
Extreme Learning Machine for Estimating
Blocking Probability of Bufferless

OBS/OPS Networks
Ho Chun Leung, Chi Sing Leung, Eric W. M. Wong, and Shuo Li

Abstract—Recently, the neural network approach for the
blocking probability evaluation on optical networks was
proposed, in which the inputs of the neural network were
the optical network parameters and the output was the
blocking probability of the optical network. The numerical
results showed that its evaluation speed of the blocking
probability was thousands of times faster than that of
the discrete event simulator. However, the existing ap-
proach had two drawbacks. First, when the blocking prob-
ability was small, there was a significant approximation
error due to the high dynamic range of the blocking prob-
ability. Second, the single-hidden-layer feedforward net-
work model was used, which needed some time-consuming
training algorithms to learn the parameters of hidden
nodes, such as backpropagation. To solve these problems,
this paper proposes to use the mean squared error of the
log blocking probability as the training objective and use
the extreme learning machine (ELM) framework for the
training. Our numerical results show that the blocking
probability estimated by our training objective is much
more accurate than that of the existing approach, and it
is obtained efficiently due to the greatly simplified training
procedure offered by the ELM.

Index Terms—Artificial neural network; Blocking
probability; Network performance evaluation; Optical
network.

I. INTRODUCTION

O ptical burst switching (OBS) and optical packet
switching (OPS) are the networking technologies

that transmit data through optical cross connects over op-
tical networks. In a bufferless OBS network, the control
header and data are sent over two separated channels.
To transmit data between a source-destination (S-D) pair,
a control header is first transmitted for reserving the re-
quired bandwidth for data transmission, and a data burst
is then sent without waiting for the acknowledgment. The
data burst from the different S-D pairs can use the same
wavelength effectively in a time-shared manner [1–3]. If
a certain bandwidth in some intermediate nodes could

not be reserved, the data burst would be dropped. This
behavior is defined as blocking. In a bufferless OPS net-
work, a packet that consists of the optical control header
and data is sent to the other nodes. The intermediate
nodes, along the path of the S-D pair, process the header
and decide the output port [4]. In this case, if all channels
were occupied, packet loss would occur. This packet loss is
defined as blocking.

Blocking probability is defined as the ratio of the number
of lost bursts/packets to the total number of sent bursts/
packets. It is commonly used for the performance measure-
ment of an OBS/OPS network. With blocking probability
and the equation set proposed by [5,6], we could calculate
the congestion of the network and then enable the algo-
rithms [7] to conduct the congestion control. In other words,
the evaluation of blocking probability is an important proc-
ess for controlling traffic congestion. Due to the high di-
mensionality, the exact analysis for blocking probability
is nonobtainable for a realistic size optical network. A prac-
tical way to estimate blocking probability is by computer
simulation, such as discrete event simulation [8–10].
However, these methods are very time-consuming. Another
practical way is by an analytical approximation, such as
the Erlang fixed point approximation (EFPA) [11,12], by
making some simplifying assumptions, which may make
the approximation not accurate enough.

Recently, Arajo et al. [13] suggested a neural network
approach for learning the unknown mapping from the
parameters of the optical circuit switching (OCS) network
to the blocking probability. The advantage of this approach
[13] was that it was thousands of times faster than the
discrete event simulation. However, there were two draw-
backs. Since the dynamic range of the blocking probability
was very large, which could vary from 10−5 to 10−1, there
would be a significant approximation error when the
blocking probability was very small. Therefore, using the
traditional mean squared error (MSE) of the blocking prob-
ability, i.e., in the original domain, as the training objective
was inappropriate. Furthermore, the existing neural ap-
proach [13] used the single-hidden-layer feedforward net-
work (SLFN) model [14–16] for the approximation. It
needed to train all the connection weights of an SLFN, in-
cluding the input bias terms and the input weights of the
hidden nodes. Consequently, the neural approach, pro-
posed in Ref. [13], had a number of difficulties in the learn-
ing process, such as local minimum.https://doi.org/10.1364/JOCN.99.099999

Manuscript received March 7, 2017; revised June 5, 2017; accepted June
16, 2017; published 0, 0000 (Doc. ID 290199).

H. C. Leung, C. S. Leung, and Eric W. M. Wong (e-mail: eeewong@cityu.
edu.hk) are with the Department of Electronic Engineering, City University
of Hong Kong, Kowloon, Hong Kong.

S. Li is with the School of Electrical and Information Engineering,
Tianjin University, China.

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 1

1943-0620/17/080001-01 Journal © 2017 Optical Society of America

https://doi.org/10.1364/JOCN.99.099999
mailto:eeewong@cityu.edu.hk
mailto:eeewong@cityu.edu.hk
mailto:eeewong@cityu.edu.hk
mailto:eeewong@cityu.edu.hk


To solve these problems, this paper proposes to use the
MSE of the log blocking probability as the training
objective. In addition, we use the extreme learning
machine (ELM) framework for the training. In our approach,
the approximation for the different ranges of blocking prob-
ability can then be performed in a better way, compared to
the existing approach [13]. The ELM framework, in which
the input biases and input weights of the hidden nodes
are randomly selected, has demonstrated the ability of uni-
versal approximation [17–19]. We adopt the ELM concept to
train an SLFN model for approximating the log blocking
probability. Our SLFN model is constructed incrementally
using an incremental learning algorithm, called incremen-
tal-ELM (I-ELM) [17]. Afterward, we use the alternating
direction method of multipliers (ADMM) [20,21] to remove
some unimportant nodes.

Our numerical results show that the blocking probability
approximated by our training objective is much more
accurate than that of the training in the original domain.
In particular, for a network with a relatively light load,
training in the original domain could overestimate the
blocking probability by 25 times, whereas ours was within
10% error (see Section V). In addition, in our training
scheme, the trained network could be obtained efficiently
due to the greatly simplified training procedure offered
by the ELM.

The remainder of the paper is organized as follows.
Section II briefly reviews the related works. Section III
introduces our proposed approaches. Section IV is the ex-
perimental setup. Section V describes the ELM training
process and the results from the experiments. Finally,
conclusions are given in Section VI.

