m
z
,

N
z

)
.

This is equivalent to splitting the system into z independent
G/M/ Nz /

N
z queues, thus raising the blocking probability of the

system as servers in different queues now cannot coordinate to
reduce congestion in the system. In many cases, N/z will not
be an integer; Jagerman [25] gives an analytic continuation
of the Erlang B function for such cases.

To adapt Hayward’s approximation to an ICU network
model with threshold reservation, we construct a Markov
chain as follows. Let xi be the offered load of external
emergency patients to ICU i and let vi be the corresponding
variance. Then the total offered traffic to ICU i has mean
Mi = xi + λi,2 + λi,3 and variance Vi = vi + λi,2 + λi,3. Define
zi = Vi/Mi .

We split the ICU into zi independent parts so that the
offered load to each part contains Ci/zi beds and the offered
traffic to each part composed of external emergency, internal
emergency, and elective patients is Poisson with means ai,1 =
xi/zi , ai,2 = λi,2/zi , and ai,3 = λi,3/zi , respectively. The
reservation thresholds for external emergency and elective
patients become rR

i,1/zi and rR
i,1/zi , respectively.

Non-integer ICU sizes and reservation thresholds are
handled as follows. As in Section 5.1, let state j denote the

state in which there are j patients in service, and qj,k be the
transition rate from state j to state k. Let ci,1 =

(
Ci − rR

i,1

)
/zi ,

ci,2 = Ci/zi , and ci,3 =
(
Ci − rR

i,3

)
/zi . Let ni,t and fi,t be the

integer and fractional parts of ci,t , respectively, for t = 1, 2,
or 3. Furthermore, define

ui, j,t =


ai,t, j < ni,t
ai,t fi,t, j = ni,t
0, j > ni,t .

Then

qj, j+1 = ui, j,1 + ui, j,2 + ui, j,3
qj, j−1 = j

qj,k = 0, | j − k | , 1,

from which the steady-state probability of each state j can be
obtained. Finally,

bi = (1 − f1) πni,1 +
∞∑

j=ni,1

πj

Ti =
∞∑

j=dni,2e

πj
(
j − ni,2

)
Di = (1 − f3) πni,3 +

∞∑
j=ni,3

πj

6.2 Overflow variance of external emergency patients

Let a = xi,k denote the offered traffic to ICU i composed
of external emergency patients that have overflowed k times
in the system, and let v denote the corresponding variance.
Let z = v/a. To estimate the overflow traffic of patients
corresponding to this input stream, we construct an M/M/n/n
queue offered a′ = a/z Erlangs of Poisson traffic so that
E (a′, n) = bi . A method of computing n is given by Jager-
man [25].

The overflow mean and variance of the imaginary queue
are a′out = a′bi and

v′out = a′out

[
1 − a′out +

a′

n − a′ + a′out + 1

]
,

respectively, with the latter formula given by Riordan [55,
Appx. I]. Finally, the overflow variance from ICU i composed
of emergency patients that have overflowed k + 1 times is
estimated as v′out z.
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Fig. 7 Relative errors for T , and D for EDm. Each shaded area is
truncated to show the extremums of the observed data.

6.3 Numerical results

By using the methods described in Sections 6.1 and 6.2, we
can create a moment-matched version of ED, which we call
EDm. Using the same configurations as in Section 5.4, we
obtain the results shown in Fig. 7, which demonstrate that
EDm gives conservative estimates of T and D for the ICU
network.

7 Minimizing the blocking of external emergency
patients

From the randomly generated configurations from Section 5.4,
we select 100 configurations for G = 3 and G = 4, and 48
configurations forG = 5, For each network, we use exhaustive
search to solve the following problems:

arg min{
rV
i,1, |i=1,...G

} BV

s.t. TV < 0.1G

DV < 0.25
∀i, rVi,1 ≤ 10

(P1)

Table 6 Ratio of B∗V to B∗R for the optimal reservation settings for an
ICU network under the virtual ICU and threshold policies.

Number B∗V /B
∗
R (estimated) B∗V /B

∗
R (simulated)

of ICUs Mean St. dev. Mean St. dev.
3 3.8063 0.7557 4.7747 0.7487
4 8.7156 1.6009 11.793 1.6914
5 19.3404 4.3810 28.236 4.4632

and

arg min{
rR
i,1,r

R
i,3 |i=1,...G

} BR

s.t. TR < 0.1G

DR < 0.25
∀i, rRi,1 ≤ 5 ∀i, rRi,3 ≤ 5,

(P2)

where the subscripts V and R represent the virtual ICU policy
and our proposed threshold reservation policy, respectively.
We use IESA to approximate BR, and EDm, which we showed
in Section 6.3 to be conservative, to approximate TR and DR.
For the virtual ICU policy, we use the approximation method
defined in Litvak et al. [41]. Let B∗V and B∗R denote the optimal
values of BV and BR, respectively.