II. RELATED WORK

A. Bufferless OBS/OPS

In Ref. [22], in an OBS network, packets are aggregated
into data bursts at the ingress node and disassembled at
the egress node. For each data burst, a control header,
which contains the description of the sender, is transmitted
first through the control channel to reserve the wavelength
for the data burst between the source and the destination
so that the data burst could be transmitted all optically
through data channels. Later, the data burst is transmitted
without any acknowledgment by the ingress node.
However, this policy could trigger the problem of blocking
since the control packet might not be able to reserve the
channel successfully, but the sender still sent the data
burst in the bufferless OBS network. In such a case, the
router would simply drop those data bursts since no avail-
able channels were reserved for them. This behavior is
defined as blocking. The occurrence of blocking acts as
the measurement of network performance [23,24].

In an OPS network, each packet contains both the
control header and the data. As the header and the data
coexist in the packet, the router processes them separately.
For the incoming packets, the router analyzes the header

optically, namely, all-optical packet switching [25]. The
routing algorithm determines the output fiber and wave-
length to conduct the forwarding. However, for a bufferless
OPS network, we consider the case that its output ports
have no buffers and the packet loss might occur when
all wavelengths in the output fiber are occupied [26].

B. EFPA for Bufferless OBS/OPS Networks

Apart from the discrete event simulation, the EFPA is
also a popular method for estimating the blocking probabil-
ity in OBS/OPS networks. Rosberg first applied the EFPA
to optical burst switched networks in 2003 [11]. After that,
an advanced algorithm based on EFPA was proposed for
OBS networks with different routing strategies, protec-
tions, and contention resolution methods [12]. In general,
the idea of EFPA is to decouple the network into indepen-
dent links and to assume the traffic is a collection of
Poisson processes. The EFPA is required to go through a
number of iterations until convergence is achieved. In each
iteration, the blocking probability of each link is recalcu-
lated and fed to the next iteration. The EFPA can calculate
the network blocking probability in an efficient manner
due to its simple model structure. However, the assump-
tions of independent links and the Poisson process may
introduce significant errors. For instance, the blocking
probability could be overestimated by EFPA under low
traffic conditions. A detailed performance analysis of
EFPA is provided in Section V.

C. Neural Network and Networking

A neural network is a popular tool for solving networking
issues. For instance, a neural network approach was pro-
posed for TCP congestion control [27]. This approach consid-
ered the backpropagation, a commonly used neural network
approach, for learning the active queuemanagement (AQM)
parameters. After that, the trained neural network acted as
a controller to adjust the window size autonomously. In
Ref. [28], an extension work for the ad hoc wireless network
was proposed. Apart from TCP congestion control, a neural
network could also estimate the blocking probability. In
Ref. [13], the multilayer perceptron (MLP) model was used
to estimate blocking probability. This MLP approach is very
efficient in terms of evaluation speed.

D. ELM

For a function approximation problem, we denote the
training set as Dt � f�xk; pk�:xk ∈ Rd; pk ∈ R; k � 1;…; Ng,
where xk and pk are the input vector and the target output
of the kth sample, respectively. In the SLFN approach
[14–16], the network output is given by

f n�x� �
Xn
i�1

βigi�x�; (1)

2 J. OPT. COMMUN. NETW./VOL. 9, NO. 8/AUGUST 2017 Leung et al.



where gi�x� is the output of the ith hidden node, and βi is
the connection weight between the ith hidden node and the
output node. For the hidden node in an SLFN, we can
choose many kinds of activation functions, such as sigmoid
functions [29] and radial basis functions [30]. Since many
articles [29,31,32] recommended the sigmoid function as
the activation function for the ELM-based SLFN, this
paper considers the sigmoid function as the activation
function for the hidden nodes.

With the sigmoid functions, the output of the ith hidden
node is given by

gi�x� �
1

1� expf−�aTi x� bi�g
; (2)

where bi is the bias term of the ith hidden node, and ai is
the input weight vector of the ith hidden node.

For the ELM approach [17,18], the bias terms’ bi’s and
the input weights’ ai’s are generated randomly. We only
need to adjust the output weights’ βi’s. When we use n
hidden nodes for approximation, the MSE is given by

E �
XN
k�1

�
pk −

Xn
i�1

βigi�xk�
�2

�
����p −

Xn
i�1

βigi

����
2

2

; (3)

where p � �p1;…; pN �T, and gi � �gi�x1�;…; gi�xN��T .
For the I-ELM algorithm [17], at the nth step, we add a

new node gn�·� into the network. We need to determine the
output weight βn of the newly additive node, but we do not
change all the previously trained weights’ βi’s, for
i � 1;…; n − 1. Recall that at the nth step, the training er-
ror is given by

En �
����p −

Xn
i�1

β2i gi

����
2

2

� ken−1 − βngnk22; (4)

where en−1 � p −
Pn−1

i�1 βigi. Hence, to minimize En (without
modifying the previous weights), the output weight βn is
given by

βn � eTn−1gn
kgnk22

: (5)

Algorithm 1 summarizes the steps in the I-ELM. We can
easily observe that the complexity for each iteration is
O�N� only.

Algorithm 1: I-ELM
1: Initialization: Let the number of hidden nodes n � 0 and
the residual error e0 � p.
2: Define the termination condition ε.
3: while n ≤ nmax and �En−1 − En�∕En−1 > ε do
4: n � n� 1.
5: Add a new hidden node gn�·� to the network, where
�an; bn� are randomly generated.
6: Compute the new weight βn: βn � eTn−1gn

kgnk22
.

7: en � en−1 − βngn.
8: end while

E. ADMM

The ADMM framework [20,21] is an iterative approach
for solving convex problems. It considers the following
constraint optimization problem:

min
β;u

: ψ�β� � ϕ�u�s:t: Cβ� Du � v; (6)

where ψ and ϕ are the cost terms in the objective function,
and β and u are decision variable vectors in the optimiza-
tion problem.

In the ADMM framework, we first construct an
augmented Lagrangian given by

L�β;u; γ� � ψ�β� � ϕ�u� � γT�Cβ� Du − v�
� ρ

2
kCβ� Du − vk22; (7)

where γ is the Lagrangian vector, and ρ is a positive penalty
parameter. The iterative scheme for fβ; u; γg is given by

βk�1 � argmin
β

L�β;uk; γk�; (8a)

uk�1 � argmin
u

L�βk�1;u; γk�; (8b)

γk�1 � γk � ρ�Cβk�1 � Duk�1
− v�: (8c)

III. DETAILS OF THE PROPOSED TRAINING MODELS

A. Methodology

Given an OBS/OPS network and some network condi-
tions fxk : xk ∈ Rdg, we can use a computer simulation to ob-
tain the corresponding blocking probability, fpk : pk ∈ R>0g.
Here, we assume that there are d network parameters that
describe the properties/conditions of theOBS/OPSnetwork;
and we would like to train an SLFN to learn the mapping
from the network conditions to the blocking probability.

Since the dynamic range of blocking probability was
very wide, the percentage error of the approximation for
small blocking probability values may be very large when
the blocking probability values obtained by simulation are
directly used as the target outputs of the SLFN. Therefore,
the I-ELM algorithm, which trains the SLFN in the origi-
nal domain, has a similar problem as in the Araujo’s
approach [13].

To handle this problem, we train our SLFN to learn the
log version of the blocking probability, i.e., fp̃k � log pkg,
instead. In this regard, the training set is given by

D̃t � f�xk; p̃k � log pk� : xk ∈ Rd; p̃k ∈ R<0; k � 1;…; Ng:
(9)

Our training objective will then become

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 3



Ẽ �
XN
k�1

�
p̃k −

Xn
i�1

βigi�xk�
�2

�
����p̃ −

Xn
i�1

βigi

����
2

2

; (10)

where p̃ � �p̃1;…; p̃N �T.
Using the I-ELM concept, we obtain a novel incremental

ELM algorithm, namely, the Log-I-ELM algorithm, for
minimizing the objective function Ẽ. Algorithm 2 summa-
rizes the key steps of the proposed algorithm. The main
difference between the I-ELM algorithm and the Log-I-
ELM algorithm is that the Log-I-ELM learns the
mapping from the network conditions to the log blocking
probability.

Algorithm 2: Log-I-ELM
1: Initialization: Let the number of hidden nodes n � 0 and
the residual error e0 � p̃.
2: Define the termination condition ε.
3: while n ≤ nmax and �Ẽn−1 − Ẽn�∕Ẽn−1 > ε do
4: n � n� 1.
5: Add a new hidden node gn�·� to the network, where

�an; bn� are randomly generated.
6: Compute the new weight βn: βn � eTn−1gn

kgnk22
.

7: en � en−1 − βngn.
8: end while

After the Log-I-ELM process, we obtain ne hidden nodes.
We describe these nodes by fg1�x�;…; gne

�x�g. Some of them
may be unimportant. Here, we propose to use the ADMM
approach to remove some unimportant nodes.

With the ADMM framework, there are two algorithms.
One is called ADMM-I-ELM. The ADMM-I-ELM trains the
SLFN first and then uses the ADMM framework to remove
some unimportant hidden nodes. Another one is ADMM-
Log-I-ELM. The ADMM-Log-I-ELM trains the SLFN first
and then uses the ADMM framework to remove some
unimportant hidden nodes.

With the ne hidden nodes, the approximation error is
given by

Ẽ �
����p̃ −

Xne

i�1

βigi

����
2

2

; (11)

where p̃ � �p̃1;…; p̃N �T. If we are allowed to retrain the net-
work, we can use the standard least squares approach to
find the output weights’ βi’s. However, the standard least
squares approach is unable to remove the unimpor-
tant nodes.

In order to delete some unimportant nodes, we can add
an l1 norm penalty term into the objective function. With
the penalty term, some output weights’ βi’s are dragged to
zero, and we remove their corresponding nodes after the
training. The modified objective function is then given by

J̃ � 1
2
kp̃ −Φβk22 � λ

��β��
1
; (12)

Φ �

0
BBBBB@

g1�x1� � � � � � � gne
�x1�

g1�x2� . .
. � � � gne

�x2�
..
. ..

. . .
. ..

.

g1�xN� � � � � � � gne
�xN�

1
CCCCCA
; (13)

where λ is a trade-off parameter between the approxima-
tion error of the log blocking probability and the number
of the selected nodes. We can adjust λ to balance between
the number of hidden nodes and the approximation ability.
When a large λ is used, we would like to have an SLFNwith
less hidden nodes, while when a small λ is used, we would
like to have an SLFN with more approximation ability.

The unconstraint optimization in Eq. (12) can be solved
by the ADMM framework. We first introduce a dummy
variable u. Then, the unconstraint optimization problem
becomes a constraint optimization problem given by

min
β;u

1
2
kp̃ −Φβk22 � λkuk1; s:t: : u � β: (14)

The augmented Lagrangian of Eq. (14) is given by

L�β; u; γ� � 1
2
kp̃ −Φβk22 � λkuk1 � γT�u − β� � ρ

2
ku − βk22:

(15)

Therefore, the corresponding ADMM updates are given as
Eqs. (17), (19) and (21).

Computing βk�1:

By fixing u as uk and γ as γk in Eq. (15), we can update
βk�1 by

βk�1 � argmin
w

L�β; uk; γk�

� argmin
β

1
2
kp̃ −Φβk22 � γkT�uk − β� � ρ

2

��uk − β
��2
2

� argmin
β

1
2
kp̃ −Φβk22 �

ρ

2

����uk − β� 1
ρ
γk
����
2

2
:

(16)

From Eq. (16), we obtain

βk�1 � �ΦTΦ� ρI�−1�ΦT p̃� ρuk � γk�; (17)

where I is an identity matrix.

Computing uk�1:

By fixing β as βk�1 and γ as γk in Eq. (15), we can update
uk�1 by

uk�1 � argmin
u

λkuk1 �
ρ

2

����u − βk�1 � 1
ρ
γk
����
2

2
: (18)

Although the term λkuk1 in Eq. (18) is nondifferentiable, we
can obtain the closed-form solution by using subdifferential
calculus [21] given by

4 J. OPT. COMMUN. NETW./VOL. 9, NO. 8/AUGUST 2017 Leung et al.



uk�1 � Sρ∕λ

�
βk�1

−

1
ρ
γk�1

�
; (19)

where Sζ�·� is a soft-threshold operator [21] given by

Sζ�θ� � sgn�θ� · �jθj − ζ�: (20)

Note that the soft-threshold operator is an elementwise
operator.