In Table 6, we show both the mean and standard devia-
tion of B∗V/B

∗
R, which represents the reduction in blocking

probability of external emergency patients, using both approxi-
mation andMarkov-chain simulation. The results demonstrate
a much lower blocking probability of external emergency
patients when the threshold reservation policy is used (i.e.
B∗R � B∗V ), with the difference in performance between the
two policies increasing with the number of ICUs in the net-
work. Note that simulation in used here only to evaluate the
QoS of the final configuration returned by the optimization
process.

Numerical results show that IESA is conservative for
estimating B∗R for the optimal reservation setting in all cases
considered. As ERM is very accurate at estimating BV in
ICU networks using the virtual ICU policy, the end result
is that the estimation of B∗V/B

∗
R is also conservative for all

cases considered. In addition, since EDm is conservative for
estimating TR and DR, all solutions found for the threshold
policy are valid. In other words, our approximate approach
provides not only a valid solution in all cases to optimization
problem (P2), but also conservative estimates of the QoS and
the amount of improvement achieved over the virtual ICU
policy.

7.1 Running times

For our optimization algorithm for the threshold reservation
policy, the running times for G = 3, 4, and 5 are shown in
Fig. 7. It is demonstrated that due to the speed of EDm and
IESA, it is possible to perform exhaustive search for networks
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Table 7 Running times for optimizing reservation thresholds for net-
works of 3, 4, and 5 ICUs.

Running time (s)
Number of ICUs Mean St. dev.

3 29.706 1.8479
4 1957.9 83.538
5 114243 3732.8

of up to 5 ICUs. The average speed as calculated for G = 5
is 529.3 QoS evaluations per second (where one evaluation
includes B, T , and D).

8 Concluding Remarks

We have proposed a new threshold-based patient referral
policy for the admission of patients to a network of ICUs
and shown that our new policy can achieve a higher patient
acceptance level than the previously proposed policy [41]
using a smaller number of beds, resulting in improved service
for all patients. Our proposed policy incorporates important
concepts and insights from traditional teletraffic theory, in-
cluding the overflow loss model with multiple streams of
calls (i.e. patients), resource sharing improved by allowing
mutual overflow for overflow calls (i.e. external emergency
patients), and trunk reservation for reserving the last unused
amount of resource at each node (i.e. the last few unused beds
at each ICU that external emergency patients cannot use) for
providing sufficient service level for non-overflow calls (i.e.
internal emergency and elective patients).

In particular, we focus on the problem of minimizing the
blocking probability of external emergency patients in an
ICU network subject to meeting minimum QoS requirements
for internal emergency and elective patients. This is achieved
in three parts: (1) our new threshold-based policy for patient
referral, (2) accurate and computationally efficient analytical
approximation methods for estimating the QoS of an ICU
network under our proposed policy, and (3) the incorporation
of these approximation methods into an algorithm for quickly
determining the optimal reservation thresholds for each ICU
in the network. In addition to the combining existing concepts
and methods to construct a comprehensive design, QoS
evaluation, and optimization framework, new contributions
include the construction of a new moment-matching method
specific to the ICUnetworkmodelwith a threshold reservation
policy and the unique combination of IESA and EDm to create
a conservative analytical approximation method for all three
patient types.

Numerical results demonstrate that our proposed threshold
policy is more efficient than the virtual ICU policy of Litvak
et al. [41]. This is because our proposed threshold policy
enhances the level of resource sharing by allowing an external
emergency patient to be assigned to any ICU bed in the
network as long as none of the vacancy thresholds are violated.

On the other hand, under the policy of Litvak et al. [41], an
external emergency patient is only allowed to overflow to
a dedicated group of ICU beds, thus limiting the level of
resource sharing. Therefore, our proposed policy can achieve
a lower blocking probability for external emergency patients
than the previous policy given the same QoS requirements for
internal emergency and elective patients. Alternatively, the
threshold policy can reduce the overall rejection rate of an
ICU network compared to virtual ICU policy (a reduction of
20-44% was achieved in our numerical examples). Enhanced
cooperation between hospitals by improving resource sharing
can achieve a higher acceptance level with a smaller number
of beds resulting in improved service for all patients in this
scenario. On the other hand, we have also shown a new
interesting result: maximizing resource sharing, by allowing
external emergency patients to attempt any ICU and setting
no reservation thresholds whatsoever, does not necessarily
lead to the lowest overall patient rejection rate.