Computing γk�1:

γk�1 � γk � ρ�uk�1
− βk�1�: (21)

B. Simulation Parameters

We choose six input parameters of an optical network,
shown in Table I (namely, E, D, C, W, APL, and CR), as
the neural network inputs. These parameters are much re-
lated to the properties of network input traffic (i.e., E and
D), optical links (i.e., C and W), and network topology (i.e.,
APL and CR). These six chosen parameters are the inde-
pendent input parameters for the network simulation.
They define the major properties and configurations of a
network. Four of the parameters E, W, APL, and CR are
independent input variables inherited from [13]. Since
our focus is on the network layer rather than the physical
layer, the other parameters chosen in Ref. [13] are ne-
glected in our model. Apart from these four parameters,
we consider two more independent parameters D and C.
D (the difference between maximum and minimum traffic
load per S-D pair) is used to complement E (the mean traf-
fic load per S-D pair) for describing the input traffic proper-
ties. C (the number of channels per wavelength) is used to
complement W (the number of wavelengths) for describing
the optical link properties.

The definitions of the six parameters are as follows.
First, the mean traffic load per S-D pair (E) is the major
factor to determine the blocking probability. E is measured
in Erlangs andmeans the offered traffic between the source
and destination nodes. In general, a data burst has a high
chance of being blocked in a heavy traffic network [33].
Therefore, the blocking probability would increase with E.

Second, we represent the difference between the maxi-
mum and the minimum offered load per S-D pair by the
parameterD, which represents the variation of the network
traffic. The offered load to each S-D pair is assumed to
be uniformly distributed in between the interval

�E −D∕2; E�D∕2�. If we fix the value of E and increase
D, the offered load will have a wider range, and therefore,
the S-D pair traffic will be more bursty. Then, the number
of blocked bursts/packets of some links would be extremely
large, which would lead to a network with larger blocking
probability.

Third and fourth, C and W are the number of channels
per wavelength and the number of wavelengths in each
link, respectively. Suppose that a link is composed of F fi-
bers, each fiber supports W wavelengths, and each wave-
length supports S subwavelength channels (e.g., TDM).
For the case of no wavelength conversion, a new burst ran-
domly selects a free channel for transmission and uses the
same wavelength for its entire travel. The number of
channels per wavelength C would then be the number of
fibers F times the number of subwavelength channels S,
i.e., C � F × S. When the traffic to each S-D pair and C
are fixed, increasing W will mean that each wavelength
had a lighter load. Then, the blocking probability will de-
crease. When the traffic to each S-D pair and W are fixed,
increasing C will reduce the network blocking probability.

Fifth, the average path length APL represents the mean
distance between the S-D pairs. That is also the average
number of hops that the traffic would pass through. The
value is calculated based on the routing table. Lowering
the APL value would lower the blocking probability [34].

Sixth, the concentration of routes CR, which is defined
by [13], states the average number of routes that occur
in the optical link. It is an indicator to reveal the load bal-
ancing of the network. Meanwhile, the value of CR is cal-
culated by their proposed algorithm. Increasing the CR
value would also increase the blocking probability.

These six input parameters have a profound influence on
our training model. For E, W, APL, and CR, the work in
Ref. [13] had analyzed their influence. They introduced a
parameter, the traffic load E, to properly assess the impact
on the performance of the blocking probability estimation.
They presented a correlationmatrix for choosing the appro-
priate set of variables, and they found that W had the low-
est correlation among their set of variables, i.e., the most
important variables. They also chose their parameters
based on the MSE changes with respect to the changes
of the number of variables and identified that APL and
CR were significant to the training model. Based on their
justification, we inherited these four parameters as the in-
put of our neural network model.

With similar approaches, based on the MSE changes
with respect to the changes of the number of variables,
we identified two more variables D and C, which provide
more information about the properties of network traffic
and the optical link. Table II shows that the MSE values
of including D and C had a considerable reduction, which
were decreased from 1.649 × 10−3 to 1.243 × 10−3 and
9.010 × 10−4, respectively. Using the formulation in
Ref. [13], the MSE values were decreased 0.25 and 0.45
by proportion, and both were larger than their suggested
threshold 0.05. In addition, Table II shows that including
both D and C could further decrease the MSE value to
4.731 × 10−4. Therefore, these six input variables were

TABLE I
INDEPENDENT INPUT PARAMETERS IN THE SIMULATION

Parameter Definition

E Mean traffic load in S-D pair (Erlangs)
D Difference betweenmax and min traffic load in S-D pair
C Number of channels per wavelength
W Number of wavelengths
APL Average path length
CR Concentration of route

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 5



crucial and hence used in our ELM approach to accurately
evaluate the blocking probability.

IV. EXPERIMENTAL SETUP

A. Bufferless OBS/OPS Network Simulations

For the bufferless OBS/OPS network simulation, we con-
sidered the NSFNet topology. In Fig. 1, 13 nodes were
present and 16 optical links were installed among the
nodes. There were a total of 78 S-D pairs in the network.
The pairs were bidirectional, i.e., the nodes could
communicate with each other.

In the simulation, the Markov-chain simulation model
was implemented. The arrival process was assumed to
be Poisson, and the service time was assumed to be expo-
nentially distributed. As mentioned in Section III, we use
six parameters for the simulation and our training model.
Since our interested range of blocking probability was
�10−5–10−1�, we adjusted these parameters to generate a
dataset corresponding to the blocking probability within
our interested range.

The generated dataset was then used for our training
model. The computational time for the ADMM-I-ELM
and ADMM-Log-I-ELM required 73 and 102 min, respec-
tively. Like the existing neural network approach, the
evaluation of the estimated blocking probability took less
than a second to complete.

The specific ranges of the six parameters were chosen
based on the following two reasons. First, Araujo et al. in
Ref. [13] suggested that the traffic load should be [60–230]
Erlangs for the whole network, and we adopted this set-
ting. However, instead of measuring the traffic load of the
whole network, we measured the mean of the traffic load
per S-D pair E, which simplified the equations. It was

noticed that [60–230] Erlangs of a 78 S-D pair network
would be [0.8–3.0] Erlangs per S-D pair. The configuration
of the number of wavelengths W was usually [1–10] and
the whole capacity of the links was usually in the range
of [80–120], i.e., capacity equal to W times C [35,36]. We
directly adopted [1, 10] as the range of our number of wave-
lengths W. With the selected range of W [1–10] and the
capacity [80–120], the number of channels per wavelength
C was obtained through the capacity divided by W, which
could be in between 8 and 120.

Second, the difference between the maximum and mini-
mum traffic load per S-D pair D was [0.0–1.0], the average
path length APL was in the range of [2.52, 4.62], and the
concentration of routes CR was in the range of [1.81–4.81].
These were just some empirical settings, such that the gen-
erated dataset would have their blocking probability
within �10−5–10−1�.

B. Dataset Prepossessing and Settings

Before the training stage, the dataset would require
some prepossessing. To start with, we defined an attribute
to be all the values in the dataset of an individual param-
eter. Each attribute was normalized to prevent the occur-
rence of outliers. The normalization was carried out with
the attribute mean and the attribute standard deviation.
Then, the dataset was separated into three classes based
on the intervals of blocking probability. Table III shows
the classification criterion. With this criterion, each class
was guaranteed to contain at least 6000 entries for our da-
taset. For the training set, 10,000 entries were selected
randomly from the three classes. Each class provided
one-third of the training set entries. For the test set,
10,000 entries were selected with the same approach.
The classification design was intended to balance the
blocking probability of the selected entries.

During the training stage, the training set was learned
by I-ELM and Log-I-ELM as mentioned in Section III, and
two sets of hidden nodes were generated. Then, we
removed the unimportant nodes by the ADMM optimiza-
tion. In the ADMM empirical setting, the parameter ρ
was set to 2 and the trade-off parameter λ was in the range
of �10−4–100�. In I-ELM and Log-I-ELM, we set a termina-
tion condition to stop the insertion of hidden nodes. Our
termination condition was based on the change in the
residue error between two consecutive iterations. In
Algorithms 1 and 2, when

��en−1��22 −
��en��22��en−1��22 < 0.01;

TABLE II
TRAINED MODELS WITH P PARAMETERS

P Input Parameters MSE

4 E, W, CR, APL 1.649 × 10−3

5 E, W, CR, APL, D 1.243 × 10−3

5 E, W, CR, APL, C 9.010 × 10−4

6 E, W, CR, APL, D, C 4.731 × 10−4

Fig. 1. Thirteen-node NSFNet topology.

TABLE III
CLASSES OF DATASETS

Class Lower Bound Upper Bound

1 1E-5 1E-3
2 1E-3 1E-1
3 1E-1 0.25

6 J. OPT. COMMUN. NETW./VOL. 9, NO. 8/AUGUST 2017 Leung et al.



we would stop the ELM training. To measure the perfor-
mance of the two algorithms, we considered two metrics.
One was the MSE of the probability, which was given by

MSE � 1
N

XN
k�1

�pk − p̂k�2; (22)

where pk’s were the true probability values, and p̂k’s were
the estimated probability values. It should be noted that
the MSE value was not a good measurement for the
approximation of probability values. For blocking probabil-
ity, the dynamic range was very wide. Small MSE values
did not mean that we had a good approximation for small
blocking probability values.

The other one was relative error given by

relative error � 1
N

XN
k�1

jpk − p̂kj
pk

: (23)

It should be noted that the relative error gave out a bet-
ter representation for the approximation error for the high
dynamic range data.

V. RESULTS

A. Comparison Between I-ELM and Log-I-ELM

The analysis of results generated in different stages is
presented in the following subsections.

In the first part of the experiment, we used the two al-
gorithms, I-ELM and Log-I-ELM, to build two SLFNs for
the estimation of blocking probability. For the I-ELM case,
the training was terminated after 2791 hidden nodes being
inserted into the network. For the Log-I-ELM case, the
training was terminated after 4591 hidden nodes being
inserted into the network.

Figure 2 presents the test set MSE values of estimated
blocking probability versus the number of hidden nodes.
From Fig. 2(a), for the I-ELM case, the MSE value was
equal to 0.001122, when 2791 hidden nodes were used.
From Fig. 2(b), for the Log-I-ELM case, the MSE value
was equal to 0.0306 when 4591 hidden nodes were used.
Comparing the test set MSE values, the test set MSE of
Log-I-ELM was nearly 10 times larger than that of
I-ELM. This phenomenon should be related to their train-
ing domain. For the I-ELM case, the training objective was

the MSE of blocking probability, whose dynamic range was
from 10−5 to 10−1. Hence, although the overall MSE of the
I-ELM is small, it does not mean that the I-ELM can have a
good approximation for the small blocking probability
range, and we will demonstrate this in Section V.C.

Figures 3(a) and 3(b) present the test set relative errors
of the two approaches. Both test set relative errors were
gradually decreasing with respect to the number of hidden
nodes. In Fig. 3(a), the relative error was equal to 99.14.
This was much larger than that of Log-I-ELM, which
was 1.865. Therefore, the blocking probability estimated
by the Log-I-ELM was more accurate than the one done
by the I-ELM over the data range.1 Although the test set
MSE of the I-ELM is far less than the one of the Log-
I-ELM, the relative error shows that the Log-I-ELM algo-
rithm is better than the I-ELM algorithm. This explains
why our focus should be on the order of magnitude (relative
error) rather than the MSE. With these results, we find
that training for the estimation of blocking probability
should be processed in the log domain.

From the two figures, the number of used hidden nodes
in both I-ELM and Log-I-ELM were still large. Thus, the
two trained SLFNs should be further optimized by the
ADMM framework so as to remove some unimpor-
tant nodes.

B. Comparison Between ADMM-I-ELM and
ADMM-Log-I-ELM

The ADMM framework was used for optimizing our
trained models. In the ADMM framework, by varying
the weighting factor λ, we could control the number of hid-
den nodes used. Figure 4 shows the test set MSE versus the
number of hidden nodes. The figure shows that using the
ADMM framework could reduce the approximation error
and the number of hidden nodes used. For instance, in
the ADMM-I-ELM case, we only needed 1427 hidden nodes
to achieve a test set MSE value 0.0001875. For the ADMM-
Log-I-ELM case, we only needed 2968 hidden nodes to
achieve a test set MSE value 0.0004732. Again, the test
set MSE value in the ADMM-I-ELM is less than the one
in the ADMM-Log-I-ELM. It is not surprising that this

0 500 1000 1500 2000 2500 3000
1

1.5

2

2.5
x 10

−3

No. of hidden nodes

T
es

t s
et

 M
S

E

 

 

I−ELM

X:2791
Y:0.001122

No. of hidden nodes
0 1,000 2,000 3,000 4,000 5,000

T
es

t s
et

 M
S

E

0

1

2

3

4

5
LOG-I-ELM

X:4591
Y:0.0306

(a) (b)

Fig. 2. Test set MSE versus number of hidden nodes of I-ELM
and Log-I-ELM.