Numerical results also demonstrate that the QoS of ICU
networks using the threshold policy is not very sensitive to
the patient LoS distribution apart from its mean, meaning
that the QoS approximations developed in the second part of
this paper are applicable to a wide range of QoS networks
with different patient LoS distributions.

Numerical results also demonstrate that IESA can provide
a much more accurate estimate of the blocking probability
of external emergency patients than the classical method,
ED. On the other hand, while ED by itself can achieve
relatively accurate estimates of both the mean number of
overbeds required for internal emergency patients and the
mean deferral probability of elective patients, such estimates
are not conservative, a requirement of our proposed opti-
mization algorithm. We therefore presented a version of ED
incorporating moment-matching, namely EDm, which was
demonstrated to be conservative in all our numerical tests.

Optimization of ICU networks is performed in this paper
using a unique combination of IESA for the QoS evaluation of
external emergency patients and EDm for the QoS evaluation
of non-overflow patients (i.e. internal emergency and elective
patients). The speed of IESA and EDm allows us to use
exhaustive search for our optimization algorithm for ICU
networks of up to five ICUs. Numerical results demonstrate
much better QoS (e.g. an average of 4.7, 11.7, and 28.2
times blocking probability reduction for external emergency
patients in a 3-ICU, 4-ICU, and 5-ICU network, respectively)
can be achieved by our proposed threshold policy, using our
approximation-based optimization algorithm, than for the
virtual ICU policy, using the optimization method of Litvak
et al. [41]. Additionally, our approximate approach provides
not only a valid solution in all cases for the threshold policy,
but also conservative estimates of the QoS and amount of
improvement achieved over the virtual ICU policy.
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In conclusion, our proposed patient referral policy, QoS
approximation methods, and optimization algorithm com-
bined together form an effective and computationally efficient
new framework for achieving much better service for all pa-
tients while meeting the QoS requirements for each individual
patient type in an ICU network.

8.1 Challenges for implementing the threshold policy in a
real ICU network

In order to locate a suitable ICUbed under the threshold policy,
a centralized system will be required to track the occupancy
level of each ICU in the network. This system may also be
made accessible to ambulatory services so that patients that
are likely to require ICU stay can be transported to a suitable
hospital before even being admitted to the hospital system.
The cost of such a system would depend on ICU and hospital
electronic systems that may already be present for monitoring
patient flow. Many modern ICUs (and hospitals) already have
integrated electronic clinical information systems that would
allow a platform for a program such as this.

Another challenge towards implementation of the thresh-
old policy is that the analytical model itself is not completely
realistic, as detailed in Table 1. In particular, while our cur-
rent model assumes that external emergency patients may be
assigned to any ICU, in reality certain ICUs may be more
suitable than others based on the availability of specialist
care (e.g. cardiothoracic, neurosurgery, multi-trauma). Future
work is required to extend the model for such cases before it
can be applied to a real ICU network.

8.2 Future work

Future work may involve extending the ICU network model
to more closely resemble a physical system, addressing some
of the differences outlined in Table 1. For example, the
optimization problemmay be modified to factor in the costs of
patients being admitted to a non-primary choice ICU, as well
as the costs associated with implementing and maintaining
the new policy. The interactions between the ICU network,
AEDs, and transport services may also be incorporated into
the model. Nevertheless, it is expected that the cost of the
proposed threshold policy will be substantially less than
the savings and quality of care gained by switching to the
proposed policy.

Finally, heuristic optimization techniques can be used
to both reduce the computational time needed to set the
reservation parameters of each ICU, and to allow the problem
to be solved for larger ICU networks, possibly covering an
entire city. Although the use of heuristics may lead to a
sub-optimal solution, it is expected that the configurations
produced will still outperform existing policies for ICU

patient referral. In addition, in this paper we only consider
optimization of the reservation parameters; future work may
involve dimensioning of the ICUs themselves (i.e. determining
the optimal number of beds). The use of heuristics will allow
us to deal with the additional number of decision variables
that need to be handled in such an optimization problem in a
computationally efficient manner.
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