No. of hidden nodes

(a) (b)

0 500 1000 1500 2000 2500 3000

T
es

t s
et

 r
el

at
iv

e 
er

ro
r

90

100

110

120

130

140

150

160

I-ELM

X:2791
Y:99.14

No. of hidden nodes
0 1000 2000 3000 4000 5000

T
es

t s
et

 r
el

at
iv

e 
er

ro
r

0

5

10

15

20

LOG-I-ELM

X:4591
Y:1.865

Fig. 3. Test set relative error versus number of hidden nodes of
I-ELM and Log-I-ELM.

1We will demonstrate this in Section V.C and Figs. 6 and 7.

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 7



phenomenon happens again. Therefore, in our case, the
MSE only tells us the validity of the models, but it is
not a guideline to choose the trained output weights among
the models.

In order to select the hidden nodes to generate the most
accurate output values, the relative error in both models
should be observed. In Fig. 5(a), the ADMM-I-ELM
algorithm used 1427 nodes to obtain the minimum relative
error with value 19.66. Thus, this set of hidden nodes
was considered to represent the ADMM-I-ELM model.
Compared with the I-ELM, the ADMM-I-ELM reduced
the number of hidden nodes from 2791 to 1427. Also, the
test set relative error declined from 99.14 to 19.66.

In Fig. 5(b), the ADMM-Log-I-ELM algorithm used 2968
nodes to obtain a minimum relative error with value
0.2903. Through the ADMM optimization, the relative
error dropped from 1.81 to 0.29, and the required number
of hidden nodes decreased from 4591 to 2968.

To sum up, in terms of relative error and the required
number of hidden nodes, the ADMM framework can signifi-
cantly improve the performance and the resource require-
ment. In addition, the relative error of the ADMM-Log-I-
ELM is much better than that of the ADMM-I-ELM.
That means, the ADMM-Log-I-ELM algorithm is much
more suitable for the estimation of blocking probability,
which is in the high dynamic range.

C. Estimation of Blocking Probability by ELM

With the ADMM framework, we could construct the
SLFNs and use them to estimate the blocking probability.
In order to test the accuracy, the dataset was chosen to

have a wide range of blocking probability, and the target
range was �10−5–10−1�.

Figure 6 demonstrates the performance of the estimated
blocking probability versus the traffic load E of the OBS
networks. In this setting, we treated the other five inputs
as constant, where D � 0.2, C � 120, W � 1, APL � 3.08,
and CR � 1.8125. Meanwhile,Ewas in the range of [1.8–3].
In Fig. 6, we notice that our proposed approaches both fell
within the 95% confidence interval of the simulation when
E was above 2.4 Erlangs per pair. In other words, for the
ADMM-I-ELM and ADMM-Log-I-ELM algorithms, the es-
timation was accurate in the range of blocking probability
�10−2–10−1�. However, the ADMM-I-ELM seemed to over-
estimate the value, while E was less than 2.4 Erlangs per
pair. When E was 1.8 Erlangs per pair, the estimated value
was nearly 25 times higher than that of the simulation. It
reveals that this algorithmworks poorly in the low blocking
probability region.

On the other hand, the ADMM-Log-I-ELM algorithm
could approximate the blocking probability value accurately
in the low blocking probability region. For example, when
E was 1.8 Erlangs per pair, the estimated blocking probabil-
ity of 7.855 × 10−5 was within the 95% confidence interval of
the simulations, i.e., [6.383 × 10−5–8.041 × 10−5]. Under this
setting, the ADMM-Log-I-ELM performs excellently for the
whole range of blocking probability.

A similar observation can be made in Fig. 7. When Ewas
0.9 Erlang per pair, the estimated value of ADMM-I-ELM
was nearly 29 times higher than that of the simulation.
For the ADMM-Log-I-ELM case, the estimated value was
1.534 × 10−5, which was within the 95% confidence in-
terval of the simulation, i.e., [1.406 × 10−5–1.759 × 10−5].
Generally, the estimated values of ADMM-Log-I-ELM
are within the 95% confidence interval of simulation,
whereas the ADMM-I-ELM tends to overestimate by a
factor of more than 20 times.

Based on these results, we observe that the ADMM-
Log-I-ELM algorithm is better than ADMM-I-ELM among
different situations. It is believed that the training domain

500 1000 1500 2000 2500 3000
1.6

1.8

2

2.2

2.4

2.6

2.8

No. of hidden nodes

T
et

s 
se

t M
S

E

 

 

ADMM−I−ELM

X:1427
Y:0.0001875

No. of hidden nodes
0 1000 2000 3000 4000 5000

T
es

t s
et

 M
S

E

× 10-4× 10-4

4

5

6

7

8

9

10

11
ADMM-LOG-I-ELM

X:2968
Y:0.0004732

(a) (b)

Fig. 4. MSE versus the number of hidden nodes of ADMM-I-ELM
and ADMM-Log-I-ELM.

No. of hidden nodes
500 1000 1500 2000 2500 3000

T
es

t s
et

 r
el

at
iv

e 
er

ro
r

19

20

21

22

23

24

25

ADMM-I-ELM

X:1427
Y:19.66

No. of hidden nodes
0 1000 2000 3000 4000 5000

T
es

t s
et

 r
el

at
iv

e 
er

ro
r

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

ADMM-LOG-I-ELM

X:2968
Y:0.2903

(a) (b)

Fig. 5. Relative error versus number of hidden nodes of ADMM-
I-ELM and ADMM-Log-I-ELM.

Traffic Load (Erlang per s-d pair)
1.8 2 2.2 2.4 2.6 2.8 3

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

10-5

10-4

10-3

10-2

10-1

100

ADMM-I-ELM
ADMM-LOG-I-ELM
EFPA
Simulation

X: 1.8
Y: 0.001948

X: 1.8
Y: 7.212e-05

LB: 6.383e-05
UB: 8.041e-05

Fig. 6. Blocking probability estimation by ADMM-I-ELM,
ADMM-Log-I-ELM, and EFPA with setting D � 0.2, C � 120,
W � 1, APL � 3.08, and CR � 1.8125.

8 J. OPT. COMMUN. NETW./VOL. 9, NO. 8/AUGUST 2017 Leung et al.



is the major reason to explain this problem. As expected,
training in the log domain avoided overfocusing large out-
put values, such that the small values have a chance to gain
the attention of the hidden nodes. In this manner, the
algorithm estimates the blocking probability accurately
for the values in the low region.

D. Comparison With EFPA

We also compared our proposed ADMM-Log-I-ELM algo-
rithm with the EFPA model. Figure 6 shows the results
generated by EFPA. It was similar to the one by simulation
and ADMM-Log-I-ELM when the number of wavelengths
W was 1. However, the EFPA overestimated the blocking
probability by nearly 3–5 times when the value of W was
larger than 1, as shown in Figs. 7–10. In particular, as
shown in Fig. 8, when E was 1 Erlang per pair and W
was 3, the ADMM-Log-I-ELM estimation 3.837 × 10−5

was in the 95% confidence interval of the simulation.

On the other hand, the EFPA estimation was 2.452 × 10−4,
which was nearly 5 times larger than the simulated value
of 4.749 × 10−5. This phenomenon also happened in Figs. 9
and 10 for small blocking regions.

For an OBS network, a newly arrived burst uniformly
and randomly chooses a free channel among all available
channels. However, in EFPA, we assume that a newly ar-
rived burst randomly chooses a wavelength first instead.
When all the channels on this wavelength are busy, the
new burst is deflected to other wavelengths until it finally
finds a free channel. Furthermore, when all the channels
in all the wavelengths are busy, it would be blocked.
Therefore, EFPA overestimates the network blocking
probability.

VI. CONCLUSION

This paper proposed two ELMmodels, namely, ADMM-I-
ELM and ADMM-Log-I-ELM, to estimate the blocking

Traffic Load (Erlang per s-d pair)
1 1.2 1.4 1.6 1.8 2 2.2 2.4

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

10-5

10-4

10-3

10-2

10-1

100

ADMM-I-ELM
ADMM-LOG-I-ELM
EFPA
Simulation

X: 0.9
Y: 1.582e-05

LB: 1.406e-05
UB: 1.759e-05

X :0.9
Y: 0.0004449

Fig. 7. Blocking probability estimation by ADMM-I-ELM,
ADMM-Log-I-ELM, and EFPA with setting D � 0.2, C � 40,
W � 2, APL � 3.08, and CR � 1.8125.

Traffic Load (Erlang per s-d pair)
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

10-5

10-4

10-3

10-2

10-1

100

ADMM-I-ELM
ADMM-LOG-I-ELM
EFPA
Simulation

X: 1
Y: 4.749e-05

LB: 3.766e-05
UB: 5.732e-05

X: 1
Y: 0.0002452

Fig. 8. Blocking probability estimation by ADMM-I-ELM,
ADMM-Log-I-ELM, and EFPA with setting D � 0.4, C � 40,
W � 3, APL � 3.75, and CR � 3.

Traffic Load (Erlang per s-d pair)
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

10-5

10-4

10-3

10-2

10-1

100

ADMM-I-ELM
ADMM-LOG-I-ELM
EFPA
Simulation

X: 1.3
Y: 1.908e-05

LB: 1.733e-05
UB: 2.084e-05

X : 1.3
Y: 8.867e-05

Fig. 9. Blocking probability estimation by ADMM-I-ELM,
ADMM-Log-I-ELM, and EFPA with setting D � 0.4, C � 50,
W � 2, APL � 2.628, and CR � 2.25.

Traffic Load (Erlang per s-d pair)
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

10-5

10-4

10-3

10-2

10-1

100

ADMM-I-ELM
ADMM-LOG-I-ELM
EFPA
Simulation

X :0.8
Y: 4.453e-05

LB: 3.769e-05
UB: 5.137e-05

X: 0.8
Y: 0.0002003

Fig. 10. Blocking probability estimation by ADMM-I-ELM,
ADMM-Log-I-ELM, and EFPA with setting D � 0.8, C � 18,
W � 5, APL � 2.628, and CR � 2.25.

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 9



probability in the bufferless OBS/OPS network. For the
ADMM-I-ELM algorithm, the incremental learning ap-
proach is conducted in the original domain before the
ADMM optimization. For the ADMM-Log-I-ELM algo-
rithm, the learning approach and ADMM optimization
process are unchanged, whereas the learning is done in
the log domain. Our numerical results show that the
MSE of both algorithms converges and, in terms of relative
error, the ADMM-Log-I-ELM algorithm is much better
than the ADMM-I-ELM algorithm. Furthermore, we con-
ducted several experiments under various settings to com-
pare the estimated values for both proposed approaches. It
is noticed that the ADMM-I-ELM algorithm overestimates
the blocking value, especially in the low blocking region.
However, the ADMM-Log-I-ELM algorithm estimates the
blocking probability in an accurate manner. Therefore,
training conducted in the log domain can resolve the over-
estimation problem for those low blocking values.
Moreover, the estimation times of our approaches are
within a second. Compared to the 20 min runtime of sim-
ulation, our approaches are much faster. In addition, we
compared our approaches with the well-known analytical
approximation EFPA. From our numerical results, our pro-
posed ADMM-Log-I-ELM algorithm was in general much
more accurate than EFPA. To sum up, the feasibility of
ELM with ADMM on estimating blocking probability
was demonstrated in this paper. It is expected that our pro-
posed concept can be easily extended to the other kinds of
networks as well.

ACKNOWLEDGMENT

The work was partially supported by a research grant from
the Government of the Hong Kong Special Administrative
Region (CityU 11259516).

REFERENCES

[1] C. Qiao and M. Yoo, “Optical burst switching (OBS)—A new
paradigm for an optical Internet,” J. High Speed Netw., vol. 8,
no. 1, pp. 69–84, Mar. 1999.

[2] J. S. Turner, “Terabit burst switching,” J. High Speed Netw.,
vol. 8, no. 1, pp. 3–16, Mar. 1999.

[3] K. Dolzer, C. Gauger, J. Späth, and B. Stefan, “Evaluation of
reservation mechanisms for optical burst switching,” Int. J.
Electron. Commun., vol. 55, no. 1, pp. 18–26, Jan. 2001.

[4] G. N. Rouskas and L. Xu, “Optical packet switching,” in
Emerging Optical Network Technologies. Springer, 2005,
pp. 111–127.

[5] P. Garg and N. Goyal, “Blocking performance enhancement
using congestion control in optical burst switching networks,”
Int. J. Electron. Comput. Sci. Eng., vol. 1, no. 4, pp. 2217–2220,
Sept. 2012.

[6] P. Garg and N. Goyal, “Congestion control using modified
Erlangs loss formulae,” Int. J. Eng. Res. Technol., vol. 1,
no. 6, pp. 1–4, Aug. 2012.

[7] H. Rauthan, A. Verma, and G. Kaur, “Congestion control
strategy in optical burst switching networks,” Int. J.
Comput. Appl., vol. 91, no. 17, pp. 33–37, Apr. 2014.

[8] A. Kaheel, H. Alnuweiri, and F. Gebali, “Analytical evaluation
of blocking probability in optical burst switching networks,”

in IEEE Int. Conf. on Communications, 2004, vol. 3,
pp. 1548–1553.

[9] C.-C. Hsu, M. Devetsikiotis, and S. D. Roberts, “Fast simula-
tion of optical burst switching networks using simulated
annealing,” in 14th IEEE Int. Symp. on Modeling, Analysis,
and Simulation, 2006, pp. 283–292.

[10] J. J. P. C. Rodrigues, N. M. Garcia, M. M. Freire, and P.
Lorenz, “Object-oriented modeling and simulation of optical
burst switching networks,” in IEEE GLOBECOMWorkshops,
2004, pp. 288–292.

[11] Z. Rosberg, H. L. Vu, M. Zukerman, and J. White,
“Performance analyses of optical burst-switching networks,”
IEEE J. Sel. Areas Commun., vol. 21, no. 7, pp. 1187–1197,
Sept. 2003.

[12] S. Li, M. Wang, E. W. Wong, H. Overby, and M. Zukerman,
“Evaluation of burst/packet loss ratio in a bufferless OBS/
OPS network with 1+X path protection,” IEEE Photon.
Technol. Lett., vol. 28, no. 15, pp. 1688–1691, Aug. 2016.

[13] D. R. B. de Araujo, C. J. A. Bastos-Filho, and J. F. Martins-
Filho, “Methodology to obtain a fast and accurate estimator
for blocking probability of optical networks,” J. Opt. Commun.
Netw., vol. 7, no. 5, pp. 380–391, May 2015.

[14] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural
Netw., vol. 2, no. 5, pp. 359–366, Mar. 1989.

[15] K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, Mar.
1991.

[16] A. R. Barron, “Universal approximation bounds for superpo-
sitions of a sigmoidal function,” IEEE Trans. Inf. Theory,
vol. 39, no. 3, pp. 930–945, May 1993.

[17] G. Huang, L. Chen, and C. Siew, “Universal approximation
using incremental constructive feedforward networks with
random hidden nodes,” IEEE Trans. Neural Netw., vol. 17,
no. 4, pp. 879–892, July 2006.

[18] J. Tang, C. Deng, and G. B. Huang, “Extreme learning ma-
chine for multilayer perceptron,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 4, pp. 809–821, Apr. 2016.

[19] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70,
no. 1, pp. 489–501, Dec. 2006.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Found. Trends
Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan. 2011.

[21] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo,
“An augmented Lagrangian approach to the constrained op-
timization formulation of imaging inverse problems,” IEEE
Trans. Image Process., vol. 20, no. 3, pp. 681–695, Mar. 2011.

[22] Y. Chen, C. Qiao, and X. Yu, “Optical burst switching: A new
area in optical networking research,” IEEE Network, vol. 18,
no. 3, pp. 16–23, May 2004.

[23] T. Venkatesh, C. S. R. Murthy, and C. Murthy, An Analytical
Approach to Optical Burst Switched Networks. Springer, 2010.

[24] A. K. Garg and R. Kaler, “Burst dropping policies in optical
burst switched network,” Optik, vol. 121, no. 15, pp. 1355–
1362, Sept. 2010.

[25] I. Szcześniak, “Overview of optical packet switching,” Theoret.
Appl. Inform., vol. 21, no. 3–4, pp. 167–180, Nov. 2009.

[26] H. Øverby and N. Stol, “Providing absolute QoS in asynchro-
nous bufferless optical packet/burst switched networks with
the adaptive preemptive drop policy,” Comput. Commun.,
vol. 28, no. 9, pp. 1038–1049, June 2005.

10 J. OPT. COMMUN. NETW./VOL. 9, NO. 8/AUGUST 2017 Leung et al.



[27] H. C. Cho, M. S. Fadali, and H. Lee, “Neural network control
for TCP network congestion,” in IEEE Proc. American Control
Conf., 2005, pp. 3480–3485.

[28] A. A. Al Islam and V. Raghunathan, “ITCP: An intelligent
TCP with neural network based end-to-end congestion con-
trol for ad-hoc multi-hop wireless mesh networks,” Wireless
Networks, vol. 21, no. 2, pp. 581–610, Feb. 2015.

[29] H. T. Huynh and Y. Won, “Extreme learning machine with
fuzzy activation function,” in IEEE 5th Int. Joint Conf. on
INC, IMS, and IDC (NCM), 2009, pp. 303–307.

[30] C. S. Leung, W. Y. Wan, and R. Feng, “A regularizer approach
for RBF networks under the concurrent weight failure situa-
tion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 6,
pp. 1360–1372, June 2017.

[31] X. Liu, S. Lin, J. Fang, and Z. Xu, “Is extreme learning
machine feasible? A theoretical assessment (Part I),” IEEE
Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 7–20,
Jan. 2015.

[32] S. Lin, X. Liu, J. Fang, and Z. Xu, “Is extreme learning
machine feasible? A theoretical assessment (Part II),”
IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1,
pp. 21–34, Jan. 2015.

[33] D. Medhi, Network Routing: Algorithms, Protocols, and
Architectures. Morgan Kaufmann, 2010, chap. 11, pp. 237–
345.

[34] R. Lao and R. Killey, “Design of wavelength-routed optical
network topologies to minimise lightpath blocking probabil-
ities,” in Proc. London Communications Symp., 2003.

[35] S. Li, M. Wang, H. Overby, E. W. Wong, and M. Zukerman,
“Performanceevaluation of a bufferless OBS/OPS network
with 1 + 1 pathprotection,” IEEEPhoton. Technol. Lett., vol. 27,
no. 20, pp. 2115–2118, Oct. 2015.

[36] M. Wang, S. Li, E. W. Wong, and M. Zukerman, “Performance
analysis of circuit switched multi-service multi-rate networks
with alternative routing,” J. Lightwave Technol., vol. 32,
no. 2, pp. 179–200, Jan. 2014.

Leung et al. VOL. 9, NO. 8/AUGUST 2017/J. OPT. COMMUN. NETW. 11


	XML ID ack1

